SAE Alicante. December, 2019

Motivation

Causality in a context of global data

The case of tourism-led growth hypothesis: global question but local evidence?

Causality in a context of global data

The case of tourism-led growth hypothesis: global question, global evidence.

Causality in a context of global data

"There is no mixed evidence, only poorly synthesized"" (D. Campbell)

Causality with Panel Data

The homogeneous parametric linear approach

  • Use a linear representation of the series:

\[ y_{i,t} = \alpha_{i} + \sum\limits_{k=1}^{K} \gamma_{k} y_{i,t-k} + \sum\limits_{k=1}^{K} \beta_{k} x_{i,t-k} + \epsilon_{i,t}, \]

  • Granger = Test signifficance of \(\beta_{k}\): IV ( Holtz-Eakin, Newey & Rosen, 1988 ), GMM ( Arellano & Bond, 1991)

  • Tourism: Sequeira & Nunes (2008); Debt: Panizza & Presbitero (2014)

The heterogeneous parametric linear approach

  • Coefficients differ in cross-sections

\[ y_{i,t}=\alpha_{i} + \sum\limits_{k=1}^{K} \gamma_{ik} y_{i,t-k} + \sum\limits_{k=1}^{K} \beta_{ik} x_{i,t-k} + \epsilon_{i,t}, \]

  • Use cross-section weighted average of Wald statistics: Dumitrescu & Hurlin, (2012); López & Weber, (2017).

  • Test is asymptotically normal for large N, small T. Bootstrap as an alternative.

Data problems may bias results

  • structural breaks,
  • non-linear function form,
  • outliers,
  • higher-moment causality

Towards a more robust alternative

  • Hiemstra & Jones (1994) propose a bivariate kernel for time-series. Bai et al. (2016) reformulate and extend.

  • Our proposal:
    • A model-free casuality test for panel data that is
    • robust and simple,
    • based on symbolic transfer entropy (STE).

Symbolic Transfer Entropy

Transfer Entropy (TE)

  • (Shannon) entropy: measures amount of information or uncertainty in stochastic data (Shannon, 1984)

\[ H_y = - E_0(\log p(y)) \]

  • TE quantifies reduction in uncertainty (information flow) in \(Y\) from the state of \(X\) (conditional on past Y).

\[ TE_{x \rightarrow y} = H_{y_t|y_{t-1}} - H_{y_t|x_{t-1},y_{t-1}} \]

  • TE and Geweke's GC measures are equivalent under Gaussian linear processes.
  • Under weak stationarity, all GC will be detected by TE (Serés et al. 2016).

Symbolic Transfer Entropy (STE)

  • An extension of TE defined on rank points (Schreiber, 2000)
  • Window (embedding dimension) \(m\). Sort data and compute ranks. Ranked vectors are symbols.
  • Example: \(x_t\) = { 3,9,7,6,5,10,4 }

Symbolic Transfer Entropy (STE)

  • Symbolic Transfer Entropy (STE): TE with symbolized data cross-section pool.
  • Assess significance using Markov block bootstrap (keep time-dim structure).
  • Warnings: Cross-Section Dependence and weak stationarity is assumed.

Validation using simulated processes

Surface Response

  • Consider five DGPs.
  • Sensititity of
    • shock persistence, \(\alpha=\{ 0,0.3,0.9 \}\)
    • and sample size, T={ 15,30,60 } , N={ 30,60,120 }.
  • Estimate Surface Responses of test accept/reject outcomes, 1000 sims.
  • Compute Granger-OLS, Dumitrescu-Hurlin and STE tests and compare power/size.

Homogeneous linear process

\[ \begin{eqnarray*} y_{it} &=& \alpha y_{i(t-1)} + \beta x_{i(t-1)} + \varepsilon_{it} \\ x_{it} &\sim& N(0,1) \\ \varepsilon_{it} &\sim& N(0,1) \\ \beta &\sim & U(0,2) \\ \end{eqnarray*} \]

Homogeneous process with non-linear variance

\[ \begin{eqnarray*} y_{it} &=& \alpha y_{i(t-1)} + \varepsilon_{it}\\ \varepsilon_{it} &\sim& N(0,|x_{i(t-1)}|) \\ x_{it} &\sim& N(0,1) \\ \end{eqnarray*} \]

Homogeneous process with outliers at CS sample ends

\[ \begin{eqnarray*} y_{it} &=& \alpha y_{i(t-1)} + \beta x_{i(t-1)} + \varepsilon_{it} \\ x_{it} &\sim& N(0,1) \\ \varepsilon_{it} &\sim& N(0,1) \\ \beta &=& 0 \\ \end{eqnarray*} \]

with extreme obs. at endpoints \(y_{2,1}= x_{1,1}\)=-10, \(y_{T,N} = x_{(T-1),N}\)=10.

Homogeneous process with non-linear mean

\[ \begin{eqnarray*} y_{it} &=& y_{i(t-1)} x_{i(t-1)} + \varepsilon_{it} \\ x_{it} &\sim& N(0,1) \\ e_{it} &\sim& N(0,1) \\ \end{eqnarray*} \]

Process with structural breaks

\[ \begin{eqnarray*} y_{it} &=& c_1 + \alpha y_{i(t-1)} + \beta_1 x_{i(t-1)} + % \varepsilon_{it} ~~\forall t=1,\ldots,T_1\\ y_{it} &=& c_2 + \alpha y_{i(t-1)} + \beta_2 x_{i(t-1)} + % \varepsilon_{it} ~~\forall t=T_1,\ldots,T\\ x_{it} &\sim& N(0,1) \\ e_{it} &\sim& N(0,1) \\ \alpha &=& \{ 0 , 0.3, 0.9 \} \\ c_1 &=& -c_2 = 1 \\ \beta_1 &\sim & U(0,2) \\ \beta_2 &=& -\beta_1 \\ \end{eqnarray*} \]

Some Application Examples

Government Expenditure vs. GDP

WB data on 100 countries, 1961-2017 (1lag)

Causality HNR p-val D-H p-val STE 1tail 2tail
Exp -> GDP -3.242 0.001 5.703 0.000 0.008 0.240 -
GDP -> Exp 1.441 0.150 17.815 0.000 0.008 0.165 -
Net (Exp-GDP) -0.001 0.455 0.820

Government Expenditure vs. GDP

WB data on 100 countries, 1961-2017 (2lags)

Causality HNR p-val D-H p-val STE 1tail 2tail
Exp -> GDP 1.376 0.169 7.223 0.000 0.018 0.290 -
GDP -> Exp 0.166 0.868 22.069 0.000 0.024 0.005 -
Net (Exp-GDP) -0.005 0.050 0.110

Government Expenditure vs. GDP

WB data on 100 countries, 1961-2017 (3lags)

Causality HNR p-val D-H p-val STE 1tail 2tail
Exp -> GDP -2.397 0.017 6.065 0.000 0.017 0.520 -
GDP -> Exp -0.750 0.453 10.386 0.000 0.019 0.320 -
Net (Exp-GDP) -0.001 0.345 0.700

Total Factor Productivity (TFP) vs. Firm Size (Size)

US BLS data on 86 industries, 1988-2015 (1lag)

Causality HNR p-val D-H p-val STE 1tail 2tail
Size -> TFP -6.850 0.000 6.189 0.000 0.025 0.005
TFP -> Size 3.150 0.002 6.471 0.000 0.026 0.000
Net (Size-TFP) -0.001 0.510 0.925

Total Factor Productivity (TFP) vs. Firm Size (Size)

US BLS data on 86 industries, 1988-2015 (2lags)

Causality HNR p-val D-H p-val STE 1tail 2tail
Size -> TFP 1.126 0.260 1.469 0.315 0.057 0.000
TFP <- Size -1.430 0.153 -0.237 0.855 0.053 0.000
Net (Size-TFP) -0.004 0.290 0.570

Total Factor Productivity (TFP) vs. Firm Size (Size)

US BLS data on 86 industries, 1988-2015 (3lags)

Causality HNR p-val D-H p-val STE 1tail 2tail
Size -> TFP 0.358 0.720 0.704 0.580 0.049 0.010
TFP -> Size -0.122 0.903 0.073 0.945 0.049 0.010
Net (Size-TFP) -0.001 0.450 0.905

Fitch Rating (FR) vs. GDP

Fitch and WB data, 99/47 countries, 1999-2012 (1lag)

FR vs. GDP STE 1side 2sides
FR -> GDP 0.017 0.060
GDP -> FR 0.025 0.115
Net (FR-GDP) -0.008 0.610 0.610

Fitch Rating (FR) vs. GDP

Fitch and WB data, 99/47 countries, 1999-2012 (2lags)

R vs. GDP STE 1side 2sides
FR -> GDP 0.028 0.890
GDP -> FR 0.023 0.500
Net (FR-GDP) 0.005 0.825 0.830

Fitch Rating (FR) vs. GDP

Fitch and WB data, 99/47 countries, 1999-2012 (3lags)

R vs. GDP STE 1side 2sides
FR -> GDP 0.035 0.675
GDP -> FR 0.024 0.465
Net (FR-GDP) 0.011 0.580 0.580

Conclusions

  • The STE test of causality is
    • robust to many relevant data problems.
    • simple to run (package in Matlab/R available from authors)
  • In panel data, robust and simple global answer to a global question.
  • Shannon entropy can be extended to non-stationarity processes.
  • Work in progress:
    • Missing observations/unbalanced panel.
    • The effect of cross-section dependence.