

Transfer Entropy Test for Causality in Longitudinal Data.

Maximo Camacho¹ Andres Romeu ¹ Manuel Ruíz Marín ² XXII AEM: June, 2019

¹Universidad de Murcia ²Universidad Politecnica de Cartagena

Motivation

"There is no mixed evidence, only poorly synthesized evidence"

"There is no mixed evidence, only poorly synthesized evidence"

Answer causality globally. How?

```
(Granger, 1969, 1988) Assume that ...
```

1. the cause occurs before the effect and ...

(Granger, 1969, 1988) Assume that ...

- 1. the cause occurs before the effect and ...
- 2. the causal series contains special information about the series being caused that is not available elsewhere (in the model).

(Granger, 1969, 1988) Assume that ...

- 1. the cause occurs before the effect and ...
- 2. the causal series contains special information about the series being caused that is not available elsewhere (in the model).
 - Testing $X \Rightarrow Y$: test significance of lagged x_t on y_t in the presence of y_{t-r} .

(Granger, 1969, 1988) Assume that ...

- 1. the cause occurs before the effect and ...
- the causal series contains special information about the series being caused that is not available elsewhere (in the model).
 - Testing $X \Rightarrow Y$: test significance of lagged x_t on y_t in the presence of y_{t-r} .
 - Commonly, use a linear, basically autoregressive, representation of the series.

$$y_{i,t} = \alpha_i + \sum_{k=1}^{K} \gamma_{ik} y_{i,t-k} + \sum_{k=1}^{K} \beta_{ik} x_{i,t-k} + \epsilon_{i,t},$$

1. Homogeneous panel ($\beta_{ik} = \beta_k \forall i$): significance test of lagged X. (*Tourism*: Sequeira & Nunes, 2008; *Debt*: Panizza & Presbitero, 2014)

$$y_{i,t} = \alpha_i + \sum_{k=1}^K \gamma_{ik} y_{i,t-k} + \sum_{k=1}^K \beta_{ik} x_{i,t-k} + \epsilon_{i,t},$$

- 1. Homogeneous panel ($\beta_{ik} = \beta_k \forall i$): significance test of lagged *X*. (*Tourism*: Sequeira & Nunes, 2008; *Debt*: Panizza & Presbitero, 2014)
- 2. Heterogeneous panel $(\exists i, j, k \mid \beta_{ik} \neq \beta_{jk})$: use cross-section average of Wald statistics (Dumitrescu & Hurlin, 2012; López &Weber, 2017)

· large cross-section heterogeneity,

- · large cross-section heterogeneity,
- · non-linearity,

- · large cross-section heterogeneity,
- · non-linearity,
- · structural breaks,

- · large cross-section heterogeneity,
- · non-linearity,
- · structural breaks,
- · outliers,

- · large cross-section heterogeneity,
- · non-linearity,
- · structural breaks,
- outliers,
- · higher-moment causality ...

- · large cross-section heterogeneity,
- · non-linearity,
- structural breaks,
- · outliers,
- · higher-moment causality ...

...but these are norm rather than exception!

Hiemstra and Jones (1994) propose a bivariate kernel-based approach. Bai et al. (2016) reformulate and extend.

Our Proposal

- · A non-parametric casuality test for panel data
- · based on symbolic analysis and

Our Proposal

- · A non-parametric casuality test for panel data
- based on symbolic analysis and
- · transfer entropy.

Methodology

Symbolic Representation of Time Series

Symbolic Representation of Time Series

Testing procedure

Monte-Carlo experiment design

Simulate five DGP's covering problems of interest:

1. A homogeneous linear process (LLM)

- 1. A homogeneous linear process (LHLM)
- 2. A homogeneous process with non-linear variance (HNLV)

- 1. A homogeneous linear process (LHLM)
- 2. A homogeneous process with non-linear variance (PHNLV)
- 3. A homogenoeus process with outliers (PHOUT)

- 1. A homogeneous linear process (LHLM)
- 2. A homogeneous process with non-linear variance (PNLV)
- 3. A homogenoeus process with outliers (PHOUT)
- 4. A homogeneous process with non-linear mean (PHNLM)

- 1. A homogeneous linear process ()
- 2. A homogeneous process with non-linear variance (HNLV)
- 3. A homogenoeus process with outliers (PHOUT)
- 4. A homogeneous process with non-linear mean (LALL)
- 5. A process with structural breaks (SB)

Homogeneous Linear (HLM)

$$y_{it} = \alpha y_{i(t-1)} + \beta x_{i(t-1)} + \varepsilon_{it}$$

$$x_{it} \text{ iid } N(0,1)$$

$$\varepsilon_{it} \text{ iid } N(0,1)$$

$$\alpha = \{0,0.3,0.9\}$$

$$\beta \sim U(0,2)$$

Homogeneous Non-Linear Variance (HNLV)

$$y_{it} = \alpha y_{i(t-1)} + \varepsilon_{it}$$

$$\varepsilon_{it} \text{ iid } N(0, |x_{it}|)$$

$$x_{it} \text{ iid } N(0, 1)$$

$$\alpha = \{0, 0.3, 0.9\}$$

Homogeneous with OUTliers (HOUT)

• The model is identical to Homogeneous Linear with $\beta=0$, but we introduce outliers at beginning and end of time-series sample).

$$y_{2,1} = x_{1,1} = -10$$

 $y_{T,N} = x_{(T-1),N} = 10$

Homogeneous Non-Linear Mean (HNLM)

$$y_{it} = y_{i(t-1)}x_{i(t-1)} + \varepsilon_{it}$$

$$x_{it} \text{ iid } N(0,1)$$

$$e_{it} \text{ iid } N(0,1)$$

Data Generating Process #5

Structural Break (SB)

$$y_{it} = c_1 + \alpha y_{i(t-1)} + \beta_1 x_{i(t-1)} + \varepsilon_{it} \quad \forall t = 1, ..., T_1$$

$$y_{it} = c_2 + \alpha y_{i(t-1)} + \beta_2 x_{i(t-1)} + \varepsilon_{it} \quad \forall t = T_1, ..., T$$

$$x_{it} \quad \text{iid} \quad N(0, 1)$$

$$e_{it} \quad \text{iid} \quad N(0, 1)$$

$$\alpha = \{0, 0.3, 0.9\}$$

$$c_1 = -c_2 = 1$$

$$\beta_1 \sim U(0, 2)$$

$$\beta_2 = -\beta_1$$

For each of these processes,

· simmulate 1000 times

For each of these processes,

- · simmulate 1000 times
- HLM, HLV, HNLM, SB under the alternative (causality) and HOUT under null (non-causality),

For each of these processes,

- · simmulate 1000 times
- HLM, HLV, HNLM, SB under the alternative (causality) and HOUT under null (non-causality),
- compute Granger-OLS (Granger), Dumitrescu-Hurlin (DH) and permutation Transfer Entropy (NTE) tests and

For each of these processes,

- · simmulate 1000 times
- HLM, HLV, HNLM, SB under the alternative (causality) and HOUT under null (non-causality),
- compute Granger-OLS (Granger), Dumitrescu-Hurlin (DH) and permutation Transfer Entropy (NTE) tests and
- estimate Surface Response (SR) of test power for HLM, HLV, HNLM and SB and SR of test size for HOUT).

Monte-Carlo experiment results

Homogenous Linear: Results

Homogeneous Non-Linear in Variance: Results

Homogeneous with Outliers: Results

Homogeneous Non-linear Mean: Results

Structural Break: Results

Some Application Examples

Direction	Stat	p-value	Stat	p-value	Stat	1-tail pval	2-tail pval
Panel A: r = 1							
Exp→GDP	-3.242	0.001	5.703	0.000	0.008	0.240	-
$GDP \rightarrow Exp$	1.441	0.150	17.815	0.000	0.008	0.165	-
Net (Exp - GDP)	-	-	-	-	-0.001	0.455	0.820
Panel B: r = 2							
Exp→GDP	1.376	0.169	7.223	0.000	0.018	0.290	-
$GDP \rightarrow Exp$	0.166	0.868	22.069	0.000	0.024	0.005	-
Net (Exp - GDP)	-	-	-	-	-0.005	0.050	0.110
Panel C: <i>r</i> = 3							
Exp→GDP	-2.397	0.017	6.065	0.000	0.017	0.520	-
$GDP \rightarrow Exp$	-0.750	0.453	10.386	0.000	0.019	0.320	-
Net (Exp-GDP)	_	_	_	_	-0.001	0.345	0.700

DΗ

STE

 Table 1 GDP vs. Gov.Expenditure: Summary of Results

HNR

	Direction	Stat	<i>p</i> -value	Stat	<i>p</i> -value	Stat	1-tail pval	2-tail pval
	Panel A: <i>r</i> = 1							
	Size→TFP	-6.850	0.000	6.189	0.000	0.025	0.005	-
	TFP→Size	3.150	0.002	6.471	0.000	0.026	0.000	-
	Net (Size - TFP)	-	-	-	-	-0.001	0.510	0.925
Panel B: r = 2								
	Size→TFP	1.126	0.260	1.469	0.315	0.057	0.000	-
	TFP→Size	-1.430	0.153	-0.237	0.855	0.053	0.000	-
	Net (Size - TFP)	-	-	-	-	-0.004	0.290	0.570
	Panel C: r = 3							
	Size→TFP	0.358	0.720	0.704	0.580	0.049	0.010	-
	TFP→Size	-0.122	0.903	0.073	0.945	0.049	0.010	-
	Net (Size - TFP)	-	-	-	-	-0.001	0.450	0.905

DH

STE

Table 2 TFP vs. Firm Size: Summary of Results

HNR

GDP→Rating	0.025	0.115	-	I. Rate→Rating	0.033		
Net effect	-0.008	0.610	0.610	Net effect	-0.007		
		Panel B: r = 2					
Rating→GDP	0.028	0.890	-	Rating→I. Rate	0.075		
GDP→Rating	0.023	0.500	-	I. Rate→Rating	0.035		
Net effect	0.005	0.825	0.830	Net effect	0.040		
		Panel C: r = 3					
Rating→GDP	0.035	0.675	-	Rating→I. Rate	0.064		
GDP→Rating	0.024	0.465	-	I. Rate→Rating	0.033		

2 p-value

Panel A: r = 1

Direction

Rating→I. Rate

Interest rate

1 p-value

0.650 0.895 0.735

0.260 0.930 0.095

0.925 0.995

0.435

2 p-value

0.740

0.095

0.435

Stat

0.026

0.031

Net effect 0.011 0.580 0.580 Net effect

Table 3 Fitch vs. GDP: Summary of Results

GDP growth

1 p-value

0.060

Stat

0.017

Direction

Rating→GDP

Thanks for your comments and suggestions!