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Abstract

We use structural econometric methods to assess the symmetric Bayes-Nash equilibrium
model of bidding with data from first-price auction experiments. We analyze the data from
both empirical and experimental perspectives. Our study focuses on the sensitivity of
structural inferences to some basic behavioral assumptions and to the quality of the
information available to the field researcher. It shows that once behavior is diagnosed “out-
of-equilibrium”, structural estimates become highly sensitive to the information available,
and do not improve with the quality of information. We also devise econometric procedures
to test the symmetric Bayes-Nash model for homogenous or heterogeneous constant relative
risk averse bidders in experimental contexts, and report an overwhelming rejection of this
model to explain bidding behavior at first-price auctions with independent private values.
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1. Introduction

The growing use of auctions to allocate assets has been paralleled in recent years by the
development of an impressive literature on the structural estimation of auction models (see
Paarsch and Hong, 2006, for an up-to-date review of the literature). In its essence, the structural
approach to data is based on the assumption that the variables of interest are in equilibrium, as is
the case when studying macroeconomic equilibrium models of the economy. In the context of
games with incomplete information such as auctions, however, equilibrium models can difficult
to assess because the relevant data are usually not observable (e.g., the number of active bidders,
the functional form of bidders’ distribution(s) of private values, their risk preferences and the
realizations of their private values). Therefore, rather than assessing equilibrium models, the
structural approach to auction data typically consists in recovering the unobserved information
by assuming bidders to act in a given equilibrium. Inference based on this approach ---
henceforth, structural inference --- is fundamental for policy recommendations such as setting a
revenue enhancing optimal reserve price, or implementing an alternative selling mechanism. But
the success of such recommendations, which may imply non-negligible money transfers from
one side of a market to another, remains highly conditional on the assumption that the recovered
information is correct or, equivalently, that the observed bids or prices are in the presumed
equilibrium.

The first goal of this paper is to assess the sensitivity of structural inferences to some
basic assumptions of the model used to draw these inferences and to the information that is
typically available to the field researcher. To this end, we use laboratory data and a methodology
inspired from Laffont, Ossard and Vuong (1995) for the analysis of symmetric first-price
auctions with private independent values. We motivate the use of experimental rather than field
data by the fact that in experiments, the auction fundamentals are perfectly known to the
researcher and are made explicit to the participating bidders. Our choice to study symmetric
auctions further keeps the analysis simple as it requires that the bidders’ private values are all
drawn (with replacement) from the same probability distribution. This assumption is crucial to
the determination of equilibrium predictions for the first-price auction format, and offers some
simple behavioral hypotheses to be tested for the observed behavior to be a Symmetric Bayes-
Nash Equilibrium (SBNE) one. Thus, by controlling the exhaustiveness of the analysis (i.e., prior
check of a symmetric / homogenous bidding behavior) and the quality of the information

available (e.g., information on all bids or only on winning bids), we are able to assess the SBNE



model and to check how inferences and predictions are affected by various assumptions that
underly this model.

So far we assumed an empirical setup in that we discarded information about the bidders’
value realizations from analysis. The paper’s second goal is to build a structural model that takes
explicit account of this information for the analysis of experimental data. In first-price auction
experiments, behavior is typically characterized by a significant overbidding (i.e., bidding above
the risk neutral Nash equilibrium prediction) and heterogeneity; both patterns are usually found
to be well or best explained by a SBNE model that assumes heterogeneous constant relative risk
attitudes (Cox et al., 1982, 1983, 1988, 1996). These conclusions, however, are based on the
estimation of reduced-form expressions of equilibrium behavior, and have raised some
controversy in the literature because they fail to explain patterns such as significantly negative
intercept terms in the estimation of individual bid functions and less-than proportional bidding at
higher values in symmetric settings (Kagel, 1995, Chen and Plott, 1998)." It appears to us that
part of this controversy results from the lack of a structural assessment of the SBNE model in
experimental conditions. We therefore identify conditions that allow a straightforward
assessment of this model and of its augmented version for heterogeneous risk attitudes with
experimental data.

Our analysis complements the one of Bajari and Hortagsu (2005) who estimate structural
econometric models with experimental first-price auction data.” Their study concentrates on
fitting various behavioral models in the aggregate and on comparing the non-parametrically
estimated values to the actual ones. They show in particular that the SBNE model for
homogenous constant relative risk averse bidders organizes the data almost better than models
that assume either risk neutral SBNE bidders (with and without adaptive learning) or a QRE
model with constant relative risk aversion. Our analysis deals instead with assessing (i.e., testing
and evaluating) the SBNE model under various information conditions that pertain to either

empirical or experimental setups. It reveals in particular that when behavior is diagnosed as

" A vivid debate about overbidding at first-price auctions and the risk aversion hypothesis was also triggered by
Harrison’s (1989) flat maximum critique --- cf. Cox, Smith and Walker (1992), Friedman (1992), Harrison (1992),
Kagel and Roth (1992) and Merlo and Schotter (1992). Numerous other studies have been conducted to bracket the
effect of risk aversion on bidding behavior within a Bayes-Nash equilibrium context, among which Harrison (1990),
Goeree, Holt and Palfrey (2002) and Armantier and Treich (2005). Ockenfels and Selten (2005) and Neugebaeur
and Selten (2006) study bidding dynamics and the effect of information feedback at first-price auctions. They show
that the observed behavior is not compatible with the (risk-averse) Bayes-Nash prediction which supposes a
stationary behavior.

? See also Armantier (2002) who uses non-parametric structural methods to analyze experimental data on affiliated
value auctions and decide which of the common value or the private independent value framework applies best.



being “out-of-equilibrium”, structural inferences become highly sensitive to the information
available. A comparison of our (parametric) estimates to those of Bajari and Hortagsu further
reveals important differences that put in perspective the use of non-parametric structural methods
for the analysis of experimental auction data.

In the next section we outline the econometric procedures used to test the SBNE model in
empirical and experimental conditions. Section 3 reports and discusses the outcomes and Section

4 concludes.

2. Theory and Model Specification

2.1. Symmetric Bayes-Nash Equilibrium Behavior

In a first-price sealed-bid auction, n bidders compete for the purchase of a single commodity
which is awarded to the highest bidder for a price equal to her/his bid. Each bidder is assumed to

receive a private reservation value v;, which is an independent draw from a distribution F' with
support [v;v] and density f. Bidders have the same utility function u(-) on monetary payments,
with 4 > 0, »" < 0 and u(0) = 0. A bidder with value v; who submits a bid b, has a utility
of winning the auction equal to u(v; — b;). The number of bidders, F' and u(-) are common
knowledge but the value realizations wv; are private information. In this context, a bidding
strategy b(-) is a SBNE strategy if for all valuations, it is a best response for bidder i to use b(-) if
all bidders j = i also use b(-). Maskin and Riley (2000) further show that if b(-) is a bidder’s
best response then it is monotone increasing in valuations. Therefore, if b~ '(b;) stands for the

inverse of b(-) then bidder i’s expected payoff is defined as

U(vi,b;) = w(v; — b)[F(0~ (b)) " (1)

Using the Bayes-Nash best-response first-order condition and imposing a symmetric behavior

(i.e., b; = b(v;),Vi = 1,...,n) yields the following nonlinear first order differential equation:

oy dln[F(u)t
b'(v;) = dInu(v; — b(vy))

with b(0) = 0 . )



This equation indicates that in equilibrium the slope of the bid function is equal to the
elasticity of substitution between the probability of winning and bidder i’s payoff. As risk

neutrality is characterized by u(w) = w, overbidding could be explained in terms of risk
aversion since by concavity dInwu(w) < dlnw, Yw>0; i.e., the slope of the bid function is

steeper with risk aversion than with risk neutrality. Following Holt (1980) and Cox, Smith and
Walker (1982), we assume bidders to display homogenous constant relative risk averse

preferences so that w(w) = w" for ¢ =1,...,n and where 1—r = 0 represents the buyers'

. . . . 3 . .
common Arrow-Pratt index of constant relative risk aversion.” With such preferences, equation

(2) yields the following SBNE bid function

n—1

F(S) T dS, (3)

F(v;)

bi = QO(’Ui;F,Q,T) = — fvi

which is linear in values if the latter are uniformly distributed in [v;v]. The seller’s expected

revenue being equal to the expected winning bid, it is determined as
ER(p';Fon,r) = [ p(F,s,p",7) dF(s)", (4)
p

where the integration is taken with respect to the distribution of the sample’s maximum

valuation, F'(s)", and where p" > v stands for the seller’s reserve price provided that her
reservation value for the commodity is lower than v. Clearly, p s optimal if it maximizes
equation (4). Actually, p* is the solution to 0 = p" — [1 — F(p*)]/f(p*) when r =1, and it

must be numerically determined when 7 = 1. An interesting property of this optimal reserve
price is that it decreases with risk aversion (Riley and Samuelson, 1981, Proposition 5). The
intuition for this is that highly risk averse bidders submit bids that are almost equal to their
private values so that the rents the seller extracts from bidders by setting an optimal reserve price

do not outweigh the risk of lowering competition. Hence it is of crucial importance for the seller

3 Such preferences suit better the study of risk aversion in experimental settings than constant absolute risk averse
(CARA) preferences because they encompass risk neutrality as a special case.



to know the type of preferences buyers have, for setting an optimal reserve price that assumes

risk neutral bidders is not optimal if bidders are risk averse.

2.2 Empirical and Experimental Frameworks

We will consider two estimation frameworks, both of which assume the actual number of
participating bidders to be common knowledge for the bidders and to be perfectly known by the
researcher. The first framework pertains to empirical studies in that it assumes the researcher to
be unaware of the bidders’ private values and to have only partial information about the
functional form of the distribution F. The second framework pertains to experimental studies in
that the researcher is assumed to know both the functional form of F' and the realizations of
bidders’ private values. Henceforth, we will refer to these frameworks as the empirical and the
experimental framework, respectively. It is assumed that data have been collected from a series
of T first-price auctions (indexed by ¢t = 1,...,T") of a homogenous commodity. Typically, in an
empirical framework, ¢ would represent different days or sampling sessions, while in an
experimental framework ¢ would be repetitions or rounds of the auction experiment.

We already note that although each framework implies its own econometric model
specification, both will assume that the distribution of valuations F to belong to the Beta family
of distribution functions indexed by only two parameters (6, and 6,) which nests a wide variety
of distributions, suchas the uniform as well as other asymmetric distributions with only two
parameters.” Since the domain of the Beta distribution is the unit interval, we normalize the
support of values to this domain such that v =0 and v = 1. To further lighten the notation, we
will suppress the v argument of (v;; F,v,r) and, since the Beta distribution is indexed by
parameter vector 6 = (60,,0,), we will refer to it as Fy so that the bid function takes the
expression o(v;;0,7).

Our motivation for using a parametric rather than a non-parametric approach a la Guerre,
Perrigne and Vuong (2000) or Campo et al. (2000) is twofold. First, as we use experimental
auction data to tackle issues concerning the structural analysis of first-price auctions data,
knowing the bidders’ true distribution of values is important as it provides a simple way to check

how the knowledge of this distribution and of its realizations affects ones structural inferences.

* The functional form of Beta distribution is: F (v;0,,0, ) = F((:ll——ltf;;ft@l Laa—p)®-tde.



Second, our parametric approach allows for a straightforward distinction between systematic
errors (measured by the difference between the actual and the estimated distributions) and non-
systematic ones (represented by the usual zero-mean error term which characterizes trial-and-
error behavior), whereas the non-parametric approach automatically associates errors (measured
by the difference between actual and estimated values) to an “out-of-equilibrium” behavior. For
this reason, the non-parametric approach cannot disentangle the two types of errors and is bound

to interpret trial-and-error type of behavior as systemic errors in experimental contexts.

3. Inference within the Empirical Framework

3.1. Characterization of bids and prices.
In this framework we assume the researcher to only have access to bid data, and that his/her

objective is to estimate the unknown parameter vector § = (6,,6,) of Fy(-). We consider the

following two situations which an empirical researcher typically has to deal with.

WINBIDS: The researcher only has information about winning bids, as it would be the case
when studying Dutch (descending-price) auction data. The expected winning bid b} in auction ¢

conditional on # and r is then given by the following equation:
w ! n
miy (0,,0,,7) = BQY 10,r) = [ o(0,5,7) dFy(s)". (5)

ALLBIDS: The researcher has information on a// submitted bids b;, as it would be the case

when studying First-Price auction data. The expected value of bidder i’s bid in auction ¢

conditional on 6 and r then takes the following expression:

g (01,05,7) = Bl 107) = [ 00,5,r)aE (). ©)

3.2. Conditions for identification.
Using data on all bids or on winning bids only, a first question is whether the specification of the

bids’ first order moments, i.e., equations (5) or (6), is enough to obtain an estimate of the



parameters of interest: r and 6. The literature has discussed some conditions for the
identification of these parameters in structural first-price auction models. Perrigne and Vuong
(2000) define conditions to be fulfilled by the distribution of bids to ensure that a consistent
estimate of the distribution of values can be recovered from bids alone when assuming risk
neutrality, i.e., 7 = 1. These conditions essentially require Fy(-) to behave smoothly at the tails.
Campo et al. (2002) further show that when assuming risk aversion, some additional restrictions
are needed both on the distribution of bids and on the bidders’ utility function to ensure
identification. In either case, the identification is non-parametric in the sense that it is not
restricted to a particular parametric family of distribution of valuations. Within our parametric

setting, we also need to impose some conditions to ensure identification of the parameters

(01,92) & R2++ and 7.

Proposition 1: The equilibrium bidding function is not a one-to-one mapping of the parametric
space © for (6,,6,,r), i.e., there exist infinitely many vectors (6,,6,,r) and (01*,92*,7”*) in ©

with (6,,6,,7) # (91*,192*,1’*) such that for any v € [0,1],

90(% 91,02,7’) = @(0791*,9;,7’*) .

Proof: See the Appendix.

Proposition 1 states that, in general, bids alone do not provide enough information about the
parameters of interest since the observed bidding behavior may be explained by at least two

different vectors of parameters. Therefore it is immediate to conclude

Claim 1: The distribution of valuations Fjy(-) and the CRRA parameter r are not identified from

information on bids alone.

Thus, identification requires a restriction on the parametric space © . Notice that from (the proof

of) Proposition 1, we can also conclude

Claim 2: Forany r > 0, p(v;1,1,r) = ¢(v;1/7,1,1).



Claim 2 implies that if people is risk averse with some CRRA parameter r and uniform
valuations, the observed bidding behaviour is indistinguishable from the bids obtained under risk

neutrality ( = 1) with valuations drawn from a Beta with 6, = 1 and 6, the inverse of 7. Thus,
within an empirical framework (i.e., where the researcher has only access to bid data) risk

neutrality should be imposed for the identification of (6’1,02), as in Perrigne and Vuong (2000).

In other terms, the estimates of (491,92) can be recovered from bid data. However, imposing risk

neutrality is not enough if the researcher uses only the bids’ first order moment.

Claim 3: For any r,0,,0,, there exists 0,0, such that

mA(917027T) = mA(el*79;7T)7 and

my (91’92,70) = mW(91*70;7r)

Proof: See the Appendix.

Claim 3 simply shows that one more restriction is needed when only using the first order
moments of bids. Namely, if we impose risk neutrality (r = 1), then we need to restrict either
parameter 6; or 60, . Alternatively, if we impose 6, = 1 then we need to restrict either r or 6,
since, by Claim 2, we would then have §; = 1/r. With such a restriction the SBNE bid function

1s linear in values so that we have

Claim 4: If 6, = 1 and r=1, the bidding function is linear in valuations, i.e.,

n—1

e(v;601,1,1) = 11176 "

To summarize, within the empirical framework we will use first order moments of

WINBIDS and ALLBIDS. In view of Claim 3, we will leave the parameter 6, free and restrict

both 6, and r to be equal to one, so that we focus analysis to the linear bidding case.’

> The reader may ask why not to use higher order moments that may provide identification of both #;, and 6, using

for instance, the work of Deltas (2004) who finds the second order moments of winning bids in independent private
value auctions. The reason for using only first order moments is that we do not require full-identification of the Beta



3.3. Tests and Procedures.
We will use bid data which has been obtained in an experimental framework for first-
price auction, to do the following:

o Testing for a homogenous bidding behavior. We first check if the bidders participating in a

given session display a homogenous behavior by estimating equation (6) with individual
dummies variables for the parameter #,. We denote by 6,; the 6, parameter of bidder i (i =
2,...4 and check whether ©(v;0,;,1,1) = @(v;6;;,1,1) for all 7= j by defining dummies

4

which take value one if bid corresponds to individual i and specify 6;; = 6, + Zéil{i: i}
=2

for 7 > 1. Homogenous bidding implies 6; = 0 for all 7 > 1. We refer to the null

hypothesis of this test as Hj~". Note that rejecting the null of a homogenous behavior in

either of our frameworks cannot reasonably mean that bidders are acting in some asymmetric
equilibrium since it is common knowledge to them that their respective values are all drawn
from the same probability distribution; a condition that leads (almost certainly) to a unique
equilibrium bidding strategy.® Also, bidders cannot be said to be asymmetric in their risk
attitudes, as in Li and Riley (1999), because the equilibrium predictions then assume that the
bidders’ risk aversion parameters are common knowledge, which is certainly not the case
here.” For these reasons, rejecting the null of a homogenous behavior in our setting is
tantamount to reject the SBNE model as symmetric individuals are found not to be using the
same bid function.

o Testing the informational equivalence of bids and prices. The distinction between the

ALLBIDS and WINBIDS frameworks allows one to test the appropriateness of the SBNE

model to organize the observed behavior. Notice first that if individuals are homogenous and

bid in equilibrium, then the § estimates in ALLBIDS and WINBIDS (i.e., using (6) and (5),

respectively) are consistent. Thus, by virtue of consistency, the estimates under ALLBIDS
and WINBIDS should converge to the same value as the sample of observations increases.

However, for small data sets such as those used in empirical or experimental studies, we

distribution in our framework that involves uniformly drawn valuations and thus, linear equilibrium bidding
strategies. The explicit testing of the SBNE will be adressed in the experimental section.

6 Maskin and Riley (2003) show that unicity is guaranteed if the distribution of values is defined on a finite support
and if there is a positive mass at the lower endpoint of support which would have been the case here if only the
experiments were conducted with a very small reserve price, e.g., p = 0.01.

7 See Campo (2002) for an empirical study of the latter case.



expect differences to be observed simply because the winning bid is only the maximum
statistic of the sample of all bids {b,b,...,b, } so that it contains less information than
{by,by,...,b, } about the parameter vector (6;,0,,7). As the researcher has less information in
WINBIDS than in ALLBIDS, the estimates are expected to be more efficient in the latter
case: both estimation frameworks should yield similar estimates but with smaller variance in
ALLBIDS than in WINBIDS. To this extent, testing the equality of ALLBIDS and
WINBIDS point estimates and the stochastically larger variances of WINBIDS of the latter
determines if the SBNE model is adequate to explain the observed behavior.® Also, since the
equilibrium bid function is monotonically increasing in values, the vector of observed bids

{b,by,...,b, } contains as much information as the vector of value realizations
{vi =b(b),i = 1,...n} regarding the estimation of (6;,6,,7).° To this extent, we further

conjecture that any difference between the estimates obtained from (6) and those obtained
from an environment in which bidders’ private values are observed, must asymptotically
disappear if bidders play in equilibrium. This last conjecture provides an easy way to assess
the effect of knowing the bidders’ private values on inferences.

Implementing Optimal Reserve Prices: The structural analysis of auction data is principally

motivated by normative reasons like the design of market institutions and the setting of
optimal reserve prices. Once estimates of the bidding function are obtained, equation (4) can
be used to analyze how the different informational content of bids and prices affects the
determination of optimal reserve prices and thus the seller’s expected revenue. Another issue
that relates to the implementation of optimal reserve prices is the assumption of a risk averse
bidding behavior. Given the identification conditions discussed in the section 3.2,
determining optimal reserve prices is impossible to achieve without some prior assumption
on the bidders’ risk preferences (or an exogenous assessment of bidders’ risk attitudes). To
evaluate the possible effects of assuming a risk averse behavior on the seller’s revenues when

optimal reserve prices are to be set, we therefore consider the following two scenarios. We

¥ Clearly, we cannot build a Haussman-type of test for this necessary condition because the estimator would be

biased both in ALLBIDS and WINBIDS.

? This is because if a statistic S is sufficient for a parameter vector (#,6,,7) and h(-) is bijective, then h(S) is

also sufficient (see Gourieroux and Monfort, 1995). In our case, as the inverse bid function v, =57 (b,) is bijective

it meets this condition. This however is not the case for the relationship between the winning bid ;" and the bid
sample {b;,by,...,0, } .

10



assume that bidders are either i) risk neutral with values distributed according to a Beta
distribution (henceforth, the BETA scenario) or ii) constant relative risk averse with

uniformly drawn values (henceforth, the UNI scenario).

4. Inference within the Experimental Framework

4.1. Data Generating Process for bids conditional on valuations.
When conducting auction experiments, the researcher has full information about the number of
bidders, the distribution(s) of values and the bidders’ value realizations. In most experiments the

distribution of values is chosen to be a uniform on [v;v] so that by normalizing values (and bids)

to the [0,1] interval, (3) yields the following SBNE bid function, which is linear in values:'?

n—1

e @

bz't = QO(Uit,l, 17 T) =

Our approach consists in encompassing this linear model into a general parametric model that
allows for non-linear (monotone increasing) bid functions by using the fact that a uniform

distribution defined on [0,1] is a particular Beta distribution with 6, = 6, = 1. Thus, as shown
in claim 4, testing that individuals bid as in (7) is equivalent to conduct a parametric test over 6,
and 6, that checks that the estimated Beta distribution is indeed uniform."!

Thus, we will consider the following equation for the bids in an experimental framework:

n—1
wl Fy(s) [ r
bir = vir — j; Fy(vy) ds + wy = @(vir,0,7) + wy (8)
' We normalize values v;, and bids b, as v; = (v;; — g)/(i —v) and by = (b, — g)/(i — v), respectively.

"!'In the Results section of the paper, we will also report on the case where the estimated bid functions can only be
linear in values, i.e., when 6, is set equal to 1.

11



where w;; stands for a non-systematic error term with E(w;; |v;) = 0. This random term is a
reduced-form error that captures deviations from equilibrium behavior that are not explained by
@(vi,0,7) 12

We know from Proposition 1 that the true parameters 7, and 6° = (67,69) cannot be

identified from (8) simultaneously. According to this proposition, if bidders are risk averse and
have their values drawn from a uniform distribution, then in the SBNE, their behavior would not
be distinguishable from the behavior of risk neutral bidders with non-uniform private values.
Proposition 1 provides however a condition on the parameters 6,6, and r for the model to be

tested with experimental data. This condition is that if we cannot reject the null that 6, = 1, then

we have r = 1/6, and the estimated bid function is linear in valuations with a slope equal to

(n—1)/(n—1+ Ql) , as predicted by the model for uniformly drawn values. In this framework,
1

non-linear bid functions are characterized by 6, = 1 and are interpreted as evidence against the

SBNE model. Therefore by imposing » = 1 in (8), we get:

n—1

Fy ds + wy . (9)

(s)
Fyo (vi)

b Vit
it = VUi — f
7 7 0

Equation (9) can now be estimated using standard non-linear least squares where the integral

must be computed using quadrature numerical procedures.

4.2. A test of the null of Symmetric Bayes-Nash Equilibrium.
Restricting 7=1 not only ensures identification of the 6 vector parameter but implies that if the

SBNE model holds, then it must be the case that the bidding function is linear (i.e.,f, = 1) and

0, equals 1/r. Therefore, we can assess the SBNE model by testing

'2 Notice that while (8) allows for trial-and-error bidding, it does not further assume bidders to stochastically best-
respond to their rivals’ errors, as QRE models do. To this extent, (8) imposes less structure on the bidders’
rationality than QRE type of models.

12



07 1/n
HU: 65) = 1 5

o 1/n (1o
H1: 620 Zz= 1

The null hypothesis in (10) defines a function » : R — R? such that if the model holds

and ry is the true constant relative risk aversion parameter, then there is an implicit restriction on
the parameter space of § which is given by 0 = h(r,). To test this implicit restriction, we
consider the distance between a consistent estimate of #° under both the null and the alternative

hypotheses,é , and 00 , which is consistent only under the null, and we test whether this distance

is statistically significant. A consistent estimator under the null hypothesis is given by
0" = h(r), where 7 is a consistent estimate of the true risk aversion parameter 7. This
consistent estimator can be found by estimating the linear model b, = v, + &, by OLS, in

which case 7 = (n —1)(1 - f/)/f/

Write ¢;, () short for v;; — f l Fip(s) ds. A consistent estimator 6 can be found
0 Fg(] (vit)
by NLLS, i.e.,
0 = ArgMin : Syr (0) = 3 (b = wu(0)), (11)

it

which is an asymptotically normal estimator so that ~nT (6 — 0°) — N(0,.J5 1y Jy"), where I

is the asymptotic variance of the gradient of the objective function, and Jj stands for the

asymptotic Hessian evaluated at the true parameter value.
Following Gourieroux and Monfort (1995), it can be shown that nT(é — éo) is asymptotically
normal with a variance-covariance matrix given by V = M Wo 7 ol "M }'L, where M), is the

orthogonal projection of Oh(ry)/Or on the space spanned by the columns of J,. Notice that

since the only effective restriction in (10) is the one affecting ) , the 2 x 2 matrix V is singular.

13



Therefore, an asymptotic test of (10) at the required confidence level can be computed using the

fact that
nTO —0°)V=(0—-0° — xi_,,

where V= denotes any generalized inverse of V. If the variance matrix {2 of the non-systematic

error term w;, is assumed to be a scalar matrix, [, can be consistently estimated using the outer

product of the gradients 28990#(9)899%(0)'. In general, however, one would expect some
it

degree of both heteroskedasticity and autocorrelation (both of unknown form) in the error term."

Therefore we use a Newey-West estimator of [, which we denote by I
Let J = 9%S,; (é ) / 0%0 denote the estimate of the Hessian, then the test of the SBNE model is

computed as follows:
nT (0 — 0y)'(MyJ LT M) " (0 — 0°) — xi_,. (12)
with + denoting the Moore-Penrose generalized inverse. The next proposition states that this test

reduces to a standard normal test of the significance of the second log-parameter of the estimated

Beta distribution, which significantly simplifies the computation of the test in (10):

Proposition 2: Call 0, the estimate of the log-parameter0y and &9: the estimate of its standard
2
deviation based on the asymptotic distribution. Under the null hypothesis in (10), the t-statistic

t =0, / 65 is asymptotically normal with zero mean and unit standard deviation.
2

Proof: See the Appendix.

" Heteroskedasticity may be due to the fact that bids are typically less dispersed at low values than at high values.
Autocorrelation instead may be due to the bidders’ possible trial-and-error behavior which can induce time-
dependence in the residuals w;; .

' If the only source of heteroskedasticity was due to an increasing dispersion of bids with respect to values, then an
alternative approach would be to use Generalized Least Squares (which also assumes non-autocorrelated residuals).
We conducted such GLS estimations and found no significant change in our conclusions to report.
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4.3. Testing the Symmetric Bayes-Nash model with Heterogeneous risk attitudes
So far the SBNE model assumed bidders with homogenous constant relative risk averse
preferences. The model proposed by Cox et al. (1982) assumes instead that the bidders’ utilities

are defined as u;(w) = w", where 7; is i.i.d. according to G(-) which has a positive continuous
density ¢(-) on (0,7,.¢], and where 7., stands for the risk parameter of the least risk averse

bidder. As behavior at first-price auction experiments is typically characterized by a significant
overbidding, risk neutrality is often considered as a natural lower bound on bidders’ risk aversion

so we assume 7, = 1. Notice that the additional parameters G(-),g(-) and (0,7, are

assumed to be common knowledge, and that although bidders have heterogeneous risk

parameters, they are still ex-ante symmetric.

In what follows, we use two properties of this model to construct a structural test. A first

property is that if bidders’ valuations are uniformly distributed, then the individual equilibrium
strategies are linear up to the maximum possible bid, b", of the least risk averse bidder and they
have no closed-form solution for bids greater than b". For uniformly drawn valuations on the
unit interval, Cox et al. (1988) show that b* = (n — 1) /(n — 1 + 7, ) and that the equilibrium

bid functions have the following expression

n—1

T for v € 1090 ()i L L)

bit = (,O(Uit;]_,]_,’f‘i) =
The second property is that if valuations are uniformly distributed then, for a given 7,

the distribution G(-) does not affect the linear part of the equilibrium bid functions. This directly

follows from the derivation of equilibrium bid functions in Van Boening, Rassenti, Smith

(1998). A structural test of this model would thus consist of checking if (1) bidders display a
homogenous behavior or not, (2) their bid functions are linear for bids smaller than b*(rmax) and

(3) the estimated risk aversion parameters are all smaller or equal to 7, .

5. Results

We test our models with the experimental data of Isaac and Walker (1985) which consist of ten

sessions of first-price auctions. Each of these sessions involves four different bidders who play
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for 25 rounds and who have their valuations drawn with replacement from a uniform on

[0,10]." We conduct our estimations separately for each session, and we assume that any test
outcome for a given session s is a Bernoulli variable R, that takes the value 1 if the null is
rejected (at o = 0.05, two-tailed) and 0 otherwise, so that R, ~ B(1;0.05). To draw our

conclusions for the ten auction sessions, we run a one-tailed binomial test on the number of

rejections given a probability of rejecting the null (“success”) of .05, so that ® ~ B(10;0.05)

10

with R = Z R, . The null hypothesis of this test is that the probability of wrongly rejecting the
s=1

null in a given session is & = 0.05 and the alternative is that a > 0.05, or equivalently that the
null tested in each individual session is globally rejected. Thus, the null of this global test is
rejected if the probability of observing at least Jt rejections is smaller than .05. This simple test
allows a straightforward assessment of a given hypothesis by summarizing the evidence in a

series of fully independent observations.

5.1. Empirical Framework

In this section we assess homogeneity in behavior and the SBNE model with the estimating
equations (5) and (6), and we explore the effects of different information conditions on our

inferences and on the seller’s expected revenues.

e Testing for Symmetric Bayes-Nash Equilibrium behavior

We first check if the bidders participating in a given session display a homogenous behavior by

estimating equation (6) with individual dummy variables for the parameter ¢, and checking

whether the J, parameters in the specification 6y, = 6; + é; for ¢ = 2,3,4 are jointly non

significantly different from zero (HJ~"). The statistics in Table 1 indicate that we reject this
hypothesis for four sessions in WINBIDS and for one session in ALLBIDS so that according to
the binomial test, it is rejected in WINBIDS (p = .0010) but not in ALLBIDS (p = .4013).
Such different outcomes provide some first evidence that behavior is not consistent with the
SBNE model.

We proceed with checking the necessary condition for the observed behavior to be a

SBNE one, i.e., that for sessions with homogenous bidders, the WINBIDS and ALLBIDS

' These data were also analyzed by Cox et al. (1988) and Cox and Oaxaca (1996) and Ockenfels and Selten (2001).
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frameworks should yield stochastically equivalent 6, estimates, with larger standard deviations
in WINBIDS than in ALLBIDS. The conduct of a non-parametric randomization test on the
statistics of Table 1 indicates that both the estimates and their standard deviations are
significantly larger in WINBIDS than in ALLBIDS (p =.0003 and p = .0000, one-tailed,
respectively) so that the symmetric benchmark model for either constant relative risk averse or
risk neutral bidders would not be appropriate to recover the unknown distribution of values from
this data.

Notice that if we had not conducted these preliminary tests, then we would have
concluded, on the basis of Propositions 1 and 2, that the distribution underlying bidders’ values
is either a Beta distribution with parameters (6;,1) --- with an average 6, estimate of 1.44 in
WINBIDS and of 1.19 in ALLBIDS; or a uniform distribution on [0,1], in which case bidders
would have a common average risk averse parameter of 1/6; (i.e., » = .84 in WINBIDS and

r = .69 in ALLBIDS).

¢ Implementing Optimal Reserve Prices

The structural analysis of auction data is principally motivated by normative reasons like the
design of market institutions and the setting of optimal reserve prices. Table 1 reports the
expected revenue increase (in %) for each session following the implementation of an “optimal”
reserve price. While the figures indicate that expected revenues increase in both WINBIDS and
ALLBIDS when optimal reserve prices are implemented, they remain well below the 2.08%
predicted by the SBNE benchmark for risk neutral bidders, and on average, they are greater in
ALLBIDS than in WINBIDS (i.e., 1.40% versus .90%, respectively). The lower-than-expected
predictions are most likely due to the bidders’ tendency to overbid, which skews the estimated

distributions towards higher valuations on the unit interval. Indeed, since the 6, estimates are all

greater than 1, the mean and standard deviation of the estimated Beta distribution are
respectively higher and lower than those of a uniform defined on [0,1]. With such right-skewed
distributions, the implementation of optimal reserve prices extracts less of buyers’ information
rents than if values were uniformly distributed, so that the seller’s expected revenues increase by
less. Given our previous finding that the WINBIDS estimates are significantly greater than the
ALLBIDS ones, this also explains the lower predictions in WINBIDS than in ALLBIDS.
Another issue that relates to the implementation of optimal reserve prices is the role of

risk aversion in bidders’ preferences (Riley and Samuelson, 1981, Proposition 5). In view of the
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non-identification results of Propositions 1 and 2, determining optimal reserve prices from bid
data is impossible to achieve without some prior assumption on bidders’ preferences or an
exogenous assessment of bidders’ attitudes towards risk. For this reason, and to evaluate the
possible effects of risk aversion on the seller’s revenues when optimal reserve prices are to be
set, we consider the following two scenarios. We assume that bidders are either i) risk neutral
with values distributed according to a Beta distribution (henceforth, the BETA scenario) or ii)
constant relative risk averse with uniformly drawn values (henceforth, the UNI scenario).

Figure 1 shows how expected revenues relate to reserve prices for three different degrees
of risk aversion, the first two of which corresponding to the average estimates for the WINBIDS
and ALLBIDS cases (cf. Panels A and B; the markers represent optimal reserve prices). In panel
A, expected revenues (without reserve prices) are equal to .6456 if the BETA scenario applies

with 0 = (1.19,1) and to .6249 if the UNI scenario applies with r =1/1.19 = .84. Once

“optimal” reserve prices are determined and implemented, expected revenues rise to .6545 and
.6289, respectively, leading to increases of 1.38% and .63%. Hence, if the exact distribution of
the bidders’ values is unknown, the seller could be advised on the grounds of expected revenue
maximization to assume the BETA scenario for setting optimal reserve prices. The plots of
panels B and C, which assume higher degrees of risk aversion (7 = .69 and .50, respectively),
further indicate that the difference in expected revenues between the two scenarios increases
with risk aversion and that the benefits from implementing optimal reserve prices in UNI vanish
with risk aversion. For example, when r = .50, a mid-range figure of estimates reported by
several empirical and experimental studies, the optimal reserve price would be equal to .023 and
would yield virtually no revenue increase (i.e., the difference being of the order 10°).

Eventually, the plots of panel C reveal that setting a reserve price that would be optimal
in scenario BETA, would also disappoint the seller’s revenue expectations by -14.47% if the
actual scenario is UNI with » = .50 (cf., a in panel C). Implementing such a reserve price would
also lead to an expected revenue decrease of -4.63% when compared to setting a reserve price
corresponding to risk averse bidders with values that are uniformly drawn (i.e., b in Panel C).
This numerical example illustrates how important it is for the seller to know which of the two
scenarios applies when a reserve price is to be implemented. One way of deciding which

scenario applies best would consist in comparing the observed average revenues to those
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predicted in each scenario and to cast the one that fits the data best.'® Figure 2 reports the
observed and predicted revenues of each session when no reserve price is implemented. The
plots indicate that the BETA scenario fits the data best and that within each scenario, the
WINBIDS predictions (empty markers) fit the observed values almost always better than the
ALLBIDS predictions (solid markers). The latter, however, is not surprising given that the
seller’s revenues are determined by winning bids. With finite samples of data, the ALLBIDS
predictions can therefore only be more noisy than the WINBIDS ones or, as it is the case here,
biased by subjects’ out-of-equilibrium play.

To summarize, our comparison suggests that the BETA scenario should be used to
determine optimal reserve prices. As we could not reject homogeneity in the ALLBIDS case (at

p = .4013), inferences and recommendations should also account of all bids to fulfill the

model’s assumptions, although the WINBIDS case outperforms the ALLBIDS case in terms of
goodness-of-fit (cf. Figure 2). Unfortunately, the diagnosis of an out-of-equilibrium play
prevents a general assessment of the objectives choosing the model which basic assumptions are
fulfilled by data versus choosing the one that fits data best for the determination of optimal
reserve prices. Given this out-of-equilibrium behavior, the recommended reserve price may
indeed be too high and create a risk of reducing competition more than necessary, which would
decrease the seller’s expected revenues. Further experimental investigations would be needed to
determine which of these objectives tends to outperform the other in terms of expected revenue
predictions.

In what follows, we check to what extent the SBNE model for homogenous risk attitudes,
or its augmented version for heterogeneous risk attitudes, explains bidding behavior at first-price

auction experiments.

5.2 Experimental Framework

e Linear Bid functions: Constrained Estimation

To ensure a transition from an empirical to an experimental framework, we first consider a
hybrid setup where the researcher still has limited information about the actual distribution of
bidders’ values (as in the previous section), but has full information about the bidders’ value

realizations (as is the case in experiments). The purpose of this setup is to assess the effect of

' Such a comparison is possible only if the seller’s expected revenue is always greater in one of the scenarios,
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knowing the bidders’ value realizations on our conclusions when the actual distribution Fy(-) is
still imperfectly known. Such a framework implies the estimation of a variant of (6) which
includes the bidders’ value realizations and which can be obtained from (9) by imposing the

constraint that 6,; = 1,V¢ = 1,...,4. That is, we restrict i’s bid function to be linear with a slope
equal to (n —1)/(n —1+1/6,). It is important to note here that because of this restriction, we

cannot test the SBNE model for homogenous or heterogeneous risk averse bidders but only

assess the goodness-of-fit of a proxy of it.
In what follows, we first check for a homogenous behavior by testing H{~" . For sessions
that do not reject homogeneity, we estimate 6, in (9) without individual dummies whereas for

sessions that reject this hypothesis, we estimate the four individual 6;; parameters of a session

after discarding all bid observations greater than or equal to b*(rmax). The estimation and test

results are reported in Table 2. They indicate a rejection of homogeneity in eight sessions so that

this basic hypothesis of the SBNE model is rejected according to the binomial test (p = .0000 ).

The estimated risk parameters for sessions with homogenous or heterogeneous bidders average
at .42 and are significantly different from those of Cox and Oaxaca (1996) who use the same

data and report an average of .33 (p = .0234 according to a two-tailed Randomization test with

10 paired observations). We attribute this difference to the fact that Cox and Oaxaca (1996)
estimate affine bid functions which happen to have significantly negative intercept terms
whereas we estimate bid functions without intercept terms to comply with the SBNE model. The
presence of negative intercepts, which tend to increase the estimated slopes of linear bid
functions, could therefore explain their higher risk estimates. For the two sessions that did not
reject homogeneity (Sessions 2 and 3), the average risk parameter is .44, which is equal to the
one reported by Campo, Perrigne and Vuong (2002) for timber auctions that were conducted
with an average of 3.7 bidders, and which is similar to those reported by Kagel, Harstad and
Levin (1986) for six-bidder auctions (r = .49) and by Goeree et al. (2000) and Armantier and
Treich (2005) for two-bidder auctions (r = .48 and .39, respectively).

Hence, although the above studies involved different econometric procedures and/or
assumed different equilibrium models of behavior, the relative invariance of risk estimates to the
number of participating bidders seems to support the SBNE model and to suggest that the risk

aversion hypothesis fits the data well. Notice, however, that if we had not first checked for a

which is the case here.
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homogenous behavior, we would have found an average él estimate of 2.837, or equivalently
r = .35. Therefore, conditioning the estimation on the type of behavior observed (i.e.,
homogenous or not) causes a 36.5% change in the 0, estimates or a 20% change in the average

risk parameter. Furthermore, the difference between these estimates and the empirical ones
reported in the previous section suggests that once behavior has been diagnosed “out of
equilibrium”, structural inferences become highly sensitive to the quality of the information

available and in particular, that they do not necessarily improve with the quality of information.
We illustrate this point by reporting in Figure 2 the expected revenues associated to the él

estimates of Table 2 when assuming a BETA and a UNI scenario. When compared to the
ALLBIDS predictions of Figure 2, the UNI scenario now appears to outperform BETA in
explaining the data. To this extent, improving the quality of information available, i.e., taking
account of the bidders’ value realizations, does not warrant better estimates or structural
inferences.

We proceed with a comparison of our results to those of Bajari and Hortagsu (2005) who
report an aggregate estimate for three- and six-bidders auctions of r = .27 when the data are
analyzed with Quantal Response Equilibrium (QRE) models, and of r = .158 when non-
parametrically estimating the SBNE model. These estimates are interesting in two aspects. First,
when we estimate an aggregate risk parameter for three- and six-bidders auctions with our
parametric approach, we find an estimate of » = .493. We attribute such different estimates to
the fact that in experimental contexts, non-parametric estimation procedures assimilate trial-and-
error behavior to “systematic errors” and are thus very likely to interfere with ones conclusions,
especially if the observed behavior is out-of-equilibrium. A comparison of the estimates reported
in Table 1, which were obtained in an empirical framework that does not account for trial-and-
error behavior, to those reported in Table 2, which have been corrected for such behavior
illustrates the possible variability in the estimates that one can encounter within a parametric
estimation framework. Second, when we separately estimate risk aversion parameters for three-
and six-bidders auctions, we find an aggragte estimate of » = .43 when n = 3 and of r = .72
when n = 6. Since the Dyer et al’s experiments were designed such the same bidders
submitted bids for markets with n = 3 and for markets with n = 6, these estimates refer to the
same set of bidders and are clearly not invariant to the number of bidders, as claimed by theory;

therefore they strongly suggest an out-of-equilibrium behavior.
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e Non-Linear Bid functions: Unconstrained Estimation

We now estimate (9) with individual dummies for both parameters so that we allow for non-
linear (monotone increasing) bid functions. We will use essentially the same testing procedure as

the one just described: for each session, we first check for a homogenous behavior by testing
H{™". If we cannot reject this hypothesis, we estimate 6, and 6, in (9) without individual
dummies and test the SBNE model by checking that the common 6, parameter estimate is equal

to 1. If we do reject homogeneity, we check for linearity in the estimated bid functions by testing

that the 6, estimates are jointly equal to 1. Finally, we test the SBNE model for heterogeneous

risk attitudes by testing that the 6,; estimates are still jointly equal to 1 after having discarded all

bid observations greater than or equal to b*(rmax), and by checking that the estimated risk
parameters are all smaller or equal to 7,,,. If neither of these hypotheses is rejected for a
particular session, then we do not reject the SBNE model for that session. Our conclusion for the
ten sessions is again based on the results of a binomial test, as previously outlined.

The estimation and test results are reported in Table 3. A comparison of the predictive
accuracy of the models estimated in Tables 2 and 3 indicates that allowing for non-linear bid
functions considerably improves the model’s adjusted goodness-of-fit. The test results in Table 3
also indicate a rejection of homogeneity in nine sessions (p = .0000, according to the binomial

test), so that we focus analysis on the SBNE model for heterogeneous risk averse bidders.

The H, g” =! test statistics indicate that we reject this model in seven sessions so that we reject it
as a possible explanation of the observed behavior (p = .0000, according to the binomial test)."”

The average coefficient for the three sessions that did not reject the model is equal to .37
which is more in line with the average of .33 reported by Cox and Oaxaca (1996), but lower
than the one reported by Chen and Plott (1998) (r = .52) for auctions with three bidders who
had their values drawn from identical but non-uniform distributions. This difference, however,

could be due to the different assumptions regarding the distribution G(-) of risk parameters and

the value of 7,,,,. Chen and Plott (1998) assume individual risk parameters to be LogNormally

' To test the model we had to discard 110 observations with b > b*(rmbLX = 1) from analysis, which is less than

half the expected number of observations that we would have to discard, had we truncated the data at v; = .75, as
in Kagel and Levin (1985). See Cox, Smith and Walker (1992, pp 1399-1400) for a discussion on this truncation
issue. As all bidders who display linear bid functions on [0, b*] also have 77 <1 at a = .05, we do not report the
outcomes of this test.
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distributed on [0;+00), thereby allowing for infinitely risk loving bidders, whereas we assumed
Tmax = 1. When we allow for risk loving bidders and conduct our estimations with 7, = 2,
the statistics in Table 3 indicate that we still reject the model at p = .0010 according to the

binomial test."®
Figure 3 reports individual bid data and the estimated bid functions for each of the ten

sessions. These plots usually indicate a less-than-proportional bidding at high valuations, which
can be consistent with the SBNE model if it occurs at bids greater than b (Tax ) - We find a

similar pattern in the data used by Bajari and Hortagsu (which rejected the SBNE model for
homogenous or heterogeneous risk attitudes, according to the binomial test), and in those of Cox
et al. (1982) for auctions with 3 and 5 bidders (which also rejected the models tested). It is also
present in auctions with 6 or 10 bidders as Kagel and Roth (1992) report relative deviations from
risk neutral SBNE bids that are negatively and significantly correlated to the bidders’ values.
Battigali and Siniscalchi (2003) show that such a behavior is rationalizable in terms of bidders’
beliefs even if they have risk neutral preferences. Their argument, however, produces a sizeable
less-than-proportional bidding in auctions with two bidders and uniformly drawn values, but it
becomes hardly noticeable when there are four bidders or more.

Another possible equilibrium explanation is that bidders misperceive their winning
probabilities: the less-than proportional bidding at high values would then witness their
overconfidence in winning upon receiving high values; a well-documented phenomenon in
decision-making theory and psychology (Prelec, 1998). Goeree et al. (2002) allow for such a
probability misperception in a QRE model and find that it explains the data almost as well as risk
aversion. Armantier and Treich (2005) adapted the experimental setup of Goeree, et al. to elicit
subjects’ winning probabilities and disentangle the effect of risk aversion from the one of
probability misperception. They report a significant underestimation of winning probabilities
leading to overbidding over the whole range of values and show that accounting for both
probability misperception and risk aversion improves the models’ fit and makes risk aversion

less salient (r = .73 instead of .39)."” Such findings indicate that within a QRE framework,

" When 1, = 2, we had to discard 335 observations with bids greater than .60, which represent 225 more
observations than with ;.. = 1. Note that the number of observations discarded is expected to increase with 7;,,,
and therefore, to reduce the power of any inference based on this approach.

' Since our approach is based on an equilibrium condition where the beliefs are not given by the ‘true’ distribution,
it could easily be re-interpreted in terms of misperception hypothesis within a SBNE model with risk neutral
bidders. Note however that any such interpretation requires a prior assessment of the validity of the SBNE
equilibrium, which we found to be refuted.
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probability misperception seriously challenges risk aversion in explaining the overbidding
phenomenon. Whether these findings apply to auctions with more than two bidders or within the
SBNE model remains to be determined.

Finally, the overall comparison of our results for the empirical and experimental
frameworks reveals that information about the bidders’ value realizations does not matter as
much as knowing the bidders’ distribution of values when it comes to assess the SBNE model of

bidding with structural methods.

6. Conclusion

We analyzed laboratory data on first-price private value auctions with structural econometric
methods pertaining to either empirical or experimental settings. For both settings, the results of
our study shed a new light on the symmetric Bayes-Nash equilibrium model to explain first-price
bid data. From an empirical standpoint --- when not taking account of the bidders’ value
realizations and assuming limited knowledge about the bidders’ distribution of values --- we use
two basic implications of the model as tests for equilibrium behavior. The first comes from the
homogeneity of bidding behavior and implies identical bidding strategies, which is fundamental
to the determination of the symmetric equilibrium strategy. The second relies on the finite
sample properties of estimators and determines if the observed behavior can possibly be in a
Symmetric Bayes-Nash Equilibrium, an assumption that is typically imposed in the structural
estimation of symmetric auction models.”® Passing these tests provides some warrant that both
predictions and recommendations based on structural econometric models will not be ill-fated.
Their non-fulfillment, however, suggests the presence of an out-of-equilibrium behavior. Our
study has shown how structural inferences may vary when this is the case and lead to different
recommendations, depending on the prior check of the game’s fundamental assumptions and on
the quality of the information available. Most importantly for field studies, it has shown that
structural inferences do not necessarily improve with the quality of information, and may even

worsen.

*% Similar implications can be derived for the structural assessment of asymmetric auction models. The Bayes-Nash
equilibrium predictions for asymmetric first-price auctions predict not only how bidders should act in equilibrium
but also how each type of bidder should best-respond to the other type(s) (cf. Lemma 3.1 and Proposition 3.3 of
Maskin and Riley, 2000, or Propositions 9 and 10 of Li and Riley, 1999). Such properties of the equilibrium could
be seen as necessary conditions to be fulfilled by data for the observed behavior to be labeled “in equilibrium”.
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From an experimental standpoint --- when taking account of all the information available
--- our study indicates a rejection of the Bayes-Nash model for either homogenous or
heterogeneous constant relative risk averse bidders. The outcomes indicate in particular that
although the model can be found to fit the data well (with important differences between
parametric and non-parametric estimates), it does not support them (at a = .005) when it is tested
jointly for all the participating bidders in a session. The observed behavior is usually found to
display heterogeneity and an overbidding that is less-than-proportional at high values, both of
which remain so far unexplained.

Finally, our examination of the data from both empirical and experimental standpoints
with similar estimation procedures also put in perspective the overall effect of knowing the
bidders’ true distribution of values or of the bidders’ value realizations on inferences. It has
shown in particular that the main limitation of non-experimental data, i.e., not knowing the
bidders’ distribution of values, makes it less likely to reject models than when one uses

experimental data, especially if the basic underlying assumptions are not checked.
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TABLES AND FIGURES

Table 1: Empirical framework

WINBIDS ALLBIDS
Session = él sd”  p*“  AER? Hi™ él sd. p° AER
1 8115 142 1253 5367 0.89 7199 1.14 0876 5131  1.53
2 .0179 1.54 1175 5459  0.72 9773 124 0831 5218 1.25
3 1251 1.17 1170 5157  1.43 6472 1.11 .0787 5103  1.63
4 0121 1.48 1223 5414  0.80 5732 125 .0836  .5227 122
5 .5596 1.50 .1160 .5429  0.77 71536 1.25  .0849 5227 122
6 1309 1.38 .1197 .5335  0.95 4876 1.11 .0846 5103 1.63
7 .0855 1.80 .1619 .5644 0.47 6663 129 .0892 5261 1.13
8 .0040 .19  .1321 5175 1.38 0339  1.05 .0865 .5048 1.86
9 .0007 1.51  .1438 5436  0.75 9235 1.20 .0826 5184 135
10 .0946 1.44 1335 5382 0.85 5310 1.26  .0840 .5236 1.20

“: Rejection probability; Ho: 6; = 6,;,Vi = j; b Newey-West standard deviations; “: Optimal reserve
price assuming B(él,l) and r =1; % % change in Expected Revenues when pis implemented
AER =100 x [ER(p") — ER(p" = 0)]/ ER(p" = 0).

Table 2: Experimental framework:
Constrained estimation

* Nt @ b

Session 6, s.d. D H{= 0, r AIC*

247 .0779  .6043 .0000 243 [42] -109.87
3.08 2942 6335 2347 5.74 32 -250.38
1.78 1366  .5630  .1944 2.14 ST -167.76
293 2701 .6268 .0384 5.03 [.37] -229.02
349 1318 .6503 .0000 6.42 [29] -27.46
1.92 1273 5723 .0000 2.04 [.54] -202.94
5.50 .2208 .7115 .0000 5.35 [.20] -129.31
1.51 1825 .5436  .0000 1.64 [.75] -190.03
2.82 1276 .6217  .0000 2.88 [.36] -31.32
10 2.87 .1828 .6241 .0000 545 [.35] -216.43

“: Parameter estimated after truncation of bids greater than b; b. Average

O Co NN AW~

estimated risk averse parameterr = 1/ él if bidders are homogenous and
4 Ax . .
[r1 = Zi:ll / 40y, if they are heterogeneous; “: Akaike Information

Criteria.
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Table 3: Experimental framework: Unconstrained estimation

Sess. 0, 6, O mett ERS gttt .0 AIC mET
Tmax = 1 Timax = 2
7 198 061 0521  .1076 4340 9999 62 9958 9999 66
2 1519 689 0000 0185 .0000°  .0000° - 16804 .9998°  [I3]
3 401 291 0127 0000 0000 0000 -  -13623 0000 -
4 10.23 5.09 .0096 .0007 .0000 .0000 - -207.21  .0000 -
51279 549 0000 0000 0000 0000 -~ 6749 9637  LI8]
6 257 156 0127 571 0013 0064 -  -I18853 9999  [4I]
7 481 071 0000 6095 198"  .9828°  [22] 9580  .2560°  [17]
§ 181 132 0000 3251 .0002° .0008° -~ 9575 9177  [80]
9 302 113 0000 7513 0005 3727  [28]  -8.02 0000 -
[0 1043 522 0130 0000 009 0947 -  -197.02 1587  [16]

Note: We discarded outliers from the data of Sessions 2, 7 and 8 (°) to allow the estimation procedure to converge.

a b c
: Rejection probabilities; H=": 6, = 0h; and b, = by, Vi = j; :Hg?:l:@ =1; :Hg?le:QQi =1,Vi;

d * . . e . . . . .
1H, g'z’ =1: 0y« = 1,Vi (assuming r,, = I); : Average estimated risk parameter for sessions that did not reject

H7O[ ong’;':l] )
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Figure 1: Expected revenues, optimal reserve prices and risk aversion
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Note: Panels A, B and C report the seller’s expected revenues corresponding to different reserve prices, and different assumptions about the bidders’ distributions of
values (UNI: Uniform, BETA: Beta) and risk preferences (r). Filled dot markers stand for optimal reserve prices (given the distribution of values and risk preferences).
In Panel C, a stands for the decrease in expected revenues when setting a reserve price that is optimal for risk neutral bidders with values drawn from a Beta
distribution B(2,1) whereas bidders are risk averse (with » = 0.5) and have their values drawn from a uniform distribution on [0,1]. b measures the difference in
expected revenues between the case where the wrong optimal reserve price has been implemented (i.e., for risk neutral bidders with beta distributed values) and the
case where a reserve price for risk averse bidders with values drawn from a uniform has been implemented.



Figure 2: Observed and expected revenues
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Note: The figure reports observed and expected revenues under various conditions. BETA[-] assumes risk neutrality
and values drawn from a Beta distribution (with the parameter estimates of Table 1 or 2). UNI [-] assumes risk
aversion and values drawn from a uniform distribution (with the parameter estimates of Table 1 or 2). WINBIDS:
estimates use information on winning bids. ALLBIDS: estimates use information on all bids. HYBRID: estimates
use information on all bids and on value realizations.
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Figure 3: Estimated Individual Bid Functions
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Figure 3: Estimated Individual Bid Functions
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Appendix : Proof of Propositions

Proof of Proposition 1: Take (6,,1,7), we will show that there exists another vector
<91*,9§,7“*) such that (v, 91*,9;,7"*) = ¢(v;6,1,1) for all valuation v. Since 6, = 1, we have

that F, s> = s” and then,

o(v;0,,1,1) = v—f " ds—

:U_—gl(n_1)+7~ ('U )\01,]_ )\7’1)

for any . Therefore, there are infinitely many of these <01* 057 ) . Moreover, note that if we
take 6, =1 and A = 1/r, we have that ¢(v;1,1,7) = p(v;1/7,1,1) as put in claim 2. Although
not needed in this paper, one further question is whether the result can be extended to the 6, = 1

case, or in other words, whether the bidding function is one-to-one on the subspace of © where

0, = 1 since in that case, local identification may arise. This subspace characterizes bidding

functions which are not linear in valuations and a proof is not available. However, we have used
numerical simulations to realize that it is always possible to find different vectors of parameters
where the maximal distance between bidding functions is very small (less than 1e-20 in the worst
case). These numbers would imply that bids functions are so close along these points that, even
if there is local identification, the objective function of any estimation procedure would be too
flat for an optimization algorithm to be numerically stable, which was the case when using the

data in applications.

Proof of Claim 3: Non-identification arises because we are using first-order moments to
estimate two parameters. Notice that my, is the expectation of the second order statistic, i.e.,

E(v)|0;,0,). This expectation is taken with respect to an absolutely continuous distribution
function. Thus, my, is a continuous mappings of 6;,6, in their domain R% , and by continuity,
for any 6,6, there exists 91*,9: such that my (6,,0,,7) = mA(Hl* .0, ,7) and either 6, = 91 or

0, = 0,. For m,, the expectation of the bid function with respect to the Beta distribution,

follows the same reasoning.
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Proof of Proposition 2

To simplify notation, & will denote the log-parameters which are denoted by @ in the text.
Taking a Taylor expansion of S,,(6,) around 6, we get

0
JI—T S, (6")#- anaS”T(g)v T(0-6" (B1)
n

By the central limit theorem, the left hand side of (B1) converges to N(0,1y). Further, since
1 0°S,,(6%)

PRy 0% - J, we have
n

JnT(6-6% 015 N(0,J,'1,J;") (B17)

Under the null hypothesis in (5), it holds that 4(r,) = 8°. Defining S,7(r) = S, 7(h(r)), a Taylor

expansion of S, ;(r) around r, yields

1 aS:T(?) 1 aS;T(Vo)_l_ 1 aZS:T(ro)

= ;= B2
\nT  Or nT or \nT Oror' 4 ) (B2)
98,/(8") o . .
Defining 4, = =0,h(r,), using — T 30 0T - 0 and re-arranging terms in (B2), we get
n
v ’n,T(’f“ - TO) #(hrOJOh;"U) 0 \/— aHSnT(QO) (B3)
Using (B1), we have
NUT (7 — 1) #(hyy Johy, ) hy JoNRT (0 — 6°) (B4)
Defining 6° = h(7), a Taylor expansion of ~nT (h(7) — h(ry)) around ry yields
nT (@-6")#h nT (7 ~1,) (B5)
Hence, from (B5) and (B3), 6°and 8 are linearly related so that
NuT(@° —0°) = hy (hy Johy, )" by Jo'nT (0 — 6°)
(B6)

= PVnT(0—0°)

Since \/nT(é - éo) = \/nT(é -68") —\/nT(éO -8"), re-arranging terms in (B6) yields
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JnT(6-6")= M ~nT(6-6")

(B7)

Now, &°, i.e. the true value of the parameters, is a vector (6',8;), and under the null in (5) it
must hold that & =0, while, 8’ =-In(7,). Thus, ' =(=1/7,,0) and

0 _j12
M, = Ju (B8)
0 1

where ji stands for the element in row “i”
that

and column “k” of Jy. From (B7) and (BS) it follows

S A
A - —Ji “Ji
9 _90 . ]12 ( . J A
\/nT[ X JOJ:\/nT(HZ -&) Ju |~N[0g [N (BY)
6, -6, 1 —Ji2 1
L Ju i
Define
K . 2 . T
(_]uJ —Ji2 s A
A oA A oa ; i 6 -6
O=nT(-8.6,-&)a |\ /1 /7 (J 30]
~Jiz 1 02 _92
L Ju i

From (B9), the statistic [J follows a chi-squared distribution with one degree of freedom (which
is the rank of the variance matrix in (B9)) under the null. Using (B7) and (BS8) and applying the
definition of the Moore-Penrose generalized inverse, we eventually get

the square root of which follows a N(0,1) distribution. [
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