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BCI Barro Colorado Island Tree Counts

Description

Tree counts in 1-hectare plots in the Barro Colorado Island.

Usage

data(BCI)

Format

A data frame with 50 plots (rows) of 1 hectare with counts of trees on each plot with total of 225
species (columns). Full Latin names are used for tree species.

Details

Data give the numbers of trees at least 10 cm in diameter at breast height (1.3 m above the ground)
in each one hectare square of forest. Within each one hectare square, all individuals of all species
were tallied and are recorded in this table.

The data frame contains only the Barro Colorado Island subset of the original data.

The quadrats are located in a regular grid. Seeexamples for the coordinates.

Source

http://www.sciencemag.org/cgi/content/full/295/5555/666/DC1

http://www.sciencemag.org/cgi/content/full/295/5555/666/DC1
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References

Condit, R, Pitman, N, Leigh, E.G., Chave, J., Terborgh, J., Foster, R.B., Nuñez, P., Aguilar, S.,
Valencia, R., Villa, G., Muller-Landau, H.C., Losos, E. & Hubbell, S.P. (2002). Beta-diversity in
tropical forest trees. Science 295, 666–669.

See Also

BCI.env in BiodiversityR package for environmental data (coordinates are given below in the
examples).

Examples

data(BCI)
## UTM Coordinates (in metres)
UTM.EW <- rep(seq(625754, 626654, by=100), each=5)
UTM.NS <- rep(seq(1011569, 1011969, by=100), len=50)

CCorA Canonical Correlation Analysis

Description

Canonical correlation analysis, following Brian McArdle’s unpublished graduate course notes, plus
improvements to allow the calculations in the case of very sparse and collinear matrices.

Usage

CCorA(Y, X, stand.Y=FALSE, stand.X=FALSE, nperm = 0, ...)

## S3 method for class 'CCorA':
biplot(x, xlabs, which = 1:2, ...)

Arguments

Y left matrix.

X right matrix.

stand.Y logical; should Y be standardized?

stand.X logical; should X be standardized?

nperm numeric; Number of permutations to evaluate the significance of Pillai’s trace

x CCoaR result object

xlabs Row labels. The default is to use row names, NULL uses row numbers instead,
and NA suppresses plotting row names completely

which 1 plots Y reseults, and 2 plots X1 results

... Other arguments passed to functions. biplot.CCorA passes graphical ar-
guments to biplot and biplot.default, CCorA currently ignores extra
arguments.
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Details

Canonical correlation analysis (Hotelling 1936) seeks linear combinations of the variables of Y that
are maximally correlated to linear combinations of the variables of X. The analysis estimates the
relationships and displays them in graphs.

Algorithmic notes:

1. All data matrices are replaced by their PCA object scores, computed by SVD.

2. The blunt approach would be to read the three matrices, compute the covariance matrices,
then the matrix S12 %*% inv(S22) %*% t(S12) %*% inv(S11). Its trace is Pil-
lai’s trace statistic.

3. This approach may fail, however, when there is heavy multicollinearity in very sparse data
matrices, as it is the case in 4th-corner inflated data matrices for example. The safe approach
is to replace all data matrices by their PCA object scores.

4. Inversion by solve is avoided. Computation of inverses is done by SVD (svd) in most cases.

5. Regression by OLS is also avoided. Regression residuals are computed by QR decomposition
(qr).

The biplot function can produce two biplots, each for the left matrix and right matrix solutions.
The function passes all arguments to biplot.default, and you should consult its help page for
configuring biplots.

Value

Function CCorA returns a list containing the following components:

Pillai Pillai’s trace statistic = sum of canonical eigenvalues.
EigenValues

Canonical eigenvalues. They are the squares of the canonical correlations.

CanCorr Canonical correlations.

Mat.ranks Ranks of matrices Y and X1 (possibly after controlling for X2).
RDA.Rsquares

Bimultivariate redundancy coefficients (R-squares) of RDAs of Y|X1 and X1|Y.
RDA.adj.Rsq

RDA.Rsquares adjusted for n and number of explanatory variables.

AA Scores of Y variables in Y biplot.

BB Scores of X1 variables in X1 biplot.

Cy Object scores in Y biplot.

Cx Object scores in X1 biplot.

Author(s)

Pierre Legendre, Departement de Sciences Biologiques, Universite de Montreal. Implemented in
vegan with the help of Jari Oksanen.
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References

Hotelling, H. 1936. Relations between two sets of variates. Biometrika 28: 321-377.

Examples

# Example using random numbers
mat1 <- matrix(rnorm(60),20,3)
mat2 <- matrix(rnorm(100),20,5)
CCorA(mat1, mat2)

# Example using intercountry life-cycle savings data, 50 countries
data(LifeCycleSavings)
pop <- LifeCycleSavings[, 2:3]
oec <- LifeCycleSavings[, -(2:3)]
out <- CCorA(pop, oec)
out
biplot(out, xlabs = NA)

add1.cca Add or Drop Single Terms to a Constrained Ordination Model

Description

Compute all single terms that can be added or dropped from a constrained ordination model.

Usage

## S3 method for class 'cca':
add1(object, scope, test = c("none", "permutation"),

pstep = 100, perm.max = 200, ...)
## S3 method for class 'cca':
drop1(object, scope, test = c("none", "permutation"),

pstep = 100, perm.max = 200, ...)

Arguments

object A constrained ordination object from cca, rda or capscale.

scope A formula giving the terms to be considered for adding or dropping; see add1
for details.

test Should a permutation test added using anova.cca.

pstep Number of permutations in one step, passed as argument step to anova.cca.

perm.max Maximum number of permutation in anova.cca.

... Other arguments passed to add1.default, drop1.default, and anova.cca.
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Details

With argument test = "none" the functions will only call add1.default or drop1.default.
With argument test = "permutation" the functions will add test results from anova.cca.
Function drop1.ccawill call anova.ccawith argument by = "margin". Function add1.cca
will implement a test for single term additions that is not directly available in anova.cca.

Functions are used implicity in step. The deviance.cca and deviance.rda used in step
have no firm basis, and setting argument test = "permutation" may help in getting useful
insight into validity of model building. Meticulous use of add1.cca and drop1.cca will allow
more judicious model building.

The default perm.max is set to a low value, because permutation tests can take a long time. It
should be sufficient to give a impression on the significances of the terms, but higher values of
perm.max should be used if P values really are important.

Value

Returns a similar object as add1 and drop1.

Author(s)

Jari Oksanen

See Also

add1, drop1 and anova.cca for basic methods. You probably need these functions with step.
Functions deviance.cca and extractAIC.cca are used to produce the other arguments than
test results in the output. Functions cca, rda and capscale produce result objects for these
functions.

Examples

data(varespec)
data(varechem)
step(rda(varespec ~ 1, varechem), reformulate(names(varechem)), test="perm")

adonis Permutational Multivariate Analysis of Variance Using Distance Ma-
trices

Description

Analysis of variance using distance matrices — for partitioning distance matrices among sources of
variation and fitting linear models (e.g., factors, polynomial regression) to distance matrices; uses a
permutation test with pseudo-F ratios.
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Usage

adonis(formula, data, permutations = 5, method = "bray",
strata = NULL, contr.unordered = "contr.sum",
contr.ordered = "contr.poly", ...)

Arguments

formula a typical model formula such as Y ~ A + B*C, but where Y is either a dis-
similarity object (inheriting from class "dist") or data frame or a matrix; A,
B, and C may be factors or continuous variables. If a dissimilarity object is
supplied, no species cofficients can be calculated (see Value below).

data the data frame from which A, B, and C would be drawn.

permutations number of replicate permutations used for the hypothesis tests (F tests).

method the name of any method used in vegdist to calculate pairwise distances if the
left hand side of the formula was a data frame or a matrix.

strata groups (strata) within which to constrain permutations.
contr.unordered, contr.ordered

contrasts used for the design matrix (default in R is dummy or treatment con-
trasts for unordered factors).

... Other arguments passed to vegdist.

Details

adonis is a function for the analysis and partitioning sums of squares using semimetric and metric
distance matrices. Insofar as it partitions sums of squares of a multivariate data set, it is directly
analogous to MANOVA (multivariate analysis of variance). M.J. Anderson (McArdle and Anderson
2001, Anderson 2001) refers to the method as “permutational manova” (formerly “nonparametric
manova”). Further, as its inputs are linear predictors, and a response matrix of an arbitrary number
of columns (2 to millions), it is a robust alternative to both parametric MANOVA and to ordination
methods for describing how variation is attributed to different experimental treatments or uncon-
trolled covariates. It is also analogous to redundancy analysis (Legendre and Anderson 1999).

Typical uses of adonis include analysis of ecological community data (samples X species matri-
ces) or genetic data where we might have a limited number of samples of individuals and thousands
or millions of columns of gene expression data (e.g. Zapala and Schork 2006).

adonis is an alternative to AMOVA (nested analysis of molecular variance, Excoffier, Smouse,
and Quattro, 1992; amova in the ade4 package) for both crossed and nested factors.

Like AMOVA (Excoffier et al. 1992), adonis relies on a long-understood phenomenon that allows
one to partition sums of squared deviations from a centroid in two different ways (McArdle and
Anderson 2001). The most widely recognized method, used, e.g., for ANOVA and MANOVA, is to
first identify the relevant centroids and then to calculated the squared deviations from these points.
For a centered n× p response matrix Y , this method uses the p× p inner product matrix Y ′Y . The
less appreciated method is to use the n×n outer product matrix Y Y ′. Both AMOVA and adonis
use this latter method. This allows the use of any semimetric (e.g. Bray-Curtis, aka Steinhaus,
Czekanowski, and Sørensen) or metric (e.g. Euclidean) distance matrix (McArdle and Anderson
2001). Using Euclidean distances with the second method results in the same analysis as the first
method.
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Significance tests are done using F -tests based on sequential sums of squares from permutations of
the raw data, and not permutations of residuals. Permutations of the raw data may have better small
sample characteristics. Further, the precise meaning of hypothesis tests will depend upon precisely
what is permuted. The strata argument keeps groups intact for a particular hypothesis test where
one does not want to permute the data among particular groups. For instance, strata = B causes
permutations among levels of A but retains data within levels of B (no permutation among levels of
B).

The default contrasts are different than in R in general. Specifically, they use “sum” contrasts,
sometimes known as “ANOVA” contrasts. See a useful text (e.g. Crawley, 2002) for a transparent
introduction to linear model contrasts. This choice of contrasts is simply a personal pedagogi-
cal preference. The particular contrasts can be set to any contrasts specified in R, including
Helmert and treatment contrasts.

Rules associated with formulae apply. See "An Introduction to R" for an overview of rules.

print.adonis shows the aov.tab component of the output.

Value

This function returns typical, but limited, output for analysis of variance (general linear models).

aov.tab Typical AOV table showing sources of variation, degrees of freedom, sequential
sums of squares, mean squares, F statistics, partial R-squared and P values,
based on N permutations.

coefficients matrix of coefficients of the linear model, with rows representing sources of
variation and columns representing species; each column represents a fit of a
species abundance to the linear model. These are what you get when you fit one
species to your predictors. These are NOT available if you supply the distance
matrix in the formula, rather than the site x species matrix

coef.sites matrix of coefficients of the linear model, with rows representing sources of
variation and columns representing sites; each column represents a fit of a sites
distances (from all other sites) to the linear model.These are what you get when
you fit distances of one site to your predictors.

f.perms an N by m matrix of the null F statistics for each source of variation based on
N permutations of the data.

Author(s)

Martin Henry H. Stevens 〈HStevens@muohio.edu〉, adapted to vegan by Jari Oksanen.

References

Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral
Ecology, 26: 32–46.

Crawley, M.J. 2002. Statistical Computing: An Introduction to Data Analysis Using S-PLUS

Excoffier, L., P.E. Smouse, and J.M. Quattro. 1992. Analysis of molecular variance inferred from
metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction
data. Genetics, 131:479–491.
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Legendre, P. and M.J. Anderson. 1999. Distance-based redundancy analysis: Testing multispecies
responses in multifactorial ecological experiments. Ecological Monographs, 69:1–24.

McArdle, B.H. and M.J. Anderson. 2001. Fitting multivariate models to community data: A com-
ment on distance-based redundancy analysis. Ecology, 82: 290–297.

Zapala, M.A. and N.J. Schork. 2006. Multivariate regression analysis of distance matrices for
testing associations between gene expression patterns and related variables. Proceedings of the
National Academy of Sciences, USA, 103:19430–19435.

See Also

mrpp, anosim, mantel, varpart.

Examples

data(dune)
data(dune.env)
adonis(dune ~ Management*A1, data=dune.env, permutations=100)

anosim Analysis of Similarities

Description

Analysis of similarities (ANOSIM) provides a way to test statistically whether there is a significant
difference between two or more groups of sampling units.

Usage

anosim(dis, grouping, permutations=1000, strata)

Arguments

dis Dissimilarity matrix.

grouping Factor for grouping observations.

permutations Number of permutation to assess the significance of the ANOSIM statistic.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

Details

Analysis of similarities (ANOSIM) provides a way to test statistically whether there is a significant
difference between two or more groups of sampling units. Function anosim operates directly on a
dissimilarity matrix. A suitable dissimilarity matrix is produced by functions dist or vegdist.
The method is philosophically allied with NMDS ordination (isoMDS), in that it uses only the rank
order of dissimilarity values.
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If two groups of sampling units are really different in their species composition, then compositional
dissimilarities between the groups ought to be greater than those within the groups. The anosim
statistic R is based on the difference of mean ranks between groups (rB) and within groups (rW ):

R = (rB − rW )/(N(N − 1)/4)

The divisor is chosen so that R will be in the interval −1 . . . + 1, value 0 indicating completely
random grouping.

The statistical significance of observed R is assessed by permuting the grouping vector to obtain
the empirical distribution of R under null-model.

The function has summary and plot methods. These both show valuable information to assess
the validity of the method: The function assumes that all ranked dissimilarities within groups have
about equal median and range. The plot method uses boxplot with options notch=TRUE and
varwidth=TRUE.

Value

The function returs a list of class "anosim" with following items:

call Function call.

statistic The value of ANOSIM statistic R

signif Significance from permutation.

perm Permutation values of R

class.vec Factor with value Between for dissimilarities between classes and class name
for corresponding dissimilarity within class.

dis.rank Rank of dissimilarity entry.

dissimilarity
The name of the dissimilarity index: the "method" entry of the dist object.

Note

I don’t quite trust this method. Somebody should study its performance carefully. The function
returns a lot of information to ease further scrutiny. Most anosim models could be analysed with
adonis which seems to be a more robust alternative.

Author(s)

Jari Oksanen, with a help from Peter R. Minchin.

References

Clarke, K. R. (1993). Non-parametric multivariate analysis of changes in community structure.
Australian Journal of Ecology 18, 117-143.



12 anova.cca

See Also

mrpp for a similar function using original dissimilarities instead of their ranks. dist and vegdist
for obtaining dissimilarities, and rank for ranking real values. For comparing dissimilarities
against continuous variables, see mantel. Function adonis is a more robust alternative that
should preferred.

Examples

data(dune)
data(dune.env)
dune.dist <- vegdist(dune)
attach(dune.env)
dune.ano <- anosim(dune.dist, Management)
summary(dune.ano)
plot(dune.ano)

anova.cca Permutation Test for Constrained Correspondence Analysis, Redun-
dancy Analysis and Constrained Analysis of Principal Coordinates

Description

The function performs an ANOVA like permutation test for Constrained Correspondence Analysis
(cca), Redundancy Analysis (rda) or Constrained Analysis of Principal Coordinates (capscale)
to assess the significance of constraints.

Usage

## S3 method for class 'cca':
anova(object, alpha=0.05, beta=0.01, step=100, perm.max=9999,

by = NULL, ...)

permutest(x, ...)

## S3 method for class 'cca':
permutest(x, permutations = 100,

model = c("reduced", "direct", "full"),
first = FALSE, strata, ...)

Arguments

object,x A result object from cca.

alpha Targeted Type I error rate.

beta Accepted Type II error rate.

step Number of permutations during one step.

perm.max Maximum number of permutations.



anova.cca 13

by Setting by = "axis" will assess significance for each constrained axis, and
setting by = "terms" will assess significance for each term (sequentially
from first to last), and setting by = "margin"will assess the marginal effects
of the terms (each marginal term analysed in a model with all other variables).

... Parameters to permutest.cca.

permutations Number of permutations for assessing significance of constraints.

model Permutation model (partial match).

first Assess only the significance of the first constrained eigenvalue; will be passed
from anova.cca.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

Details

Functions anova.cca and permutest.cca implement an ANOVA like permutation test for the
joint effect of constraints in cca, rda or capscale. Functions anova.cca and permutest.cca
differ in printout style and in interface. Function permutest.cca is the proper workhorse, but
anova.cca passes all parameters to permutest.cca.

In anova.cca the number of permutations is controlled by targeted “critical” P value (alpha)
and accepted Type II or rejection error (beta). If the results of permutations differ from the targeted
alpha at risk level given by beta, the permutations are terminated. If the current estimate of
P does not differ significantly from alpha of the alternative hypothesis, the permutations are
continued with step new permutations (at the first step, the number of permuations is step -
1). However, with by = "terms" a fixed number of permutations will be used, and this is given
by argument permutations, or if this is missing, by step.

The function permutest.cca implements a permutation test for the “significance” of constraints
in cca, rda or capscale. Community data are permuted with choice model = "direct",
residuals after partial CCA/RDA/CAP with choice model = "reduced" (default), and residu-
als after CCA/RDA/CAP under choice model = "full". If there is no partial CCA/RDA/CAP
stage, model = "reduced" simply permutes the data and is equivalent to model = "direct".
The test statistic is “pseudo-F ”, which is the ratio of constrained and unconstrained total Inertia
(Chi-squares, variances or something similar), each divided by their respective ranks. If there are
no conditions (“partial” terms), the sum of all eigenvalues remains constant, so that pseudo-F and
eigenvalues would give equal results. In partial CCA/RDA/CAP, the effect of conditioning variables
(“covariables” is removed before permutation, and these residuals are added to the non-permuted
fitted values of partial CCA (fitted values of X ~ Z). Consequently, the total Chi-square is not
fixed, and test based on pseudo-F would differ from the test based on plain eigenvalues. CCA is a
weighted method, and environmental data are re-weighted at each permutation step using permuted
weights.

The default test is for the sum of all constrained eigenvalues. Setting first = TRUEwill perform
a test for the first constrained eigenvalue. Argument first can be set either in anova.cca or in
permutest.cca. It is also possible to perform significance tests for each axis or for each term
(constraining variable) using argument by in anova.cca. Setting by = "axis" will perform
separate significance tests for each constrained axis. All previous constrained axes will be used as
conditions (“partialled out”) and a test for the first constrained eigenvalues is performed. Setting
by = "terms" will perform separate significance test for each term (constraining variable). The
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terms are assessed sequentially from first to last, and the order of the terms will influence their
significances. Setting by = "margin" will perform separate significance test for each marginal
term in a model with all other terms. The marginal test also accepts a scope argument for the
drop.scope which can be a character vector of term labels that are analysed, or a fitted model of
lower scope. The marginal effects are also known as “Type III” effects, but the current function only
evaluates marginal terms. It will, for instance, ignore main effects that are included in interaction
terms. In calculating pseudo-F , all terms are compared to the same residual of the full model.
Permutations for all axes or terms will start from the same .Random.seed, and the seed will be
advanced to the value after the longest permutation at the exit from the function.

Value

Function permutest.cca returns an object of class "permutest.cca", which has its own
print method. The function anova.cca calls permutest.cca, fills an anova table and
uses print.anova for printing.

Note

The default permutation model changed from "direct" to "reduced" in vegan version 1.14-
11 (release version 1.15-0), and you must explicitly set model = "direct" for compatibility
with the old version.

Author(s)

Jari Oksanen

References

Legendre, P. and Legendre, L. (1998). Numerical Ecology. 2nd English ed. Elsevier.

See Also

cca, rda, capscale to get something to analyse. Function drop1.cca calls anova.cca
with by = "margin", and add1.cca an analysis for single terms additions, which can be used
in automatic or semiautomatic model building (see deviance.cca.

Examples

data(varespec)
data(varechem)
vare.cca <- cca(varespec ~ Al + P + K, varechem)
## overall test
anova(vare.cca)
## Test for axes
anova(vare.cca, by="axis", perm.max=500)
## Sequential test for terms
anova(vare.cca, by="terms", permu=200)
## Marginal or Type III effects
anova(vare.cca, by="margin")
## Marginal test knows 'scope'
anova(vare.cca, by = "m", scope="P")
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as.mlm.cca Refit Constrained Ordination as a Multiple Response Linear Model

Description

Functions refit results of constrained ordination (cca, rda, capscale) as a multiple response
linear model (lm). This allows finding influence statistics (influence.measures). This also
allows deriving several other statitics, but most of these are biased and misleading, since refitting
ignores a major component of variation in constrained ordination.

Usage

as.mlm(x)

Arguments

x Constrained ordination result.

Details

Popular algorithm for constrained ordination is based on iteration with regression where weighted
averages of sites are used as dependent variables and constraints as independent variables. Statistics
of linear regression are a natural by-product in this algorithm. Constrained ordination in vegan uses
different algorithm, but to obtain linear regression statistics you can refit an ordination result as
a multiple response linear model (lm). This regression ignores residual unconstrained variation
in the data, and therefore estimates of standard error are strongly biased and much too low. You
can get statistics like t-values of coefficients, but you should not use these because of this bias.
Some useful information you can get with refitted models are statistics for detecting influential
observations (influence.measures including cooks.distance, hatvalues).

Value

Function returns an object of multiple response linear model of class "mlm" documented with lm.

Note

You can use these functions to find t-values of coefficients using summary.mlm, but you should
not do this because the method ignores unconstrained residual variation. You also can find several
other statistics for (multiple response) linear models with similar bias. This bias is not a unique
feature in vegan implementation, but also applies to implementations in other software.

Some statistics of linear models can be found without using these functions: coef.cca gives
the regression coefficients, spenvcor the species-environment correlation, intersetcor the
interset correlation, vif.cca the variance inflation factors.

Author(s)

Jari Oksanen
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See Also

cca, rda, capscale, cca.object, lm, summary.mlm, influence.measures.

Examples

data(varespec)
data(varechem)
mod <- cca(varespec ~ Al + P + K, data=varechem)
lmod <- as.mlm(mod)
## Coefficients
lmod
coef(mod)
## Influential observations
influence.measures(lmod)
plot(mod, type = "n")
points(mod, cex = 10*hatvalues(lmod), pch=16, xpd = TRUE)
text(mod, display = "bp", col = "blue")

beals Beals Smoothing and Degree of Absence

Description

Beals smoothing replaces each entry in the community data with a probability of target species
occurring in that particular site, based on the joint occurrences of target species with the species
that actually occur in the site. Swan’s (1970) degree of absence applies Beals smoothing to zero
items so long that all zeros are replaced with smoothed values.

Usage

beals(x)
swan(x)

Arguments

x Community data frame or matrix

Details

Beals smoothing is the estimated probability pij that species j occurs in site i. It is defined as
pij = 1

Si

∑
k

NjkIik

Nk
, where Si is the number of species on site i, Njk is the number of joint

occurrences of species j and k, Nk is the number of occurences of species k, and I is the incidence
(0 or 1) of species (this last term is usually omitted from the equation, but it is necessary).

Beals smoothing was originally suggested as a method of data transformation to remove excessive
zeros (Beals 1984, McCune 1994). However, it is not a suitable method for this purpose since it
does not maintain the information on species presences: A species may have a higher probability of
occurrence in a site where it does not occur than in sites where it occurs. Moreover, it regularizes
data too strongly. The method may be useful in identifying species that belong to the species pool
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(Ewald 2002) or to identify suitable unoccupied patches in metapopulation analysis (Münzbergová
& Herben 2004). The function is provided here for the brave.

Swan (1970) suggested replacing zero values with degrees of absence of a species in a community
data matrix. Swan expressed the method in terms of a similarity matrix, but it is equivalent to
applying Beals smoothing to zero values, at each step shifting the smallest initially non-zero item to
value one, and repeating this so many times that there are no zeros left in the data. This is actually
very similar to extended dissimilarities (implemented in function stepacross), but very rarely
used.

Value

The function returns a transformed data matrix.

Note

The current function is modelled as closely as possible after Beals (1984) and McCune (1994). It
seems that Münzbergová and Herben (2004) use slightly different formulation.

Author(s)

Jari Oksanen

References

Beals, E.W. 1984. Bray-Curtis-ordination: an effective strategy for analysis of multivariate ecolog-
ical data. Adv. Ecol. Res. 14: 1-55.

Ewald, J. 2002. A probabilistic approach to estimating species pools from large compositional
matrices. J. Veg. Sci. 13: 191-198.

McCune, B. 1994. Improving community ordination with the Beals smoothing function. Eco-
science 1: 82-86.

Münzbergová, Z. & Herben, T. 2004. Identification of suitable unoccupied habitats in metapopula-
tion studies using co-occurrence of species. Oikos 105: 408-414.

Swan, J.M.A. (1970) An examination of some ordination problems by use of simulated vegetational
data. Ecology 51, 89–102.

See Also

decostand for proper standardization methods, specpool for an attempt to assess the size of
species pool.

Examples

data(dune)
x <- beals(dune)
## Smoothed values against presence or absence of species
pa <- decostand(dune, "pa")
boxplot(as.vector(x) ~ unlist(pa), xlab="Presence", ylab="Beals")
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betadisper Multivariate homogeneity of groups dispersions (variances)

Description

Implements Marti Anderson’s PERMDISP2 procedure for the analysis of multivariate homogeneity
of group dispersions (variances). betadisper is a multivariate analogue of Levene’s test for ho-
mogeneity of variances. Non-euclidean distances between objects and group centroids are handled
by reducing the original distances to principal coordinates. This procedure has latterly been used as
a means of assessing beta diversity. There are anova, scores, plot and boxplot methods.

TukeyHSD.betadisper creates a set of confidence intervals on the differences between the
mean distance-to-centroid of the levels of the grouping factor with the specified family-wise prob-
ability of coverage. The intervals are based on the Studentized range statistic, Tukey’s ’Honest
Significant Difference’ method.

Usage

betadisper(d, group, type = c("centroid", "median"))

## S3 method for class 'betadisper':
anova(object, ...)

## S3 method for class 'betadisper':
scores(x, display = c("sites", "centroids"),

choices = c(1,2), ...)

## S3 method for class 'betadisper':
plot(x, axes = c(1,2), cex = 0.7, hull = TRUE,

ylab, xlab, main, sub, ...)

## S3 method for class 'betadisper':
boxplot(x, ylab = "Distance to centroid", ...)

## S3 method for class 'betadisper':
TukeyHSD(x, which = "group", ordered = FALSE,

conf.level = 0.95, ...)

Arguments

d a distance structure such as that returned by dist, betadiver or vegdist.

group vector describing the group structure, usually a factor or an object that can be
coerced to a factor using as.factor. Can consist of a factor with a single
level (i.e. one group).

type the type of analysis to perform. Only type = "centroid" is currently sup-
ported.

display character; partial match to access scores for "sites" or "species".
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object, x an object of class "betadisper", the result of a call to betadisper.
choices, axes

the principal coordinate axes wanted.

hull logical; should the convex hull for each group be plotted?
cex, ylab, xlab, main, sub

graphical parameters. For details, see plot.default.

which A character vector listing terms in the fitted model for which the intervals should
be calculated. Defaults to the grouping factor.

ordered Logical; see TukeyHSD.

conf.level A numeric value between zero and one giving the family-wise confidence level
to use.

... arguments, including graphical parameters (for plot.betadisper and boxplot.betadisper),
passed to other methods.

Details

One measure of multivariate dispersion (variance) for a group of samples is to calculate the average
distance of group members to the group centroid or spatial median in multivariate space. To test if
the dispersions (variances) of one or more groups are different, the distances of group members to
the group centroid are subject to ANOVA. This is a multivariate analogue of Levene’s test for homo-
geneity of variances if the distances between group members and group centroids is the Euclidean
distance.

However, better measures of distance than the Euclidean distance are available for ecological data.
These can be accommodated by reducing the distances produced using any dissimilarity coefficient
to principal coordinates, which embeds them within a Euclidean space. The analysis then proceeds
by calculating the Euclidean distances between group members and the group centroid on the basis
of the principal coordinate axes rather than the original distances.

Non-metric dissimilarity coefficients can produce principal coordinate axes that have negative Eigen-
values. These correspond to the imaginary, non-metric part of the distance between objects. If
negative Eigenvalues are produced, we must correct for these imaginary distances.

The distance to its centroid of a point is

zc
ij =

√
∆2(u+

ij , c
+
i )−∆2(u−

ij , c
−
i ),

where ∆2 is the squared Euclidean distance between uij , the principal coordinate for the jth point
in the ith group, and ci, the coordinate of the centroid for the ith group. The super-scripted + and
− indicate the real and imaginary parts respectively. This is equation (3) in Anderson (2006). If the
imaginary part is greater in magnitude than the real part, then we would be taking the square root
of a negative value, resulting in NaN. From vegan 1.12-12 betadisper takes the absolute value
of the real distance minus the imaginary distance, before computing the square root. This is in line
with the behaviour of Marti Anderson’s PERMDISP2 programme.

To test if one or more groups is more variable than the others, ANOVA of the distances to group
centroids can be performed and parametric theory used to interpret the significance of F. An al-
ternative is to use a permutation test. permutest.betadisper permutes model residuals to
generate a permutation distribution of F under the Null hypothesis of no difference in dispersion
between groups.
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Pairwise comprisons of group mean dispersions can also be performed using permutest.betadisper.
An alternative to the classical comparison of group dispersions, is to calculate Tukey’s Honest Sig-
nificant Differences between groups, via TukeyHSD.betadisper. This is a simple wrapper
to TukeyHSD.aov. The user is directed to read the help file for TukeyHSD before using this
function. In particular, note the statement about using the function with unbalanced designs.

The results of the analysis can be visualised using the plot and boxplot methods.

One additional use of these functions is in assessing beta diversity (Anderson et al 2006). Function
betadiver provides some popular dissimilarity measures for this purpose.

Value

The anova method returns an object of class "anova" inheriting from class "data.frame".

The scoresmethod returns a list with one or both of the components "sites" and "centroids".

The plot function invisibly returns an object of class "ordiplot", a plotting structure which can
be used by identify.ordiplot (to identify the points) or other functions in the ordiplot
family.

The boxplot function invisibly returns a list whose components are documented in boxplot.

TukeyHSD.betadisper returns a list. See TukeyHSD for further details.

betadisper returns a list of class "betadisper" with the following components:

eig numeric; the eigenvalues of the principal coordinates analysis.

vectors matrix; the eigenvectors of the principal coordinates analysis.

distances numeric; the Euclidean distances in principal coordinate space between the sam-
ples and their respective group centroid.

group factor; vector describing the group structure

centroids matrix; the locations of the group centroids on the principal coordinates.

call the matched function call.

Note

If group consists of a single level or group, then the anova and permutest methods are not
appropriate and if used on such data will stop with an error.

Author(s)

Gavin L. Simpson

References

Anderson, M.J. (2006) Distance-based tests for homogeneity of multivariate dispersions. Biomet-
rics 62(1), 245–253.

Anderson, M.J., Ellingsen, K.E. & McArdle, B.H. (2006) Multivariate dispersion as a measure of
beta diversity. Ecology Letters 9(6), 683–693.
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See Also

permutest.betadisper, anova.lm, scores, boxplot, TukeyHSD. Further measure of
beta diversity can be found in betadiver.

Examples

data(varespec)

## Bray-Curtis distances between samples
dis <- vegdist(varespec)

## First 16 sites grazed, remaining 8 sites ungrazed
groups <- factor(c(rep(1,16), rep(2,8)), labels = c("grazed","ungrazed"))

## Calculate multivariate dispersions
mod <- betadisper(dis, groups)
mod

## Perform test
anova(mod)

## Permutation test for F
permutest(mod, pairwise = TRUE)

## Tukey's Honest Significant Differences
(mod.HSD <- TukeyHSD(mod))
plot(mod.HSD)

## Plot the groups and distances to centroids on the
## first two PCoA axes
plot(mod)

## Draw a boxplot of the distances to centroid for each group
boxplot(mod)

betadiver Indices of beta Diversity

Description

The function estimates any of the 24 indices of beta diversity reviewed by Koleff et al. (2003).
Alternatively, it finds the co-occurrence frequencies for triangular plots (Koleff et al. 2003).

Usage

betadiver(x, index = NA, order = FALSE, help = FALSE, ...)
## S3 method for class 'betadiver':
plot(x, ...)
## S3 method for class 'betadiver':
scores(x, triangular = TRUE, ...)



22 betadiver

Arguments

x Community data matrix, or the betadiver result for plot and scores
functions.

index The index of beta diversity as defined in Koleff et al. (2003), Table 1. You can
use either the subscript of β or the number of the index. See argument help
below.

order Order sites by increasing number of species. This will influence the configura-
tion in the triangular plot and non-symmetric indices.

help Show the numbers, subscript names and the defining equations of the indices
and exit.

triangular Return scores suitable for triangular plotting of proportions. If FALSE, returns
a 3-column matrix of raw counts.

... Other arguments to functions.

Details

The most commonly used index of beta diversity is βw = S/α − 1, where S is the total number
of species, and α is the average number of species per site (Whittaker 1960). A drawback of this
model is that S increases with sample size, but the expectation of α remains constant, and so the
beta diversity increases with sample size. A solution to this problem is to study the beta diversity
of pairs of sites. If we denote the number of species shared between two sites as a and the numbers
of unique species (not shared) as b and c, then S = a + b + c and α = (2a + b + c)/2 so
that βw = (b + c)/(2a + b + c). This is the Sørensen dissimilarity as defined in vegan function
vegdist with argument binary = TRUE. Many other indices are dissimilarity indices as well.

Function betadiver finds all indices reviewed by Koleff et al. (2003). All these indices could be
found with function designdist which uses different notation, but the current function provides
a conventional shortcut. The function only finds the indices. The proper analysis must be done with
functions such as betadisper, adonis or mantel.

The indices are directly taken from Table 1 of Koleff et al. (2003), and they can be selected either
by the index number or the subscript name used by Koleff et al. The numbers, names and defining
equations can be seen using betadiver(help = TRUE). In all cases where there are two alter-
native forms, the one with the term −1 is used. There are several duplicate indices, and the number
of distinct alternatives is much lower than 24 formally provided. The formulations used in functions
differ occasionally from those in Koleff et al. (2003), but they are still mathematically equivalent.
With index = NA, no index is calculated, but instead an object of class betadiver is returned.
This is a list of elements a, b and c. Function plot can be used to display the proportions of
these elements in triangular plot as suggested by Koleff et al. (2003), and scores extracts the
triangular coordinates or the raw scores. Function plot returns invisibly the triangular coordinates
as an "ordiplot" object.

Value

With index = NA, the function returns an object of class "betadisper" with elements a, b,
and c. If index is specified, the function returns a "dist" object which can be used in any func-
tion analysing dissimilarities. For beta diversity, particularly useful functions are betadisper to
study the betadiversity in groups, adonis for any model, and mantel to compare beta diversi-
ties to other dissimilarities or distances (including geographical distances). Although betadiver
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returns a "dist" object, some indices are similarities and cannot be used as such in place of
dissimilarities, but that is a severe user error. Functions 10 ("j") and 11 ("sor") are two such
similarity indices.

Warning

Some indices return similarities instead of dissimilarities.

Author(s)

Jari Oksanen

References

Koleff, P., Gaston, K.J. and Lennon, J.J. (2003) Measuring beta diversity for presence-absence data.
Journal of Animal Ecology 72, 367–382.

Whittaker, R.H. (1960) Vegetation of Siskiyou mountains, Oregon and California. Ecological
Monographs 30, 279–338.

See Also

designdist for an alternative to implement all these functions, vegdist for some canned
alternatives, and betadisper, adonis, mantel for analysing beta diversity objects.

Examples

## Raw data and plotting
data(sipoo)
m <- betadiver(sipoo)
plot(m)
## The indices
betadiver(help=TRUE)
## The basic Whittaker index
d <- betadiver(sipoo, "w")
## This should be equal to Sorensen index (binary Bray-Curtis in
## vegan)
range(d - vegdist(sipoo, binary=TRUE))

bgdispersal Coefficients of Biogeographical Dispersal Direction

Description

This function computes coefficients of dispersal direction between geographically connected areas,
as defined by Legendre and Legendre (1984), and also described in Legendre and Legendre (1998,
section 13.3.4).
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Usage

bgdispersal(mat, PAonly = FALSE, abc = FALSE)

Arguments

mat Data frame or matrix containing a community composition data table (species
presence-absence or abundance data).

PAonly FALSE if the four types of coefficients, DD1 to DD4, are requested; TRUE if
DD1 and DD2 only are sought (see Details).

abc If TRUE, return tables a, b and c used in DD1 and DD2.

Details

The signs of the DD coefficients indicate the direction of dispersal, provided that the asymmetry is
significant. A positive sign indicates dispersal from the first (row in DD tables) to the second region
(column); a negative sign indicates the opposite. A McNemar test of asymmetry is computed from
the presence-absence data to test the hypothesis of a significant asymmetry between the two areas
under comparison.

In the input data table, the rows are sites or areas, the columns are taxa. Most often, the taxa
are species, but the coefficients can be computed from genera or families as well. DD1 and DD2
only are computed for presence-absence data. The four types of coefficients are computed for
quantitative data, which are converted to presence-absence for the computation of DD1 and DD2.
PAonly = FALSE indicates that the four types of coefficients are requested. PAonly = TRUE
if DD1 and DD2 only are sought.

Value

Function bgdispersal returns a list containing the following matrices:

DD1 DD1[j, k] = (a ∗ (b− c))/((a + b + c)2)

DD2 DD2[j, k] = (2 ∗ a ∗ (b− c))/((2 ∗ a + b + c) ∗ (a + b + c)) where a, b, and c
have the same meaning as in the computation of binary similarity coefficients.

DD3 DD3[j,k] = W ∗ (A−B)/((A + B −W )2)

DD4 DD4[j,k] = 2∗W∗(A−B)/((A+B)∗(A+B−W )) where W = sum(pmin(vector1,
vector2)), A = sum(vector1), B = sum(vector2)

McNemar McNemar chi-square statistic of asymmetry (Sokal and Rohlf 1995): 2 ∗ (b ∗
log(b) + c ∗ log(c)− (b + c) ∗ log((b + c)/2))/q where q = 1 + 1/(2 ∗ (b + c))
(Williams correction for continuity)

prob.McNemar
probabilities associated with McNemar statistics, chi-square test. H0: no asym-
metry in (b− c).

Note

The function uses a more powerful alternative for the McNemar test than the classical formula. The
classical formula was constructed in the spririt of Pearson’s Chi-square, but the formula in this func-
tion was constructed in the spirit of Wilks Chi-square or the G statistic. Function mcnemar.test
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uses the classical formula. The new formula was introduced in vegan version 1.10-11, and the older
implementations of bgdispersal used the classical formula.

Author(s)

Pierre Legendre, Departement de Sciences Biologiques, Universite de Montreal

References

Legendre, P. and V. Legendre. 1984. Postglacial dispersal of freshwater fishes in the Québec
peninsula. Can. J. Fish. Aquat. Sci. 41: 1781-1802.

Legendre, P. and L. Legendre. 1998. Numerical ecology, 2nd English edition. Elsevier Science BV,
Amsterdam.

Sokal, R. R. and F. J. Rohlf. 1995. Biometry. The principles and practice of statistics in biological
research. 3rd edn. W. H. Freeman, New York.

Examples

mat <- matrix(c(32,15,14,10,70,30,100,4,10,30,25,0,18,0,40,
0,0,20,0,0,0,0,4,0,30,20,0,0,0,0,25,74,42,1,45,89,5,16,16,20),
4, 10, byrow=TRUE)

bgdispersal(mat)

bioenv Best Subset of Environmental Variables with Maximum (Rank) Corre-
lation with Community Dissimilarities

Description

Function finds the best subset of environmental variables, so that the Euclidean distances of scaled
environmental variables have the maximum (rank) correlation with community dissimilarities.

Usage

## Default S3 method:
bioenv(comm, env, method = "spearman", index = "bray",

upto = ncol(env), trace = FALSE, partial = NULL, ...)
## S3 method for class 'formula':
bioenv(formula, data, ...)

Arguments

comm Community data frame.

env Data frame of continuous environmental variables.

method The correlation method used in cor.

index The dissimilarity index used for community data in vegdist.
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upto Maximum number of parameters in studied subsets.
formula, data

Model formula and data.

trace Trace the advance of calculations

partial Dissimilarities partialled out when inspecting variables in env.

... Other arguments passed to cor.

Details

The function calculates a community dissimilarity matrix using vegdist. Then it selects all pos-
sible subsets of environmental variables, scales the variables, and calculates Euclidean distances
for this subset using dist. Then it finds the correlation between community dissimilarities and
environmental distances, and for each size of subsets, saves the best result. There are 2p−1 subsets
of p variables, and an exhaustive search may take a very, very, very long time (parameter upto
offers a partial relief).

The function can be called with a model formula where the LHS is the data matrix and RHS
lists the environmental variables. The formula interface is practical in selecting or transforming
environmental variables.

With argument partial you can perform “partial” analysis. The partializing item must be a
dissimilarity object of class dist. The partial item can be used with any correlation method,
but it is strictly correct only for Pearson.

Clarke & Ainsworth (1993) suggested this method to be used for selecting the best subset of en-
vironmental variables in interpreting results of nonmetric multidimensional scaling (NMDS). They
recommended a parallel display of NMDS of community dissimilarities and NMDS of Euclidean
distances from the best subset of scaled environmental variables. They warned against the use of
Procrustes analysis, but to me this looks like a good way of comparing these two ordinations.

Clarke & Ainsworth wrote a computer program BIO-ENV giving the name to the current function.
Presumably BIO-ENV was later incorporated in Clarke’s PRIMER software (available for Win-
dows). In addition, Clarke & Ainsworth suggested a novel method of rank correlation which is not
available in the current function.

Value

The function returns an object of class bioenv with a summary method.

Note

If you want to study the ‘significance’ of bioenv results, you can use function mantel or
mantel.partial which use the same definition of correlation. However, bioenv standard-
izes environmental variables to unit standard deviation using function scale and you must do
the same in mantel for comparable results. Further, bioenv selects variables to maximize the
Mantel correlation, and significance tests based on a priori selection of variables are biased.

Author(s)

Jari Oksanen. The code for selecting all possible subsets was posted to the R mailing list by Prof.
B. D. Ripley in 1999.
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References

Clarke, K. R & Ainsworth, M. 1993. A method of linking multivariate community structure to
environmental variables. Marine Ecology Progress Series, 92, 205–219.

See Also

vegdist, dist, cor for underlying routines, isoMDS for ordination, procrustes for Pro-
crustes analysis, protest for an alternative, and rankindex for studying alternatives to the
default Bray-Curtis index.

Examples

# The method is very slow for large number of possible subsets.
# Therefore only 6 variables in this example.
data(varespec)
data(varechem)
sol <- bioenv(wisconsin(varespec) ~ log(N) + P + K + Ca + pH + Al, varechem)
sol
summary(sol)

biplot.rda PCA biplot

Description

Draws a PCA biplot with species scores indicated by biplot arrows

Usage

## S3 method for class 'rda':
biplot(x, choices = c(1, 2), scaling = 2,

display = c("sites", "species"), type, xlim, ylim, col = c(1,2), ...)

Arguments

x A rda result object.

choices Axes to show.

scaling Scaling for species and site scores. Either species (2) or site (1) scores are
scaled by eigenvalues, and the other set of scores is left unscaled, or with 3 both
are scaled symmetrically by square root of eigenvalues. With negative scaling
values in rda, species scores are divided by standard deviation of each species
and multiplied with an equalizing constant. Unscaled raw scores stored in the
result can be accessed with scaling = 0.

display Scores shown. These must some of the alternatives "species" for species
scores, and/or "sites" for site scores.
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type Type of plot: partial match to text for text labels, points for points, and
none for setting frames only. If omitted, text is selected for smaller data
sets, and points for larger. Can be of length 2 (e.g. type = c("text",
"points")), in which case the first element describes how species scores are
handled, and the second how site scores are drawn.

xlim, ylim the x and y limits (min, max) of the plot.

col Colours used for sites and species (in this order). If only one colour is given, it
is used for both.

... Other parameters for plotting functions.

Details

Produces a plot or biplot of the results of a call to rda. It is common for the "species" scores in a
PCA to be drawn as biplot arrows that point in the direction of increasing values for that variable.
The biplot.rda function provides a wrapper to plot.cca to allow the easy production of such
a plot.

biplot.rda is only suitable for unconstrained models. If used on an ordination object with
constraints, an error is issued.

If species scores are drawn using "text", the arrows are drawn from the origin to 0.85 * species
score, whilst the labels are drawn at the species score. If the type used is "points", then no labels
are drawn and therefore the arrows are drawn from the origin to the actual species score.

Value

The plot function returns invisibly a plotting structure which can be used by identify.ordiplot
to identify the points or other functions in the ordiplot family.

Author(s)

Gavin Simpson, based on plot.cca by Jari Oksanen.

See Also

plot.cca, rda for something to plot, ordiplot for an alternative plotting routine and more
support functions, and text, points and arrows for the basic routines.

Examples

data(dune)
mod <- rda(dune, scale = TRUE)
biplot(mod, scaling = 3)

## different type for species and site scores
biplot(mod, scaling = 3, type = c("text", "points"))
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capscale [Partial] Constrained Analysis of Principal Coordinates or distance-
based RDA

Description

Constrained Analysis of Principal Coordinates (CAP) is an ordination method similar to Redun-
dancy Analysis (rda), but it allows non-Euclidean dissimilarity indices, such as Manhattan or
Bray–Curtis distance. Despite this non-Euclidean feature, the analysis is strictly linear and metric.
If called with Euclidean distance, the results are identical to rda, but capscale will be much
more inefficient. Function capscale is a constrained version of metric scaling, a.k.a. princi-
pal coordinates analysis, which is based on the Euclidean distance but can be used, and is more
useful, with other dissimilarity measures. The function can also perform unconstrained principal
coordinates analysis, optionally using extended dissimilarities.

Usage

capscale(formula, data, distance = "euclidean", comm = NULL,
add = FALSE, dfun = vegdist, metaMDSdist = FALSE, ...)

Arguments

formula Model formula. The function can be called only with the formula interface.
Most usual features of formula hold, especially as defined in cca and rda.
The LHS must be either a community data matrix or a dissimilarity matrix, e.g.,
from vegdist or dist. If the LHS is a data matrix, function vegdist will
be used to find the dissimilarities. The RHS defines the constraints. The con-
straints can be continuous variables or factors, they can be transformed within
the formula, and they can have interactions as in a typical formula. The RHS
can have a special term Condition that defines variables to be “partialled out”
before constraints, just like in rda or cca. This allows the use of partial CAP.

data Data frame containing the variables on the right hand side of the model formula.

distance Dissimilarity (or distance) index in vegdist used if the LHS of the formula
is a data frame instead of dissimilarity matrix.

comm Community data frame which will be used for finding species scores when the
LHS of the formula was a dissimilarity matrix. This is not used if the LHS is
a data frame. If this is not supplied, the “species scores” are the axes of initial
metric scaling (cmdscale) and may be confusing.

add Logical indicating if an additive constant should be computed, and added to
the non-diagonal dissimilarities such that all eigenvalues are non-negative in the
underlying Principal Co-ordinates Analysis (see cmdscale for details). This
implements “correction method 2” of Legendre & Legendre (1998, p. 434).
The negative eigenvalues are caused by using semi-metric or non-metric dissim-
ilarities with basically metric cmdscale. They are harmless and ignored in
capscale, but you also can avoid warnings with this option.
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dfun Distance or dissimilarity function used. Any function returning standard "dist"
and taking the index name as the first argument can be used.

metaMDSdist Use metaMDSdist similarly as in metaMDS. This means automatic data trans-
formation and using extended flexible shortest path dissimilarities (function stepacross)
when there are many dissimilarities based on no shared species.

... Other parameters passed to rda or to metaMDSdist.

Details

Canonical Analysis of Principal Coordinates (CAP) is simply a Redundancy Analysis of results of
Metric (Classical) Multidimensional Scaling (Anderson & Willis 2003). Function capscale uses two
steps: (1) it ordinates the dissimilarity matrix using cmdscale and (2) analyzes these results using
rda. If the user supplied a community data frame instead of dissimilarities, the function will find
the needed dissimilarity matrix using vegdist with specified distance. However, the method
will accept dissimilarity matrices from vegdist, dist, or any other method producing similar
matrices. The constraining variables can be continuous or factors or both, they can have interaction
terms, or they can be transformed in the call. Moreover, there can be a special term Condition
just like in rda and cca so that “partial” CAP can be performed.

The current implementation differs from the method suggested by Anderson & Willis (2003) in
three major points which actually make it similar to distance-based redundancy analysis (Legendre
& Anderson 1999):

1. Anderson & Willis used the orthonormal solution of cmdscale, whereas capscale uses
axes weighted by corresponding eigenvalues, so that the ordination distances are the best
approximations of original dissimilarities. In the original method, later “noise” axes are just
as important as first major axes.

2. Anderson & Willis take only a subset of axes, whereas capscale uses all axes with positive
eigenvalues. The use of subset is necessary with orthonormal axes to chop off some “noise”,
but the use of all axes guarantees that the results are the best approximation of original dis-
similarities.

3. Function capscale adds species scores as weighted sums of (residual) community matrix (if
the matrix is available), whereas Anderson & Willis have no fixed method for adding species
scores.

With these definitions, function capscale with Euclidean distances will be identical to rda in
eigenvalues and in site, species and biplot scores (except for possible sign reversal). However, it
makes no sense to use capscale with Euclidean distances, since direct use of rda is much more
efficient. Even with non-Euclidean dissimilarities, the rest of the analysis will be metric and linear.

The function can be also used to perform ordinary metric scaling a.k.a. principal coordinates
analysis by using a formula with only a constant on the left hand side, or comm ~ 1. With
metaMDSdist = TRUE, the function can do automatic data standardization and use extended
dissimilarities using function stepacross similary as in non-metric multidimensional scaling
with metaMDS.

Value

The function returns an object of class capscale which is identical to the result of rda. At the
moment, capscale does not have specific methods, but it uses cca and rdamethods plot.cca,
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scores.rda etc. Moreover, you can use anova.cca for permutation tests of “significance” of
the results.

Note

Warnings of negative eigenvalues are issued with most dissimilarity indices. These are harmless,
and negative eigenvalues will be ignored in the analysis. If the warnings are disturbing, you can
use argument add = TRUE passed to cmdscale, or, preferably, a distance measure that does not
cause these warnings. In vegdist, method = "jaccard" gives such an index. Alternatively,
after square root transformation many indices do not cause warnings.

Function rda usually divides the ordination scores by number of sites minus one. In this way,
the inertia is variance instead of sum of squares, and the eigenvalues sum up to variance. Many
dissimilarity measures are in the range 0 to 1, so they have already made a similar division. If the
largest original dissimilarity is less than or equal to 4 (allowing for stepacross), this division
is undone in capscale and original dissimilarities are used. The inertia is named squared
dissimilarity (as defined in the dissimilarity matrix), but keyword mean is added to the inertia
in cases where division was made, e.g. in Euclidean and Manhattan distances.

Author(s)

Jari Oksanen

References

Anderson, M.J. & Willis, T.J. (2003). Canonical analysis of principal coordinates: a useful method
of constrained ordination for ecology. Ecology 84, 511–525.

Legendre, P. & Anderson, M. J. (1999). Distance-based redundancy analysis: testing multispecies
responses in multifactorial ecological experiments. Ecological Monographs 69, 1–24.

Legendre, P. & Legendre, L. (1998). Numerical Ecology. 2nd English Edition. Elsevier

See Also

rda, cca, plot.cca, anova.cca, vegdist, dist, cmdscale.

Examples

data(varespec)
data(varechem)
vare.cap <- capscale(varespec ~ N + P + K + Condition(Al), varechem,

dist="bray")
vare.cap
plot(vare.cap)
anova(vare.cap)
## Principal coordinates analysis with extended dissimilarities
capscale(varespec ~ 1, dist="bray", metaMDS = TRUE)
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cascadeKM K-means partitioning using a range of values of K

Description

This function is a wrapper for the kmeans function. It creates several partitions forming a cascade
from a small to a large number of groups.

Usage

cascadeKM(data, inf.gr, sup.gr, iter = 100, criterion = "calinski")

cIndexKM(y, x, index = "all")

## S3 method for class 'cascadeKM':
plot(x, min.g, max.g, grpmts.plot = TRUE,

sortg = FALSE, gridcol = NA, ...)

Arguments

data The data matrix. The objects (samples) are the rows.

inf.gr The number of groups for the partition with the smallest number of groups of
the cascade (min).

sup.gr The number of groups for the partition with the largest number of groups of the
cascade (max).

iter The number of random starting configurations for each value of K.

criterion The criterion that will be used to select the best partition. The default value
is "calinski", which refers to the Calinski-Harabasz (1974) criterion. The
simple structure index ("ssi") is also available. Other indices are available
in function clustIndex (package cclust). In our experience, the two indices
that work best and are most likely to return their maximum value at or near the
optimal number of clusters are "calinski" and "ssi".

y Object of class "kmeans" returned by a clustering algorithm such as kmeans

x Data matrix where columns correspond to variables and rows to observations,
or the plotting object in plot

index The available indices are: "calinski" and "ssi". Type "all" to obtain
both indices. Abbreviations of these names are also accepted.

min.g, max.g The minimum and maximum numbers of groups to be displayed.

grpmts.plot Show the plot (TRUE or FALSE).

sortg Sort the objects as a function of their group membership to produce a more easily
interpretatable graph. See Details. The original object names are kept; they are
used as labels in the output table x, although not in the graph. If there were no
rownames, sequential row numbers are used to keep track of the original order
of the objects.
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gridcol The colour of the grid lines in the plots. NA, which is the default value, removes
the grid lines.

... Other parameters to the functions (ignored).

Details

The function creates several partitions formimg a cascade from a small to a large number of groups
formed by kmeans. Most of the work is performed by function cIndex which is based on the
clustIndex function (package cclust). Some of the criteria were removed from this version
because computation errors were generated when only one object was found in a group.

The default value is "calinski", which refers to the well-known Calinski-Harabasz (1974) cri-
terion. The other available index is the simple structure index "ssi" (Dolnicar et al. 1999). In
the case of groups of equal sizes, "calinski" is generally a good criterion to indicate the correct
number of groups. Users should not take its indications literally when the groups are not equal in
size. Type "all" to obtain both indices. The indices are defined as:

calinski: (SSB/(K − 1))/(SSW/(n −K)), where n is the number of data points and K is the
number of clusters. SSW is the sum of squares within the clusters while SSB is the sum of
squares among the clusters. This index is simply an F (ANOVA) statistic.

ssi: the “Simple Structure Index” multiplicatively combines several elements which influence the
interpretability of a partitioning solution. The best partition is indicated by the highest SSI
value.

In a simulation study, Milligan and Cooper (1985) found that the Calinski-Harabasz criterion re-
covered the correct number of groups the most often. We recommend this criterion because, if
the groups are of equal sizes, the maximum value of "calinski" usually indicates the correct
number of groups. Another available index is the simple structure index "ssi". Users should not
take the indications of these indices literally when the groups are not equal in size and explore the
groups corresponding to other values of K.

Function cascadeKM has a plot method. Two plots are produced. The graph on the left has the
objects in abscissa and the number of groups in ordinate. The groups are represented by colours.
The graph on the right shows the values of the criterion ("calinski" or "ssi") for determining
the best partition. The highest value of the criterion is marked in red. Points marked in orange,
if any, indicate partitions producing an increase in the criterion value as the number of groups
increases; they may represent other interesting partitions.

If sortg=TRUE, the objects are reordered by the following procedure: (1) a simple matching
distance matrix is computed among the objects, based on the table of K-means assignments to
groups, from K = min.g to K = max.g. (2) A principal coordinate analysis (PCoA, Gower
1966) is computed on the centred distance matrix. (3) The first principal coordinate is used as the
new order of the objects in the graph. A simplified algorithm is used to compute the first principal
coordinate only, using the iterative algorithm described in Legendre & Legendre (1998, Table 9.10).
The full distance matrix among objects is never computed; this avoids the problem of storing it when
the number of objects is large. Distance values are computed as they are needed by the algorithm.

Value

Function cascadeKM returns an object of class cascadeKM with items:
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partition Table with the partitions found for different numbers of groups K, from K =
inf.gr to K = sup.gr.

results Values of the criterion to select the best partition.

criterion The name of the criterion used.

size The number of objects found in each group, for all partitions (columns).

Function cIndex returns a vector with the index values. The maximum value of these indices is
supposed to indicate the best partition. These indices work best with groups of equal sizes. When
the groups are not of equal sizes, one should not put too much faith in the maximum of these indices,
and also explore the groups corresponding to other values of K.

Author(s)

Marie-Helene Ouellette 〈Marie-Helene.Ouellette@UMontreal.ca〉, Sebastien Durand 〈Sebastien.Durand@UMontreal.ca〉
and Pierre Legendre 〈Pierre.Legendre@UMontreal.ca〉. Edited for vegan by Jari Oksanen.

References

Calinski, T. and J. Harabasz. 1974. A dendrite method for cluster analysis. Commun. Stat. 3: 1-27.

Dolnicar, S., K. Grabler and J. A. Mazanec. 1999. A tale of three cities: perceptual charting for
analyzing destination images. Pp. 39-62 in: Woodside, A. et al. [eds.] Consumer psychology of
tourism, hospitality and leisure. CAB International, New York.

Gower, J. C. 1966. Some distance properties of latent root and vector methods used in multivariate
analysis. Biometrika 53: 325-338.

Legendre, P. & L. Legendre. 1998. Numerical ecology, 2nd English edition. Elsevier Science BV,
Amsterdam.

Milligan, G. W. & M. C. Cooper. 1985. An examination of procedures for determining the number
of clusters in a data set. Psychometrika 50: 159-179.

Weingessel, A., Dimitriadou, A. and Dolnicar, S. An Examination Of Indexes For Determining The
Number Of Clusters In Binary Data Sets, http://www.wu-wien.ac.at/am/wp99.htm#
29

See Also

kmeans, clustIndex.

Examples

# Partitioning a (10 x 10) data matrix of random numbers
mat <- matrix(runif(100),10,10)
res <- cascadeKM(mat, 2, 5, iter = 25, criterion = 'calinski')
toto <- plot(res)

# Partitioning an autocorrelated time series
vec <- sort(matrix(runif(30),30,1))
res <- cascadeKM(vec, 2, 5, iter = 25, criterion = 'calinski')
toto <- plot(res)

http://www.wu-wien.ac.at/am/wp99.htm#29
http://www.wu-wien.ac.at/am/wp99.htm#29
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# Partitioning a large autocorrelated time series
# Note that we remove the grid lines
vec <- sort(matrix(runif(1000),1000,1))
res <- cascadeKM(vec, 2, 7, iter = 10, criterion = 'calinski')
toto <- plot(res, gridcol=NA)

cca [Partial] [Constrained] Correspondence Analysis and Redundancy
Analysis

Description

Function cca performs correspondence analysis, or optionally constrained correspondence analysis
(a.k.a. canonical correspondence analysis), or optionally partial constrained correspondence anal-
ysis. Function rda performs redundancy analysis, or optionally principal components analysis.
These are all very popular ordination techniques in community ecology.

Usage

## S3 method for class 'formula':
cca(formula, data, ...)
## Default S3 method:
cca(X, Y, Z, ...)
## S3 method for class 'formula':
rda(formula, data, scale=FALSE, ...)
## Default S3 method:
rda(X, Y, Z, scale=FALSE, ...)

Arguments

formula Model formula, where the left hand side gives the community data matrix, right
hand side gives the constraining variables, and conditioning variables can be
given within a special function Condition.

data Data frame containing the variables on the right hand side of the model formula.

X Community data matrix.

Y Constraining matrix, typically of environmental variables. Can be missing.

Z Conditioning matrix, the effect of which is removed (‘partialled out’) before
next step. Can be missing.

scale Scale species to unit variance (like correlations).

... Other arguments for print or plot functions (ignored in other functions).
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Details

Since their introduction (ter Braak 1986), constrained, or canonical, correspondence analysis and
its spin-off, redundancy analysis, have been the most popular ordination methods in community
ecology. Functions cca and rda are similar to popular proprietary software Canoco, although the
implementation is completely different. The functions are based on Legendre & Legendre’s (1998)
algorithm: in cca Chi-square transformed data matrix is subjected to weighted linear regression on
constraining variables, and the fitted values are submitted to correspondence analysis performed via
singular value decomposition (svd). Function rda is similar, but uses ordinary, unweighted linear
regression and unweighted SVD.

The functions can be called either with matrix-like entries for community data and constraints, or
with formula interface. In general, the formula interface is preferred, because it allows a better
control of the model and allows factor constraints.

In the following sections, X, Y and Z, although referred to as matrices, are more commonly data
frames.

In the matrix interface, the community data matrix X must be given, but the other data matrices
may be omitted, and the corresponding stage of analysis is skipped. If matrix Z is supplied, its
effects are removed from the community matrix, and the residual matrix is submitted to the next
stage. This is called ‘partial’ correspondence or redundancy analysis. If matrix Y is supplied, it
is used to constrain the ordination, resulting in constrained or canonical correspondence analysis,
or redundancy analysis. Finally, the residual is submitted to ordinary correspondence analysis (or
principal components analysis). If both matrices Z and Y are missing, the data matrix is analysed
by ordinary correspondence analysis (or principal components analysis).

Instead of separate matrices, the model can be defined using a model formula. The left hand side
must be the community data matrix (X). The right hand side defines the constraining model. The
constraints can contain ordered or unordered factors, interactions among variables and functions
of variables. The defined contrasts are honoured in factor variables. The constraints can
also be matrices (but not data frames). The formula can include a special term Condition for
conditioning variables (“covariables”) “partialled out” before analysis. So the following commands
are equivalent: cca(X, Y, Z), cca(X ~ Y + Condition(Z)), where Y and Z refer to
constraints and conditions matrices respectively.

Constrained correspondence analysis is indeed a constrained method: CCA does not try to display
all variation in the data, but only the part that can be explained by the used constraints. Con-
sequently, the results are strongly dependent on the set of constraints and their transformations or
interactions among the constraints. The shotgun method is to use all environmental variables as con-
straints. However, such exploratory problems are better analysed with unconstrained methods such
as correspondence analysis (decorana, ca) or non-metric multidimensional scaling (isoMDS)
and environmental interpretation after analysis (envfit, ordisurf). CCA is a good choice if
the user has clear and strong a priori hypotheses on constraints and is not interested in the major
structure in the data set.

CCA is able to correct the curve artefact commonly found in correspondence analysis by forcing
the configuration into linear constraints. However, the curve artefact can be avoided only with a
low number of constraints that do not have a curvilinear relation with each other. The curve can
reappear even with two badly chosen constraints or a single factor. Although the formula interface
makes easy to include polynomial or interaction terms, such terms often produce curved artefacts
(that are difficult to interpret), these should probably be avoided.
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According to folklore, rda should be used with “short gradients” rather than cca. However, this
is not based on research which finds methods based on Euclidean metric as uniformly weaker than
those based on Chi-squared metric. However, standardized Euclidean distance may be an appropri-
ate measures (see Hellinger standardization in decostand in particular).

Partial CCA (pCCA; or alternatively partial RDA) can be used to remove the effect of some condi-
tioning or “background” or “random” variables or “covariables” before CCA proper. In fact, pCCA
compares models cca(X ~ Z) and cca(X ~ Y + Z) and attributes their difference to the ef-
fect of Y cleansed of the effect of Z. Some people have used the method for extracting “components
of variance” in CCA. However, if the effect of variables together is stronger than sum of both sep-
arately, this can increase total Chi-square after “partialling out” some variation, and give negative
“components of variance”. In general, such components of “variance” are not to be trusted due to
interactions between two sets of variables.

The functions have summary and plotmethods which are documented separately (see plot.cca,
summary.cca).

Value

Function cca returns a huge object of class cca, which is described separately in cca.object.

Function rda returns an object of class rda which inherits from class cca and is described in
cca.object. The scaling used in rda scores is described in a separate vignette with this package.

Author(s)

The responsible author was Jari Oksanen, but the code borrows heavily from Dave Roberts (http:
//labdsv.nr.usu.edu/).

References

The original method was by ter Braak, but the current implementations follows Legendre and Leg-
endre.

Legendre, P. and Legendre, L. (1998) Numerical Ecology. 2nd English ed. Elsevier.

McCune, B. (1997) Influence of noisy environmental data on canonical correspondence analysis.
Ecology 78, 2617-2623.

Palmer, M. W. (1993) Putting things in even better order: The advantages of canonical correspon-
dence analysis. Ecology 74,2215-2230.

Ter Braak, C. J. F. (1986) Canonical Correspondence Analysis: a new eigenvector technique for
multivariate direct gradient analysis. Ecology 67, 1167-1179.

See Also

There is a special documentation for plot.cca and summary.cca functions with their helper
functions (text.cca, points.cca, scores.cca). Function anova.cca provides an ANOVA
like permutation test for the “significance” of constraints. Automatic model building (dangerous!)
is discussed in deviance.cca. Diagnostic tools, prediction and adding new points in ordination
are discussed in goodness.cca and predict.cca. Function cca (library ade4) provide al-
ternative implementations of CCA (these are internally quite different). Function capscale is a
non-Euclidean generalization of rda. The result object is described in cca.object. You can use

http://labdsv.nr.usu.edu/
http://labdsv.nr.usu.edu/
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as.mlm to refit ordination result as a multiple response linear model to find some descriptive statis-
tics. Design decisions are explained in vignette ‘decision-vegan’ which also can be accessed
with vegandocs.

Examples

data(varespec)
data(varechem)
## Common but bad way: use all variables you happen to have in your
## environmental data matrix
vare.cca <- cca(varespec, varechem)
vare.cca
plot(vare.cca)
## Formula interface and a better model
vare.cca <- cca(varespec ~ Al + P*(K + Baresoil), data=varechem)
vare.cca
plot(vare.cca)
## `Partialling out' and `negative components of variance'
cca(varespec ~ Ca, varechem)
cca(varespec ~ Ca + Condition(pH), varechem)
## RDA
data(dune)
data(dune.env)
dune.Manure <- rda(dune ~ Manure, dune.env)
plot(dune.Manure)
## For further documentation:
## Not run:
vegandocs("decision")
## End(Not run)

cca.object Result Object from Constrained Ordination with cca, rda or capscale

Description

Ordination methods cca, rda and capscale return similar result objects. Function capscale
inherits from rda and rda inherits from cca. This inheritance structure is due to historic rea-
sons: cca was the first of these implemented in vegan. Hence the nomenclature in cca.object
reflects cca. This help page describes the internal structure of the cca object for programmers.

Value

A cca object has the following elements:

call the function call.
colsum, rowsum

Column and row sums in cca. In rda, item colsum contains standard devia-
tions of species and rowsum is NA.

grand.total Grand total of community data in cca and NA in rda.
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inertia Text used as the name of inertia.

method Text used as the name of the ordination method.

terms The terms component of the formula. This is missing if the ordination was
not called with formula.

terminfo Further information on terms with three subitems: terms which is like the
terms component above, but lists conditions and constrainst similarly; xlev
which lists the factor levels, and ordered which is TRUE to ordered factors.
This is produced by vegan internal function ordiTerminfo, and it is needed
in predict.cca with newdata. This is missing if the ordination was not
called with formula.

tot.chi Total inertia or the sum of all eigenvalues.
pCCA, CCA, CA

Actual ordination results for conditioned (partial), constrained and unconstrained
components of the model. Any of these can be NULL if there is no correspond-
ing component. Items pCCA, CCA and CA have similar structure, and contain
following items:

alias The names of the aliased constraints or conditions. Function alias.cca does
not access this item directly, but it finds the aliased variables and their defining
equations from the QR item.

biplot Biplot scores of constraints. Only in CCA.

centroids (Weighted) centroids of factor levels of constraints. Only in CCA. Missing if the
ordination was not called with formula.

eig Eigenvalues of axes. In CCA and CA.

envcentre (Weighted) means of the original constraining or conditioning variables. In
pCCA and in CCA.

Fit The fitted values of standardized data matrix after fitting conditions. Only in
pCCA.

QR The QR decomposition of explanatory variables as produced by qr. The con-
strained ordination algorithm is based on QR decomposition of constraints and
conditions (environmental data). The environmental data are first centred in
rda or weighted and centred in cca. The QR decomposition is used in many
functions that access cca results, and it can be used to find many items that are
not directly stored in the object. For examples, see coef.cca, coef.rda,
vif.cca, permutest.cca, predict.cca, predict.rda, calibrate.cca.
For possible uses of this component, see qr. In pCCA and CCA.

rank The rank of the ordination component.

qrank The rank of the constraints which is the difference of the ranks of QR decompo-
sitions in pCCA and CCA components. Only in CCA.

tot.chi Total inertia or the sum of all eigenvalues of the component.

u (Weighted) orthonormal site scores. Please note that scaled scores are not stored
in the cca object, but they are made when the object is accessed with func-
tions like scores.cca, summary.cca or plot.cca, or their rda vari-
ants. Only in CCA and CA. In the CCA component these are the so-called linear
combination scores.
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u.eig u scaled by eigenvalues. There is no guarantee that any .eig variants of scores
will be kept in the future releases.

v (Weighted) orthonormal species scores. If missing species were omitted from
the analysis, this will contain attribute na.action that lists the omitted species.
Only in CCA and CA.

v.eig v weighted by eigenvalues.

wa Site scores found as weighted averages (cca) or weighted sums (rda) of vwith
weights Xbar, but the multiplying effect of eigenvalues removed. These often
are known as WA scores in cca. Only in CCA.

wa.eig The direct result of weighted avaraging or weighted summation (matrix multi-
plication) with the resulting eigenvalue inflation.

Xbar The standardized data matrix after previous stages of analysis. In CCA this is
after possible pCCA or after partialling out the effects of conditions, and in CA
after both pCCA and CCA. In cca the standardization is Chi-square, and in
rda centring and optional scaling by species standard deviations using function
scale.

Author(s)

Jari Oksanen

References

Legendre, P. and Legendre, L. (1998) Numerical Ecology. 2nd English ed. Elsevier.

See Also

The description here provides a hacker’s interface. For more user friendly acces to the cca object
see alias.cca, coef.cca, deviance.cca, predict.cca, scores.cca, summary.cca,
vif.cca, weights.cca, spenvcor or rda variants of these functions. You can use as.mlm
to cast a cca.object into result of multiple response linear model (lm) in order to more easily
find some statistics (which in principle could be directly found from the cca.object as well).

Examples

# Some species will be missing in the analysis, because only a subset
# of sites is used below.
data(dune)
data(dune.env)
mod <- cca(dune[1:15,] ~ ., dune.env[1:15,])
# Look at the names of missing species
attr(mod$CCA$v, "na.action")
# Look at the names of the aliased variables:
mod$CCA$alias
# Access directly constrained weighted orthonormal species and site
# scores, constrained eigenvalues and margin sums.
spec <- mod$CCA$v
sites <- mod$CCA$u
eig <- mod$CCA$eig
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rsum <- mod$rowsum
csum <- mod$colsum

decorana Detrended Correspondence Analysis and Basic Reciprocal Averaging

Description

Performs detrended correspondence analysis and basic reciprocal averaging or orthogonal corre-
spondence analysis.

Usage

decorana(veg, iweigh=0, iresc=4, ira=0, mk=26, short=0,
before=NULL, after=NULL)

## S3 method for class 'decorana':
plot(x, choices=c(1,2), origin=TRUE,

display=c("both","sites","species","none"),
cex = 0.8, cols = c(1,2), type, xlim, ylim, ...)

## S3 method for class 'decorana':
text(x, display = c("sites", "species"), labels,

choices = 1:2, origin = TRUE, select, ...)

## S3 method for class 'decorana':
points(x, display = c("sites", "species"),

choices=1:2, origin = TRUE, select, ...)

## S3 method for class 'decorana':
summary(object, digits=3, origin=TRUE,

display=c("both", "species","sites","none"), ...)

## S3 method for class 'summary.decorana':
print(x, head = NA, tail = head, ...)

downweight(veg, fraction = 5)

## S3 method for class 'decorana':
scores(x, display=c("sites","species"), choices=1:4,

origin=TRUE, ...)

Arguments

veg Community data, a matrix-like object.

iweigh Downweighting of rare species (0: no).

iresc Number of rescaling cycles (0: no rescaling).
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ira Type of analysis (0: detrended, 1: basic reciprocal averaging).

mk Number of segments in rescaling.

short Shortest gradient to be rescaled.

before Hill’s piecewise transformation: values before transformation.

after Hill’s piecewise transformation: values after transformation – these must corre-
spond to values in before.

x, object A decorana result object.

choices Axes shown.

origin Use true origin even in detrended correspondence analysis.

display Display only sites, only species, both or neither.

cex Plot character size.

cols Colours used for sites and species.

type Type of plots, partial match to "text", "points" or "none".

labels Optional text to be used instead of row names.

select Items to be displayed. This can either be a logical vector which is TRUE for
displayed items or a vector of indices of displayed items.

xlim, ylim the x and y limits (min,max) of the plot.

digits Number of digits in summary output.

head, tail Number of rows printed from the head and tail of species and site scores. Default
NA prints all.

fraction Abundance fraction where downweighting begins.

... Other arguments for plot function.

Details

In late 1970s, correspondence analysis became the method of choice for ordination in vegetation
science, since it seemed better able to cope with non-linear species responses than principal compo-
nents analysis. However, even correspondence analysis can produce an arc-shaped configuration of
a single gradient. Mark Hill developed detrended correspondence analysis to correct two assumed
‘faults’ in correspondence analysis: curvature of straight gradients and packing of sites at the ends
of the gradient.

The curvature is removed by replacing the orthogonalization of axes with detrending. In orthog-
onalization successive axes are made non-correlated, but detrending should remove all systematic
dependence between axes. Detrending is performed using a five-segment smoothing window with
weights (1,2,3,2,1) on mk segments — which indeed is more robust than the suggested alternative
of detrending by polynomials. The packing of sites at the ends of the gradient is undone by rescal-
ing the axes after extraction. After rescaling, the axis is supposed to be scaled by ‘SD’ units, so
that the average width of Gaussian species responses is supposed to be one over whole axis. Other
innovations were the piecewise linear transformation of species abundances and downweighting of
rare species which were regarded to have an unduly high influence on ordination axes.

It seems that detrending actually works by twisting the ordination space, so that the results look non-
curved in two-dimensional projections (‘lolly paper effect’). As a result, the points usually have
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an easily recognized triangular or diamond shaped pattern, obviously an artefact of detrendingt.
Rescaling works differently than commonly presented, too. decorana does not use, or even
evaluate, the widths of species responses. Instead, it tries to equalize the weighted variance of
species scores on axis segments (parameter mk has only a small effect, since decorana finds the
segment number from the current estimate of axis length). This equalizes response widths only
for the idealized species packing model, where all species initially have unit width responses and
equally spaced modes.

The summary method prints the ordination scores, possible prior weights used in downweighting,
and the marginal totals after applying these weights. The plotmethod plots species and site scores.
Classical decorana scaled the axes so that smallest site score was 0 (and smallest species score
was negative), but summary, plot and scores use the true origin, unless origin = FALSE.

In addition to proper eigenvalues, the function also reports ‘decorana values’ in detrended analysis.
These ‘decorana values’ are the values that the legacy code of decorana returns as ‘eigenvalues’.
They are estimated internally during iteration, and it seems that detrending interferes the estimation
so that these values are generally too low and have unclear interpretation. Moreover, ‘decorana
values’ are estimated before rescaling which will change the eigenvalues. The proper eigenvalues
are estimated after extraction of the axes and they are the ratio of biased weighted variances of site
and species scores even in detrended and rescaled solutions. The ‘decorana values’ are provided
only for the the compatibility with legacy software, and they should not be used.

Value

decorana returns an object of class "decorana", which has print, summary and plot
methods.

Note

decorana uses the central numerical engine of the original Fortran code (which is in the public
domain), or about 1/3 of the original program. I have tried to implement the original behaviour,
although a great part of preparatory steps were written in R language, and may differ somewhat
from the original code. However, well-known bugs are corrected and strict criteria used (Oksanen
& Minchin 1997).

Please note that there really is no need for piecewise transformation or even downweighting within
decorana, since there are more powerful and extensive alternatives in R, but these options are
included for compliance with the original software. If a different fraction of abundance is needed in
downweighting, function downweightmust be applied before decorana. Function downweight
indeed can be applied prior to correspondence analysis, and so it can be used together with cca,
too.

The function finds only four axes: this is not easily changed.

Author(s)

Mark O. Hill wrote the original Fortran code, the R port was by Jari Oksanen.

References

Hill, M.O. and Gauch, H.G. (1980). Detrended correspondence analysis: an improved ordination
technique. Vegetatio 42, 47–58.
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Oksanen, J. and Minchin, P.R. (1997). Instability of ordination results under changes in input data
order: explanations and remedies. Journal of Vegetation Science 8, 447–454.

See Also

For unconstrained ordination, non-metric multidimensional scaling in isoMDS may be more robust
(see also metaMDS). Constrained (or ‘canonical’) correspondence analysis can be made with cca.
Orthogonal correspondence analysis can be made with ca, or with decorana or cca, but the
scaling of results vary (and the one in decorana correspondes to scaling = -1 in cca.). See
predict.decorana for adding new points to an ordination.

Examples

data(varespec)
vare.dca <- decorana(varespec)
vare.dca
summary(vare.dca)
plot(vare.dca)

### the detrending rationale:
gaussresp <- function(x,u) exp(-(x-u)^2/2)
x <- seq(0,6,length=15) ## The gradient
u <- seq(-2,8,len=23) ## The optima
pack <- outer(x,u,gaussresp)
matplot(x, pack, type="l", main="Species packing")
opar <- par(mfrow=c(2,2))
plot(scores(prcomp(pack)), asp=1, type="b", main="PCA")
plot(scores(decorana(pack, ira=1)), asp=1, type="b", main="CA")
plot(scores(decorana(pack)), asp=1, type="b", main="DCA")
plot(scores(cca(pack ~ x), dis="sites"), asp=1, type="b", main="CCA")

### Let's add some noise:
noisy <- (0.5 + runif(length(pack)))*pack
par(mfrow=c(2,1))
matplot(x, pack, type="l", main="Ideal model")
matplot(x, noisy, type="l", main="Noisy model")
par(mfrow=c(2,2))
plot(scores(prcomp(noisy)), type="b", main="PCA", asp=1)
plot(scores(decorana(noisy, ira=1)), type="b", main="CA", asp=1)
plot(scores(decorana(noisy)), type="b", main="DCA", asp=1)
plot(scores(cca(noisy ~ x), dis="sites"), asp=1, type="b", main="CCA")
par(opar)

decostand Standardization Methods for Community Ecology

Description

The function provides some popular (and effective) standardization methods for community ecolo-
gists.
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Usage

decostand(x, method, MARGIN, range.global, na.rm=FALSE)

wisconsin(x)

Arguments

x Community data, a matrix-like object.

method Standardization method. See Details for available options.

MARGIN Margin, if default is not acceptable. 1 = rows, and 2 = columns of x.

range.global Matrix from which the range is found in method = "range". This allows
using same ranges across subsets of data. The dimensions of MARGIN must
match with x.

na.rm Ignore missing values in row or column standardizations.

Details

The function offers following standardization methods for community data:

• total: divide by margin total (default MARGIN = 1).

• max: divide by margin maximum (default MARGIN = 2).

• freq: divide by margin maximum and multiply by the number of non-zero items, so that the
average of non-zero entries is one (Oksanen 1983; default MARGIN = 2).

• normalize: make margin sum of squares equal to one (default MARGIN = 1).

• range: standardize values into range 0 . . . 1 (default MARGIN = 2). If all values are con-
stant, they will be transformed to 0.

• standardize: scale x to zero mean and unit variance (default MARGIN = 2).

• pa: scale x to presence/absence scale (0/1).

• chi.square: divide by row sums and square root of column sums, and adjust for square
root of matrix total (Legendre & Gallagher 2001). When used with the Euclidean distance,
the distances should be similar to the the Chi-square distance used in correspondence analysis.
However, the results from cmdscale would still differ, since CA is a weighted ordination
method (default MARGIN = 1).

• hellinger: square root of method = "total" (Legendre & Gallagher 2001).

Standardization, as contrasted to transformation, means that the entries are transformed relative to
other entries.

All methods have a default margin. MARGIN=1 means rows (sites in a normal data set) and
MARGIN=2 means columns (species in a normal data set).

Command wisconsin is a shortcut to common Wisconsin double standardization where species
(MARGIN=2) are first standardized by maxima (max) and then sites (MARGIN=1) by site totals
(tot).

Most standardization methods will give nonsense results with negative data entries that normally
should not occur in the community data. If there are empty sites or species (or constant with
method = "range"), many standardization will change these into NaN.
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Value

Returns the standardized data frame, and adds an attribute "decostand" giving the name of
applied standardization "method".

Note

Common transformations can be made with standard R functions.

Author(s)

Jari Oksanen

References

Legendre, P. & Gallagher, E.D. (2001) Ecologically meaningful transformations for ordination of
species data. Oecologia 129; 271–280.

Oksanen, J. (1983) Ordination of boreal heath-like vegetation with principal component analysis,
correspondence analysis and multidimensional scaling. Vegetatio 52; 181–189.

Examples

data(varespec)
sptrans <- decostand(varespec, "max")
apply(sptrans, 2, max)
sptrans <- wisconsin(varespec)

## Chi-square: PCA similar but not identical to CA.
## Use wcmdscale for weighted analysis and identical results.
sptrans <- decostand(varespec, "chi.square")
plot(procrustes(rda(sptrans), cca(varespec)))

designdist Design your own Dissimilarities

Description

You can define your own dissimilarities using terms for shared and total quantities, number of rows
and number of columns. The shared and total quantities can be binary, quadratic or minimum
terms. In binary terms, the shared component is number of shared species, and totals are numbers
of species on sites. The quadratic terms are cross-products and sums of squares, and minimum
terms are sums of parallel minima and row totals.

Usage

designdist(x, method = "(A+B-2*J)/(A+B)",
terms = c("binary", "quadratic", "minimum"),
abcd = FALSE, name)
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Arguments

x Input data.

method Equation for your dissimilarities. This can use terms J for shared quantity, A and
B for totals, N for the number of rows (sites) and P for the number of columns
(species). The equation can also contain any R functions that accepts vector
arguments and returns vectors of the same length.

terms How shared and total components are found. For vectors x and y the "quadratic"
terms are J = sum(x*y), A = sum(x^2), B = sum(y^2), and "minimum"
terms are J = sum(pmin(x,y)), A = sum(x) and B = sum(y), and
"binary" terms are either of these after transforming data into binary form
(shared number of species, and number of species for each row).

abcd Use 2x2 contingency table notation for binary data: a is the number of shared
species, b and c are the numbers of species occurring only one of the sites but
not in both, and d is the number of species that occur on neither of the sites.

name The name you want to use for your index. The default is to combine the method
equation and terms argument.

Details

Most popular dissimilarity measures in ecology can be expressed with the help of terms J, A and B,
and some also involve matrix dimensions N and P. Some examples you can define in designdist
are:

A+B-2*J "quadratic" squared Euclidean
A+B-2*J "minimum" Manhattan
(A+B-2*J)/(A+B) "minimum" Bray-Curtis
(A+B-2*J)/(A+B) "binary" Sørensen
(A+B-2*J)/(A+B-J) "binary" Jaccard
(A+B-2*J)/(A+B-J) "minimum" Ružička
(A+B-2*J)/(A+B-J) "quadratic" (dis)similarity ratio
1-J/sqrt(A*B) "binary" Ochiai
1-J/sqrt(A*B) "quadratic" cosine complement
1-phyper(J-1, A, P-A, B) "binary" Raup-Crick

The function designdist can implement most dissimilarity indices in vegdist or elsewhere,
and it can also be used to implement many other indices, amongst them, most of those described
in Legendre & Legendre (1998). It can also be used to implement all indices of beta diversity
described in Koleff et al. (2003), but there also is a specific function betadiver for the purpose.

If you want to implement binary dissimilarities based on the 2x2 contingency table notation, you
can set abcd = TRUE. In this notation a = J, b = A-J, c = B-J, d = P-A-B+J. This
notation is often used instead fo the more more tangible default notation for reasons that are opaque
to me.

Value

designdist returns an object of class dist.
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Note

designdist does not use compiled code, and may be slow or use plenty of memory in large data
sets. It is very easy to make errors when defining a function by hand. If an index is available in a
function using compiled code, it is better to use the canned alternative.

Author(s)

Jari Oksanen

References

Koleff, P., Gaston, K.J. and Lennon, J.J. (2003) Measuring beta diversity for presence–absence data.
J. Animal Ecol. 72, 367–382.

Legendre, P. and Legendre, L. (1998) Numerical Ecology. 2nd English ed. Elsevier

See Also

vegdist, betadiver, dist.

Examples

## Arrhenius dissimilarity: the value of z in the species-area model
## S = c*A^z when combining two sites of equal areas, where S is the
## number of species, A is the area, and c and z are model parameters.
## The A below is not the area (which cancels out), but number of
## species in one of the sites, as defined in designdist().
data(BCI)
dis <- designdist(BCI, "(log(A+B-J)-log(A+B)+log(2))/log(2)")
## This can be used in clustering or ordination...
ordiplot(cmdscale(dis))
## ... or in analysing beta diversity (without gradients)
summary(dis)

deviance.cca Statistics Resembling Deviance and AIC for Constrained Ordination

Description

The functions extract statistics that resemble deviance and AIC from the result of constrained cor-
respondence analysis cca or redundancy analysis rda. These functions are rarely needed directly,
but they are called by step in automatic model building. Actually, cca and rda do not have AIC
and these functions are certainly wrong.
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Usage

## S3 method for class 'cca':
deviance(object, ...)

## S3 method for class 'cca':
extractAIC(fit, scale = 0, k = 2, ...)

Arguments

object the result of a constrained ordination (cca or rda).

fit fitted model from constrained ordination.

scale optional numeric specifying the scale parameter of the model, see scale in
step.

k numeric specifying the "weight" of the equivalent degrees of freedom (=:edf)
part in the AIC formula.

... further arguments.

Details

The functions find statistics that resemble deviance and AIC in constrained ordination. Actually,
constrained ordination methods do not have a log-Likelihood, which means that they cannot have
AIC and deviance. Therefore you should not use these functions, and if you use them, you should
not trust them. If you use these functions, it remains as your responsibility to check the adequacy
of the result.

The deviance of cca is equal to the Chi-square of the residual data matrix after fitting the con-
straints. The deviance of rda is defined as the residual sum of squares. The deviance function of
rda is also used for capscale. Function extractAIC mimics extractAIC.lm in translat-
ing deviance to AIC.

There is little need to call these functions directly. However, they are called implicitly in step
function used in automatic selection of constraining variables. You should check the resulting model
with some other criteria, because the statistics used here are unfounded. In particular, the penalty
k is not properly defined, and the default k = 2 is not justified theoretically. If you have only
continuous covariates, the step function will base the model building on magnitude of eigenvalues,
and the value of k only influences the stopping point (but the variables with the highest eigenvalues
are not necessarily the most significant in permutation tests in anova.cca). If you also have multi-
class factors, the value of k will have a capricious effect in model building. The step function will
pass arguments to add1.cca and drop1.cca, and setting test = "permutation" will
provide permutation tests of each deletion and addition which can help in judging the validity of the
model building.

Value

The deviance functions return “deviance”, and extractAIC returns effective degrees of free-
dom and “AIC”.
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Note

These functions are unfounded and untested and they should not be used directly or implicitly.
Moreover, usual caveats in using step are very valid.

Author(s)

Jari Oksanen

References

Godínez-Domínguez, E. & Freire, J. (2003) Information-theoretic approach for selection of spatial
and temporal models of community organization. Marine Ecology Progress Series 253, 17–24.

See Also

cca, rda, anova.cca, step, extractAIC, add1.cca, drop1.cca.

Examples

# The deviance of correspondence analysis equals Chi-square
data(dune)
data(dune.env)
chisq.test(dune)
deviance(cca(dune))
# Backward elimination from a complete model "dune ~ ."
ord <- cca(dune ~ ., dune.env)
ord
step(ord)
# Stepwise selection (forward from an empty model "dune ~ 1")
step(cca(dune ~ 1, dune.env), scope = formula(ord))
# ANOVA: added variable + the first left out
anova(cca(dune ~ Moisture + Management, dune.env), permut=200,

by = "terms")

distconnected Connectedness of Dissimilarities

Description

Function distconnected finds groups that are connected disregarding dissimilarities that are
at or above a threshold or NA. The function can be used to find groups that can be ordinated to-
gether or transformed by stepacross. Function no.shared returns a logical dissimilarity
object, where TRUE means that sites have no species in common. This is a minimal structure for
distconnected or can be used to set missing values to dissimilarities.

Usage

distconnected(dis, toolong = 1, trace = TRUE)

no.shared(x)



distconnected 51

Arguments

dis Dissimilarity data inheriting from class dist or a an object, such as a matrix,
that can be converted to a dissimilarity matrix. Functions vegdist and dist
are some functions producing suitable dissimilarity data.

toolong Shortest dissimilarity regarded as NA. The function uses a fuzz factor, so that
dissimilarities close to the limit will be made NA, too. If toolong = 0 (or
negative), no dissimilarity is regarded as too long.

trace Summarize results of distconnected

x Community data.

Details

Data sets are disconnected if they have sample plots or groups of sample plots which share no
species with other sites or groups of sites. Such data sets cannot be sensibly ordinated by any
unconstrained method because these subsets cannot be related to each other. For instance, corre-
spondence analysis will polarize these subsets with eigenvalue 1. Neither can such dissimilarities be
transformed with stepacross, because there is no path between all points, and result will contain
NAs. Function distconnectedwill find such subsets in dissimilarity matrices. The function will
return a grouping vector that can be used for sub-setting the data. If data are connected, the result
vector will be all 1s. The connectedness between two points can be defined either by a threshold
toolong or using input dissimilarities with NAs.

Function no.shared returns a dist structure having value TRUE when two sites have nothing in
common, and value FALSE when they have at least one shared species. This is a minimal structure
that can be analysed with distconnected. The function can be used to select dissimilarities
with no shared species in indices which do not have a fixed upper limit.

Function distconnected uses depth-first search (Sedgewick 1990).

Value

Function distconnected returns a vector for observations using integers to identify connected
groups. If the data are connected, values will be all 1. Function no.shared returns an object of
class dist.

Author(s)

Jari Oksanen

References

Sedgewick, R. (1990). Algorithms in C. Addison Wesley.

See Also

vegdist or dist for getting dissimilarities, stepacross for a case where you may need
distconnected, and for connecting points spantree.
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Examples

## There are no disconnected data in vegan, and the following uses an
## extremely low threshold limit for connectedness. This is for
## illustration only, and not a recommended practice.
data(dune)
dis <- vegdist(dune)
gr <- distconnected(dis, toolong=0.4)
# Make sites with no shared species as NA in Manhattan dissimilarities
dis <- vegdist(dune, "manhattan")
is.na(dis) <- no.shared(dune)

diversity Ecological Diversity Indices and Rarefaction Species Richness

Description

Shannon, Simpson, and Fisher diversity indices and rarefied species richness for community ecolo-
gists.

Usage

diversity(x, index = "shannon", MARGIN = 1, base = exp(1))

rarefy(x, sample, se = FALSE, MARGIN = 1)

fisher.alpha(x, MARGIN = 1, se = FALSE, ...)

specnumber(x, MARGIN = 1)

Arguments

x Community data, a matrix-like object.

index Diversity index, one of "shannon", "simpson" or "invsimpson".

MARGIN Margin for which the index is computed.

base The logarithm base used in shannon.

sample Subsample size for rarefying community, either a single value or a vector.

se Estimate standard errors.

... Parameters passed to nlm

Details

Shannon or Shannon–Weaver (or Shannon–Wiener) index is defined as H ′ = −
∑

i pi logb pi,
where pi is the proportional abundance of species i and b is the base of the logarithm. It is most
popular to use natural logarithms, but some argue for base b = 2 (which makes sense, but no real
difference).
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Both variants of Simpson’s index are based on D =
∑

p2
i . Choice simpson returns 1 − D and

invsimpson returns 1/D.

Function rarefy gives the expected species richness in random subsamples of size sample from
the community. The size of sample should be smaller than total community size, but the function
will silently work for larger sample as well and return non-rarefied species richness (and standard
error = 0). If sample is a vector, rarefaction is performed for each sample size separately. Rar-
efaction can be performed only with genuine counts of individuals. The function rarefy is based
on Hurlbert’s (1971) formulation, and the standard errors on Heck et al. (1975).

fisher.alpha estimates the α parameter of Fisher’s logarithmic series (see fisherfit). The
estimation is possible only for genuine counts of individuals. The function can optionally return
standard errors of α. These should be regarded only as rough indicators of the accuracy: the con-
fidence limits of α are strongly non-symmetric and the standard errors cannot be used in Normal
inference.

Function specnumber finds the number of species. With MARGIN = 2, it finds frequencies of
species. The function is extremely simple, and shortcuts are easy in plain R.

Better stories can be told about Simpson’s index than about Shannon’s index, and still grander
narratives about rarefaction (Hurlbert 1971). However, these indices are all very closely related
(Hill 1973), and there is no reason to despise one more than others (but if you are a graduate student,
don’t drag me in, but obey your Professor’s orders). In particular, the exponent of the Shannon index
is linearly related to inverse Simpson (Hill 1973) although the former may be more sensitive to rare
species. Moreover, inverse Simpson is asymptotically equal to rarefied species richness in sample
of two individuals, and Fisher’s α is very similar to inverse Simpson.

Value

A vector of diversity indices or rarefied species richness values. With a single sample and se
= TRUE, function rarefy returns a 2-row matrix with rarefied richness (S) and its standard er-
ror (se). If sample is a vector in rarefy, the function returns a matrix with a column for
each sample size, and if se = TRUE, rarefied richness and its standard error are on consecutive
lines. With option se = TRUE, function fisher.alpha returns a data frame with items for α
(alpha), its approximate standard errors (se), residual degrees of freedom (df.residual), and
the code returned by nlm on the success of estimation.

Author(s)

Jari Oksanen and Bob O’Hara 〈bob.ohara@helsinki.fi〉 (fisher.alpha).

References

Fisher, R.A., Corbet, A.S. & Williams, C.B. (1943). The relation between the number of species
and the number of individuals in a random sample of animal population. Journal of Animal Ecology
12, 42–58.

Heck, K.L., van Belle, G. & Simberloff, D. (1975). Explicit calculation of the rarefaction diversity
measurement and the determination of sufficient sample size. Ecology 56, 1459–1461.

Hurlbert, S.H. (1971). The nonconcept of species diversity: a critique and alternative parameters.
Ecology 52, 577–586.
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See Also

Function renyi for generalized Rényi diversity and Hill numbers.

Examples

data(BCI)
H <- diversity(BCI)
simp <- diversity(BCI, "simpson")
invsimp <- diversity(BCI, "inv")
r.2 <- rarefy(BCI, 2)
alpha <- fisher.alpha(BCI)
pairs(cbind(H, simp, invsimp, r.2, alpha), pch="+", col="blue")
## Species richness (S) and Pielou's evenness (J):
S <- specnumber(BCI) ## rowSums(BCI > 0) does the same...
J <- H/log(S)

dune Vegetation and Environment in Dutch Dune Meadows.

Description

The dune meadow vegetation data, dune, has cover class values of 30 species on 20 sites. The
corresponding environmental data frame dune.env has following entries:

Usage

data(dune)
data(dune.env)

Format

For dune, a data frame of observations of 30 species at 20 sites.

For dune.env, a data frame of 20 observations on the following 5 variables:

A1: a numeric vector of thickness of soil A1 horizon.

Moisture: an ordered factor with levels: 1 < 2 < 4 < 5.

Management: a factor with levels: BF (Biological farming), HF (Hobby farming), NM (Nature
Conservation Management), and SF (Standard Farming).

Use: an ordered factor of land-use with levels: Hayfield < Haypastu < Pasture.

Manure: an ordered factor with levels: 0 < 1 < 2 < 3 < 4.

Source

Jongman, R.H.G, ter Braak, C.J.F & van Tongeren, O.F.R. (1987). Data Analysis in Community
and Landscape Ecology. Pudoc, Wageningen.
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Examples

data(dune)

data(dune.env)

dune.taxon Taxonomic Classification of Dune Meadow Species

Description

Classification table of the species in the dune data set.

Usage

data(dune.taxon)

Format

A data frame with 30 species (rows) classified into five taxonomic levels (columns).

Details

The classification of vascular plants is adapted from AGP (2003), and that of mosses from Hill et
al. (2006).

Note

The data set was made to demonstrate taxondive, and will probably be removed after a better
example is found.

References

AGP [Angiosperm Phylogeny Group] (2003) An update of the Angiosperm Phylogeny Group clas-
sification for the orders and families of flowering plants: AGP II. Bot. J. Linnean Soc. 141: 399–
436.

Hill, M.O et al. (2006) An annotated checklist of the mosses of Europe and Macaronesia. J.
Bryology 28: 198–267.

Examples

data(dune.taxon)



56 envfit

envfit Fits an Environmental Vector or Factor onto an Ordination

Description

The function fits environmental vectors or factors onto an ordination. The projections of points
onto vectors have maximum correlation with corresponding environmental variables, and the factors
show the averages of factor levels.

Usage

## Default S3 method:
envfit(X, P, permutations = 0, strata, choices=c(1,2), ...)
## S3 method for class 'formula':
envfit(formula, data, ...)
## S3 method for class 'envfit':
plot(x, choices = c(1,2), arrow.mul, at = c(0,0), axis = FALSE,

p.max = NULL, col = "blue", add = TRUE, ...)
## S3 method for class 'envfit':
scores(x, display, choices, ...)
vectorfit(X, P, permutations = 0, strata, choices=c(1,2),

display = c("sites", "lc"), w = weights(X), ...)
factorfit(X, P, permutations = 0, strata, choices=c(1,2),

display = c("sites", "lc"), w = weights(X), ...)

Arguments

X Ordination configuration.

P Matrix or vector of environmental variable(s).

permutations Number of permutations for assessing significance of vectors or factors.
formula, data

Model formula and data.

x A result object from envfit.

choices Axes to plotted.

arrow.mul Multiplier for vector lengths. The arrows are automatically scaled similarly as
in plot.cca if this is not given and add = TRUE.

at The origin of fitted arrows in the plot. If you plot arrows in other places then
origin, you probably have to specify arrrow.mul.

axis Plot axis showing the scaling of fitted arrows.

p.max Maximum estimated P value for displayed variables. You must calculate P
values with setting permutations to use this option.

col Colour in plotting.

add Results added to an existing ordination plot.
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strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

display In fitting functions these are ordinary site scores or linear combination scores
("lc") in constrained ordination (cca, rda, capscale). In scores func-
tion they are either "vectors" or "factors" (with synonyms "bp" or
"cn", resp.).

w Weights used in fitting (concerns mainly cca and decorana results which
have nonconstant weights).

... Parameters passed to scores.

Details

Function envfit finds vectors or factor averages of environmental variables. Function plot.envfit
adds these in an ordination diagram. If X is a data.frame, envfit uses factorfit for
factor variables and vectorfit for other variables. If X is a matrix or a vector, envfit uses
only vectorfit. Alternatively, the model can be defined a simplified model formula, where
the left hand side must be an ordination result object or a matrix of ordination scores, and right
hand side lists the environmental variables. The formula interface can be used for easier selection
and/or transformation of environmental variables. Only the main effects will be analysed even if
interaction terms were defined in the formula.

Functions vectorfit and factorfit can be called directly. Function vectorfit finds di-
rections in the ordination space towards which the environmental vectors change most rapidly and
to which they have maximal correlations with the ordination configuration. Function factorfit
finds averages of ordination scores for factor levels. Function factorfit treats ordered and un-
ordered factors similarly.

If permutations> 0, the ‘significance’ of fitted vectors or factors is assessed using permutation
of environmental variables. The goodness of fit statistic is squared correlation coefficient (r2). For
factors this is defined as r2 = 1− ssw/sst, where ssw and sst are within-group and total sums of
squares.

User can supply a vector of prior weights w. If the ordination object has weights, these will be used.
In practise this means that the row totals are used as weights with cca or decorana results. If
you do not like this, but want to give equal weights to all sites, you should set w = NULL. The
weighted fitting gives similar results to biplot arrows and class centroids in cca. For complete sim-
ilarity between fitted vectors and biplot arrows, you should set display = "lc" (and possibly
scaling = 2).

The results can be accessed with scores.envfit function which returns either the fitted vectors
scaled by correlation coefficient or the centroids of the fitted environmental variables.

Value

Functions vectorfit and factorfit return lists of classes vectorfit and factorfit
which have a print method. The result object have the following items:

arrows Arrow endpoints from vectorfit. The arrows are scaled to unit length.

centroids Class centroids from factorfit.

r Goodness of fit statistic: Squared correlation coefficient
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permutations Number of permutations.

pvals Empirical P-values for each variable.

Function envfit returns a list of class envfit with results of vectorfit and envfit as
items.

Function plot.envfit scales the vectors by correlation.

Note

Fitted vectors have become the method of choice in displaying environmental variables in ordina-
tion. Indeed, they are the optimal way of presenting environmental variables in Constrained Corre-
spondence Analysis cca, since there they are the linear constraints. In unconstrained ordination the
relation between external variables and ordination configuration may be less linear, and therefore
other methods than arrows may be more useful. The simplest is to adjust the plotting symbol sizes
(cex, symbols) by environmental variables. Fancier methods involve smoothing and regression
methods that abound in R, and ordisurf provides a wrapper for some.

Author(s)

Jari Oksanen. The permutation test derives from the code suggested by Michael Scroggie.

See Also

A better alternative to vectors may be ordisurf.

Examples

data(varespec)
data(varechem)
library(MASS)
ord <- metaMDS(varespec)
(fit <- envfit(ord, varechem, perm = 1000))
scores(fit, "vectors")
plot(ord)
plot(fit)
plot(fit, p.max = 0.05, col = "red")
## Adding fitted arrows to CCA. We use "lc" scores, and hope
## that arrows are scaled similarly in cca and envfit plots
ord <- cca(varespec ~ Al + P + K, varechem)
plot(ord, type="p")
fit <- envfit(ord, varechem, perm = 1000, display = "lc")
plot(fit, p.max = 0.05, col = "red")
## Class variables, formula interface, and displaying the
## inter-class variability with `ordispider'
data(dune)
data(dune.env)
attach(dune.env)
ord <- cca(dune)
fit <- envfit(ord ~ Moisture + A1, dune.env)
plot(ord, type = "n")
ordispider(ord, Moisture, col="skyblue")
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points(ord, display = "sites", col = as.numeric(Moisture), pch=16)
plot(fit, cex=1.2, axis=TRUE)

fisherfit Fit Fisher’s Logseries and Preston’s Lognormal Model to Abundance
Data

Description

Function fisherfit fits Fisher’s logseries to abundance data. Function prestonfit groups
species frequencies into doubling octave classes and fits Preston’s lognormal model, and function
prestondistr fits the truncated lognormal model without pooling the data into octaves.

Usage

fisherfit(x, ...)
## S3 method for class 'fisherfit':
confint(object, parm, level = 0.95, ...)
## S3 method for class 'fisherfit':
profile(fitted, alpha = 0.01, maxsteps = 20, del = zmax/5,

...)
prestonfit(x, ...)
prestondistr(x, truncate = -1, ...)
## S3 method for class 'prestonfit':
plot(x, xlab = "Frequency", ylab = "Species", bar.col = "skyblue",

line.col = "red", lwd = 2, ...)
## S3 method for class 'prestonfit':
lines(x, line.col = "red", lwd = 2, ...)
veiledspec(x, ...)
as.fisher(x, ...)

Arguments

x Community data vector for fitting functions or their result object for plot func-
tions.

object, fitted
Fitted model.

parm Not used.

level The confidence level required.

alpha The extend of profiling as significance.

maxsteps Maximum number of steps in profiling.

del Step length.

truncate Truncation point for log-Normal model, in log2 units. Default value −1 cor-
responds to the left border of zero Octave. The choice strongly influences the
fitting results.
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xlab, ylab Labels for x and y axes.

bar.col Colour of data bars.

line.col Colour of fitted line.

lwd Width of fitted line.

... Other parameters passed to functions.

Details

In Fisher’s logarithmic series the expected number of species f with n observed individuals is
fn = αxn/n (Fisher et al. 1943). The estimation follows Kempton & Taylor (1974) and uses
function nlm. The estimation is possible only for genuine counts of individuals. The parameter α
is used as a diversity index, and α and its standard error can be estimated with a separate function
fisher.alpha. The parameter x is taken as a nuisance parameter which is not estimated sep-
arately but taken to be n/(n + α). Helper function as.fisher transforms abundance data into
Fisher frequency table.

Function fisherfit estimates the standard error of α. However, the confidence limits cannot
be directly estimated from the standard errors, but you should use function confint based on
profile likelihood. Function confint uses function confint.glm of the MASS package, us-
ing profile.fisherfit for the profile likelihood. Function profile.fisherfit follows
profile.glm and finds the τ parameter or signed square root of two times log-Likelihood profile.
The profile can be inspected with a plot function which shows the τ and a dotted line correspond-
ing to the Normal assumption: if standard errors can be directly used in Normal inference these two
lines are similar.

Preston (1948) was not satisfied with Fisher’s model which seemed to imply infinite species rich-
ness, and postulated that rare species is a diminishing class and most species are in the middle of
frequency scale. This was achieved by collapsing higher frequency classes into wider and wider
“octaves” of doubling class limits: 1, 2, 3–4, 5–8, 9–16 etc. occurrences. Any logseries data will
look like lognormal when plotted this way. The expected frequency f at abundance octave o is de-
fined by fo = S0 exp(−(log2(o)−µ)2/2/σ2), where µ is the location of the mode and σ the width,
both in log2 scale, and S0 is the expected number of species at mode. The lognormal model is usu-
ally truncated on the left so that some rare species are not observed. Function prestonfit fits the
truncated lognormal model as a second degree log-polynomial to the octave pooled data using Pois-
son error. Function prestondistr fits left-truncated Normal distribution to log2 transformed
non-pooled observations with direct maximization of log-likelihood. Function prestondistr
is modelled after function fitdistr which can be used for alternative distribution models. The
functions have common print, plot and lines methods. The lines function adds the fitted
curve to the octave range with line segments showing the location of the mode and the width (sd)
of the response.

The total extrapolated richness from a fitted Preston model can be found with function veiledspec.
The function accepts results both from prestonfit and from prestondistr. If veiledspec
is called with a species count vector, it will internally use prestonfit. Function specpool
provides alternative ways of estimating the number of unseen species. In fact, Preston’s lognormal
model seems to be truncated at both ends, and this may be the main reason why its result differ from
lognormal models fitted in Rank–Abundance diagrams with functions rad.lognormal.
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Value

The function prestonfit returns an object with fitted coefficients, and with observed
(freq) and fitted (fitted) frequencies, and a string describing the fitting method. Function
prestondistr omits the entry fitted. The function fisherfit returns the result of nlm,
where item estimate is α. The result object is amended with the following items:

df.residuals Residual degrees of freedom.

nuisance Parameter x.

fisher Observed data from as.fisher.

Note

It seems that Preston regarded frequencies 1, 2, 4, etc.. as “tied” between octaves. This means
that only half of the species with frequency 1 were shown in the lowest octave, and the rest were
transferred to the second octave. Half of the species from the second octave were transferred to
the higher one as well, but this is usually not as large number of species. This practise makes data
look more lognormal by reducing the usually high lowest octaves, but is too unfair to be followed.
Therefore the octaves used in this function include the upper limit. If you do not accept this, you
must change the function yourself. Williamson & Gaston (2005) discuss alternative definitions in
detail, and they should be consulted for a critical review of log-Normal model.

Author(s)

Bob O’Hara 〈bob.ohara@helsinki.fi〉 (fisherfit) and Jari Oksanen.

References

Fisher, R.A., Corbet, A.S. & Williams, C.B. (1943). The relation between the number of species
and the number of individuals in a random sample of animal population. Journal of Animal Ecology
12: 42–58.

Kempton, R.A. & Taylor, L.R. (1974). Log-series and log-normal parameters as diversity discrimi-
nators for Lepidoptera. Journal of Animal Ecology 43: 381–399.

Preston, F.W. (1948) The commonness and rarity of species. Ecology 29, 254–283.

Williamson, M. & Gaston, K.J. (2005). The lognormal distribution is not an appropriate null hy-
pothesis for the species–abundance distribution. Journal of Animal Ecology 74, 409–422.

See Also

diversity, fisher.alpha, radfit, specpool. Function fitdistr of MASS package
was used as the model for prestondistr. Function density can be used for smoothed “non-
parametric” estimation of responses, and qqplot is an alternative, traditional and more effective
way of studying concordance of observed abundances to any distribution model.

Examples

data(BCI)
mod <- fisherfit(BCI[5,])
mod
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plot(profile(mod))
confint(mod)
# prestonfit seems to need large samples
mod.oct <- prestonfit(colSums(BCI))
mod.ll <- prestondistr(colSums(BCI))
mod.oct
mod.ll
plot(mod.oct)
lines(mod.ll, line.col="blue3") # Different
## Smoothed density
den <- density(log2(colSums(BCI)))
lines(den$x, ncol(BCI)*den$y, lwd=2) # Fairly similar to mod.oct
## Extrapolated richness
veiledspec(mod.oct)
veiledspec(mod.ll)

goodness.cca Diagnostic Tools for [Constrained] Ordination (CCA, RDA, DCA, CA,
PCA)

Description

Functions goodness and inertcomp can be used to assess the goodness of fit for individual
sites or species. Function vif.cca and alias.cca can be used to analyse linear dependencies
among constraints and conditions. In addition, there are some other diagnostic tools (see ’Details’).

Usage

## S3 method for class 'cca':
goodness(object, display = c("species", "sites"), choices,

model = c("CCA", "CA"), statistic = c("explained", "distance"),
summarize = FALSE, ...)

inertcomp(object, display = c("species", "sites"),
statistic = c("explained", "distance"), proportional = FALSE)

spenvcor(object)
intersetcor(object)
vif.cca(object)
## S3 method for class 'cca':
alias(object, ...)

Arguments

object A result object from cca, rda, capscale or decorana.

display Display "species" or "sites".

choices Axes shown. Default is to show all axes of the "model".

model Show constrained ("CCA") or unconstrained ("CA") results.



goodness.cca 63

statistic Stastic used: "explained" gives the cumulative percentage accounted for,
"distance" shows the residual distances. Distances are not available for
sites in constrained or partial analyses.

summarize Show only the accumulated total.

proportional Give the inertia components as proportional for the corresponding total.

... Other parameters to the functions.

Details

Function goodness gives the diagnostic statistics for species or sites. The alternative statistics
are the cumulative proportion of inertia accounted for by the axes, and the residual distance left
unaccounted for. The conditional (“partialled out”) constraints are always regarded as explained
and included in the statistics.

Function inertcomp decomposes the inertia into partial, constrained and unconstrained com-
ponents for each site or species. Instead of inertia, the function can give the total dispersion or
distances from the centroid for each component.

Function spenvcor finds the so-called “species – environment correlation” or (weighted) correla-
tion of weighted average scores and linear combination scores. This is a bad measure of goodness
of ordination, because it is sensitive to extreme scores (like correlations are), and very sensitive to
overfitting or using too many constraints. Better models often have poorer correlations. Function
ordispider can show the same graphically.

Function intersetcor finds the so-called “interset correlation” or (weighted) correlation of
weighted averages scores and constraints. The defined contrasts are used for factor variables. This
is a bad measure since it is a correlation. Further, it focuses on correlations between single contrasts
and single axes instead of looking at the multivariate relationship. Fitted vectors (envfit) provide
a better alternative. Biplot scores (see scores.cca) are a multivariate alternative for (weighted)
correlation between linear combination scores and constraints.

Function vif.cca gives the variance inflation factors for each constraint or contrast in factor
constraints. In partial ordination, conditioning variables are analysed together with constraints.
Variance inflation is a diagnostic tool to identify useless constraints. A common rule is that values
over 10 indicate redundant constraints. If later constraints are complete linear combinations of
conditions or previous constraints, they will be completely removed from the estimation, and no
biplot scores or centroids are calculated for these aliased constraints. A note will be printed with
default output if there are aliased constraints. Function alias will give the linear coefficients
defining the aliased constraints.

Value

The functions return matrices or vectors as is appropriate.

Note

It is a common practise to use goodness statistics to remove species from ordination plots, but
this may not be a good idea, as the total inertia is not a meaningful concept in cca, in particular for
rare species.
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Function vif is defined as generic in package car (vif), but if you have not loaded that package
you must specify the call as vif.cca. Variance inflation factor is useful diagnostic tool for de-
tecting nearly collinear constraints, but these are not a problem with algorithm used in this package
to fit a constrained ordination.

Author(s)

Jari Oksanen. The vif.cca relies heavily on the code by W. N. Venables. alias.cca is a
simplified version of alias.lm.

References

Greenacre, M. J. (1984). Theory and applications of correspondence analysis. Academic Press,
London.

Gross, J. (2003). Variance inflation factors. R News 3(1), 13–15.

See Also

cca, rda, capscale, decorana, vif.

Examples

data(dune)
data(dune.env)
mod <- cca(dune ~ A1 + Management + Condition(Moisture), data=dune.env)
goodness(mod)
goodness(mod, summ = TRUE)
# Inertia components
inertcomp(mod, prop = TRUE)
inertcomp(mod, stat="d")
# vif.cca
vif.cca(mod)
# Aliased constraints
mod <- cca(dune ~ ., dune.env)
mod
vif.cca(mod)
alias(mod)
with(dune.env, table(Management, Manure))
# The standard correlations (not recommended)
spenvcor(mod)
intersetcor(mod)

goodness.metaMDS Goodness of Fit and Shepard Plot for Nonmetric Multidimensional
Scaling

Description

Function goodness.metaMDS find goodness of fit measure for points in nonmetric multidimen-
sional scaling, and function stressplot makes a Shepard diagram.
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Usage

## S3 method for class 'metaMDS':
goodness(object, dis, ...)
stressplot(object, dis, pch, p.col = "blue", l.col = "red", lwd = 2,

...)

Arguments

object A result object from metaMDS or isoMDS.

dis Dissimilarities. Normally this should not used with metaMDS, but should be
always used with isoMDS.

pch Plotting character for points. Default is dependent on the number of points.

p.col, l.col Point and line colours.

lwd Line width.

... Other parameters to functions, e.g. graphical parameters.

Details

Function goodness.metaMDS finds a goodness of fit statistic for observations (points). This is
defined so that sum of squared values is equal to squared stress. Large values indicate poor fit.

Function stressplot is a wrapper to Shepard function in MASS package. It plots ordination
distances against original dissimilarities, and draws a step line of the nonlinear fit. In addition, it
adds to the graph two correlation-like statistics on the goodness of fit. The nonmetric fit is based
on stress S and defined as

√
1− S2. The “linear fit” is the correlation between fitted values and

ordination distances.

Both functions can be used both with metaMDS and with isoMDS. With metaMDS, the func-
tions try to reconstruct the dissimilarities using metaMDSredist, and dissimilarities should not
be given. With isoMDS the dissimilarities must be given. In either case, the functions inspect that
dissimilarities are consistent with current ordination, and refuse to analyse inconsistent dissimilari-
ties. Function goodness.metaMDS is generic in vegan, but you must spell its name completely
with isoMDS which has no class.

Value

Function goodness returns a vector of values. Function stressplot returns invisibly a Shepard
object.

Author(s)

Jari Oksanen.

See Also

metaMDS, isoMDS, Shepard.
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Examples

data(varespec)
mod <- metaMDS(varespec)
stressplot(mod)
gof <- goodness(mod)
gof
plot(mod, display = "sites", type = "n")
points(mod, display = "sites", cex = gof/2)

humpfit No-interaction Model for Hump-backed Species Richness vs. Biomass

Description

Function humpfit fits a no-interaction model for species richness vs. biomass data (Oksanen
1996). This is a null model that produces a hump-backed response as an artifact of plant size and
density.

Usage

humpfit(mass, spno, family = poisson, start)
## S3 method for class 'humpfit':
summary(object, ...)
## S3 method for class 'humpfit':
predict(object, newdata = NULL, ...)
## S3 method for class 'humpfit':
plot(x, xlab = "Biomass", ylab = "Species Richness", lwd = 2,

l.col = "blue", p.col = 1, type = "b", ...)
## S3 method for class 'humpfit':
points(x, ...)
## S3 method for class 'humpfit':
lines(x, segments=101, ...)
## S3 method for class 'humpfit':
profile(fitted, parm = 1:3, alpha = 0.01, maxsteps = 20, del = zmax/5, ...)

Arguments

mass Biomass.

spno Species richness.

start Vector of starting values for all three parameters.

family Family of error distribution. Any family can be used, but the link function is
always Fisher’s diversity model, and other link functions are silently ignored.

x, object, fitted
Result object of humpfit

newdata Values of mass used in predict. The original data values are used if missing.
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xlab,ylab Axis labels in plot
lwd Line width
l.col, p.col Line and point colour in plot
type Type of plot: "p" for observed points, "l" for fitted lines, "b" for both, and

"n" for only setting axes.
segments Number of segments used for fitted lines.
parm Profiled parameters.
alpha, maxsteps, del

Parameters for profiling range and density.
... Other parameters to functions.

Details

The no-interaction model assumes that the humped species richness pattern along biomass gradient
is an artifact of plant size and density (Oksanen 1996). For low-biomass sites, it assumes that
plants have a fixed size, and biomass increases with increasing number of plants. When the sites
becomes crowded, the number of plants and species richness reaches the maximum. Higher biomass
is reached by increasing the plant size, and then the number of plants and species richness will
decrease. At biomasses below the hump, plant number and biomass are linearly related, and above
the hump, plant number is proportional to inverse squared biomass. The number of plants is related
to the number of species by the relationship (link function) from Fisher’s log-series (Fisher et al.
1943).
The parameters of the model are:

1. hump: the location of the hump on the biomass gradient.
2. scale: an arbitrary multiplier to translate the biomass into virtual number of plants.
3. alpha: Fisher’s α to translate the virtual number of plants into number of species.

The parameters scale and alpha are intermingled and this function should not be used for es-
timating Fisher’s α. Probably the only meaningful and interesting parameter is the location of the
hump.
Function may be very difficult to fit and easily gets trapped into local solutions, or fails with non-
Poisson families, and function profile should be used to inspect the fitted models. If you have
loaded packageMASS, you can use functions plot.profile.glm, pairs.profile.glm
for graphical inspection of the profiles, and confint.profile.glm for the profile based con-
fidence intervals.
The original model intended to show that there is no need to speculate about ‘competition’ and
‘stress’ (Al-Mufti et al. 1977), but humped response can be produced as an artifact of using fixed
plot size for varying plant sizes and densities.

Value

The function returns an object of class "humpfit" inheriting from class "glm". The result
object has specific summary, predict, plot, points and lines methods. In addition, it
can be accessed by the following methods for glm objects: AIC, extractAIC, deviance,
coef, residuals.glm (except type = "partial"), fitted, and perhaps some others. In
addition, function ellipse.glm (package ellipse) can be used to draw approximate confidence
ellipses for pairs of parameters, if the normal assumptions look appropriate.
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Note

The function is a replacement for the original GLIM4 function at the archive of Journal of Ecol-
ogy. There the function was represented as a mixed glm with one non-linear parameter (hump)
and a special one-parameter link function from Fisher’s log-series. The current function directly
applies non-linear maximum likelihood fitting using function nlm. Some expected problems with
the current approach are:

• The function is discontinuous at hump and may be difficult to optimize in some cases (the
lines will always join, but the derivative jumps).

• The function does not try very hard to find sensible starting values and can fail. The user may
supply starting values in argument start if fitting fails.

• The estimation is unconstrained, but both scale and alpha should always be positive. Per-
haps they should be fitted as logarithmic. Fitting Gamma family models might become
easier, too.

Author(s)

Jari Oksanen

References

Al-Mufti, M.M., Sykes, C.L, Furness, S.B., Grime, J.P & Band, S.R. (1977) A quantitative analysis
of shoot phenology and dominance in herbaceous vegetation. Journal of Ecology 65,759–791.

Fisher, R.A., Corbet, A.S. & Williams, C.B. (1943) The relation between the number of species
and the number of individuals in a random sample of of an animal population. Journal of Animal
Ecology 12, 42–58.

Oksanen, J. (1996) Is the humped relationship between species richness and biomass an artefact
due to plot size? Journal of Ecology 84, 293–295.

See Also

fisherfit, profile.glm, confint.glm.

Examples

##
## Data approximated from Al-Mufti et al. (1977)
##
mass <- c(140,230,310,310,400,510,610,670,860,900,1050,1160,1900,2480)
spno <- c(1, 4, 3, 9, 18, 30, 20, 14, 3, 2, 3, 2, 5, 2)
sol <- humpfit(mass, spno)
summary(sol) # Almost infinite alpha...
plot(sol)
# confint is in MASS, and impicitly calls profile.humpfit.
# Parameter 3 (alpha) is too extreme for profile and confint, and we
# must use only "hump" and "scale".
library(MASS)
plot(profile(sol, parm=1:2))
confint(sol, parm=c(1,2))
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isomap Isometric Feature Mapping Ordination

Description

The function performs isometric feature mapping which consists of three simple steps: (1) retain
only some of the shortest dissimilarities among objects, (2) estimate all dissimilarites as shortest
path distances, and (3) perform metric scaling (Tenenbaum et al. 2000).

Usage

isomap(dist, ndim=10, ...)
isomapdist(dist, epsilon, k, path = "shortest", fragmentedOK =FALSE, ...)
## S3 method for class 'isomap':
summary(object, axes = 4, ...)
## S3 method for class 'isomap':
plot(x, net = TRUE, n.col = "gray", ...)
rgl.isomap(x, web = "white", ...)

Arguments

dist Dissimilariies.

ndim Number of axes in metric scaling (argument k in cmdscale).

epsilon Shortest dissimilarity retained.

k Number of shortest dissimilariteis retained for a point. If both epsilon and k
are given, epsilon will be used.

path Method used in stepacross to estimate the shortest path, with alternatives
"shortest" and "extended".

fragmentedOK What to do if dissimilarity matrix is fragmented. If TRUE, analyse the largest
connected group, otherwise stop with error.

x, object An isomap result object.

axes Number of axes displayed.

net Draw the net of retained dissimilarities.

n.col Colour of drawn net segments.

web Colour of the web in rgl graphics.

... Other parameters passed to functions.

Details

The function isomap first calls function isomapdist for dissimilarity transformation, and then
performs metric scaling for the result. All arguments to isomap are passed to isomapdist. The
functions are separate so that the isompadist transformation could be easily used with other
functions than simple linear mapping of cmdscale.
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Function isomapdist retains either dissimilarities equal or shorter to epsilon, or if epsilon
is not given, at least k shortest dissimilarities for a point. Then a complete dissimilarity matrix is
reconstructed using stepacross using either flexible shortest paths or extended dissimilarities
(for details, see stepacross).

De’ath (1999) actually published essentially the same method before Tenenbaum et al. (2000), and
De’ath’s function is available in xdiss in package mvpart. The differences are that isomap
introduced the k criterion, whereas De’ath only used epsilon criterion. In practice, De’ath also
retains higher proportion of dissimilarities than typical isomap.

In addition to the standard plot function, function rgl.isomap can make dynamic 3D plots that
can be rotated on the screen. The functions is based on ordirgl, but it adds the connecting lines.
The function passes extra arguments to scores and ordirgl functions so that you can select
axes, or define colours and sizes of points.

Value

Function isomapdist returns a dissimilarity object similar to dist. Function isomap returns
an object of class isomapwith plot and summarymethods. The plot function returns invisibly
an object of class ordiplot. Function scores can extract the ordination scores.

Note

Tenenbaum et al. (2000) justify isomap as a tool of unfolding a manifold (e.g. a ’Swiss Roll’).
Even with a manifold structure, the sampling must be even and dense so that dissimilarities along a
manifold are shorter than across the folds. If data do not have such a manifold structure, the results
are very sensitive to parameter values.

Author(s)

Jari Oksanen

References

De’ath, G. (1999) Extended dissimilarity: a method of robust estimation of ecological distances
from high beta diversity data. Plant Ecology 144, 191–199

Tenenbaum, J.B., de Silva, V. & Langford, J.C. (2000) A global network framework for nonlinear
dimensionality reduction. Science 290, 2319–2323.

See Also

The underlying functions that do the proper work are stepacross, distconnected and
cmdscale. Package mvpart provides a parallel (but a bit different) implementation (xdiss).
Moreover, vegan function metaMDS may trigger stepacross transformation, but usually only
for longest dissimilarities. The plotmethod of vegan minimum spanning tree function (spantree)
has even more extreme way of isomapping things.
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Examples

## The following examples also overlay minimum spanning tree to
## the graphics in red.
op <- par(mar=c(4,4,1,1)+0.2, mfrow=c(2,2))
data(BCI)
dis <- vegdist(BCI)
tr <- spantree(dis)
pl <- ordiplot(cmdscale(dis), main="cmdscale")
lines(tr, pl, col="red")
ord <- isomap(dis, k=3)
ord
pl <- plot(ord, main="isomap k=3")
lines(tr, pl, col="red")
pl <- plot(isomap(dis, k=5), main="isomap k=5")
lines(tr, pl, col="red")
pl <- plot(isomap(dis, epsilon=0.45), main="isomap epsilon=0.45")
lines(tr, pl, col="red")
par(op)
## The following command requires user interaction
## Not run:
rgl.isomap(ord, size=4, color="hotpink")
## End(Not run)

linestack Plots One-dimensional Diagrams without Overwriting Labels

Description

Function linestack plots vertical one-dimensional plots for numeric vectors. The plots are
always labelled, but the labels are moved vertically to avoid overwriting.

Usage

linestack(x, labels, cex = 0.8, side = "right", hoff = 2, air = 1.1,
at = 0, add = FALSE, axis = FALSE, ...)

Arguments

x Numeric vector to be plotted.
labels Text labels used instead of default (names of x).
cex Size of the labels.
side Put labels to the "right" or "left" of the axis.
hoff Distance from the vertical axis to the label in units of the width of letter “m”.
air Multiplier to string height to leave empty space between labels.
at Position of plot in horizontal axis.
add Add to an existing plot.
axis Add axis to the plot.
... Other graphical parameters to labels.
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Value

The function returns invisibly the shifted positions of labels in user coordinates.

Note

The function always draws labelled diagrams. If you want to have unlabelled diagrams, you can
use, e.g., plot, stripchart or rug.

Author(s)

Jari Oksanen

Examples

## First DCA axis
data(dune)
ord <- decorana(dune)
linestack(scores(ord, choices=1, display="sp"))
linestack(scores(ord, choices=1, display="si"), side="left", add=TRUE)
title(main="DCA axis 1")

make.cepnames Abbreviates a Botanical or Zoological Latin Name into an Eight-
character Name

Description

A standard CEP name has four first letters of the generic name and four first letters of the specific
epithet of a Latin name. The last epithet, that may be a subspecific name, is used in the current func-
tion. If the name has only one component, it is abbreaviated to eight characters (see abbreviate).
The returned names are made unique with function make.unique which adds numbers to the end
of CEP names if needed.

Usage

make.cepnames(names)

Arguments

names The names to be formatted into CEP names.

Details

Cornell Ecology Programs (CEP) used eight-letter abbreviations for species and site names. In
species, the names were formed by taking four first letters of the generic name and four first letters
of the specific or subspecific epithet. The CEP names were originally used, because old FORTRAN
IV did not have CHARACTER data type, but text had to be stored in numerical variables, which in
popular computers could hold four characters. In modern times, there is no reason for this limitation,
but ecologists are used to these names, and they may be practical to avoid congestion in ordination
plots.



mantel 73

Value

Function returns CEP names.

Note

The function is simpleminded and rigid. You must write a better one if you need.

Author(s)

Jari Oksanen

See Also

make.names, strsplit, substring, paste, abbreviate.

Examples

make.cepnames(c("Aa maderoi", "Poa sp.", "Cladina rangiferina",
"Cladonia cornuta", "Cladonia cornuta var. groenlandica",
"Cladonia rangiformis", "Bryoerythrophyllum"))
data(BCI)
colnames(BCI) <- make.cepnames(colnames(BCI))

mantel Mantel and Partial Mantel Tests for Dissimilarity Matrices

Description

Function mantel finds the Mantel statistic as a matrix correlation between two dissimilarity matri-
ces, and function mantel.partial finds the partial Mantel statistic as the partial matrix correla-
tion between three dissimilarity matricies. The significance of the statistic is evaluated by permuting
rows and columns of the first dissimilarity matrix.

Usage

mantel(xdis, ydis, method="pearson", permutations=1000, strata)
mantel.partial(xdis, ydis, zdis, method = "pearson", permutations = 1000,

strata)

Arguments
xdis, ydis, zdis

Dissimilarity matrices or a dist objects.

method Correlation method, as accepted by cor: "pearson", "spearman" or "kendall".

permutations Number of permutations in assessing significance.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.
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Details

Mantel statistic is simply a correlation between entries of two dissimilarity matrices (some use cross
products, but these are linearly related). However, the significance cannot be directly assessed,
because there are N(N − 1)/2 entries for just N observations. Mantel developed asymptotic test,
but here we use permutations of N rows and columns of dissimilarity matrix.

Partial Mantel statistic uses partial correlation conditioned on the third matrix. Only the first matrix
is permuted so that the correlation structure between second and first matrices is kept constant. Al-
though mantel.partial silently accepts other methods than "pearson", partial correlations
will probably be wrong with other methods.

The function uses cor, which should accept alternatives pearson for product moment correla-
tions and spearman or kendall for rank correlations.

Value

The function returns a list of class mantel with following components:

Call Function call.

method Correlation method used, as returned by cor.test.

statistic The Mantel statistic.

signif Empirical significance level from permutations.

perm A vector of permuted values.

permutations Number of permutations.

Note

Legendre & Legendre (1998) say that partial Mantel correlations often are difficult to interpet.

Author(s)

Jari Oksanen

References

The test is due to Mantel, of course, but the current implementation is based on Legendre and
Legendre.

Legendre, P. and Legendre, L. (1998) Numerical Ecology. 2nd English Edition. Elsevier.

See Also

cor for correlation coefficients, protest (“Procrustes test”) for an alternative with ordination
diagrams, anosim and mrpp for comparing dissimilarities against classification. For dissimilarity
matrices, see vegdist or dist. See bioenv for selecting environmental variables.
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Examples

## Is vegetation related to environment?
data(varespec)
data(varechem)
veg.dist <- vegdist(varespec) # Bray-Curtis
env.dist <- vegdist(scale(varechem), "euclid")
mantel(veg.dist, env.dist)
mantel(veg.dist, env.dist, method="spear")

metaMDS Nonmetric Multidimensional Scaling with Stable Solution from Ran-
dom Starts, Axis Scaling and Species Scores

Description

Function metaMDS uses isoMDS to perform Nonmetric Multidimensional Scaling (NMDS), but
tries to find a stable solution using several random starts (function initMDS). In addition, it
standardizes the scaling in the result, so that the configurations are easier to interpret (function
postMDS), and adds species scores to the site ordination (function wascores).

Usage

metaMDS(comm, distance = "bray", k = 2, trymax = 20, autotransform =TRUE,
noshare = 0.1, wascores = TRUE, expand = TRUE, trace = 1,
plot = FALSE, previous.best, old.wa = FALSE, ...)

## S3 method for class 'metaMDS':
plot(x, display = c("sites", "species"), choices = c(1, 2),

type = "p", shrink = FALSE, ...)
## S3 method for class 'metaMDS':
points(x, display = c("sites", "species"),

choices = c(1,2), shrink = FALSE, select, ...)
## S3 method for class 'metaMDS':
text(x, display = c("sites", "species"), labels,

choices = c(1,2), shrink = FALSE, select, ...)
## S3 method for class 'metaMDS':
scores(x, display = c("sites", "species"), shrink = FALSE,

choices, ...)
metaMDSdist(comm, distance = "bray", autotransform = TRUE, noshare = 0.1,

trace = 1, commname, zerodist = "fail", distfun = vegdist, ...)
metaMDSiter(dist, k = 2, trymax = 20, trace = 1, plot = FALSE, previous.best,

...)
initMDS(x, k=2)
postMDS(X, dist, pc=TRUE, center=TRUE, halfchange=TRUE, threshold=0.8,

nthreshold=10, plot=FALSE, ...)
metaMDSredist(object, ...)



76 metaMDS

Arguments

comm Community data.

distance Dissimilarity index used in vegdist.

k Number of dimensions in isoMDS.

trymax Maximum number of random starts in search of stable solution.
autotransform

Use simple heuristics for possible data transformation (see below).

noshare Proportion of site pairs with no shared species to trigger stepacross to find
flexible shortest paths among dissimilarities.

wascores Calculate species scores using function wascores.

expand Expand weighted averages of species in wascores.

trace Trace the function; trace = 2 or higher will be more voluminous.

plot Graphical tracing: plot interim results. You may want to set par(ask =
TRUE) with this option.

previous.best
Start searches from a previous solutions. Otherwise use isoMDS default for the
starting solution.

old.wa Use the old way of calculating WA scores for species: in vegan versions 1.12-5
and 1.11-2 WA scores were based on untransformed data even when data were
transformed in analysis, but since then the similar transformation will be used
in WA scores as in ordination.

x Dissimilarity matrix for isoMDS or plot object.

choices Axes shown.

type Plot type: "p" for points, "t" for text, and "n" for axes only.

display Display "sites" or "species".

shrink Shrink back species scores if they were expanded originally.

labels Optional test to be used instead of row names.

select Items to be displayed. This can either be a logical vector which is TRUE for
displayed items or a vector of indices of displayed items.

X Configuration from multidimensional scaling.

commname The name of comm: should not be given if the function is called directly.

zerodist Handling of zero dissimilarities: either "fail" or "add" a small positive
value, or "ignore".

distfun Dissimilarity function. Any function returning a dist object and accepting
argument method can be used (but some extra arguments may cause name
conflicts).

dist Dissimilarity matrix used in multidimensional scaling.

pc Rotate to principal components.

center Centre the configuration.

halfchange Scale axes to half-change units.
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threshold Largest dissimilarity used in half-change scaling.

nthreshold Minimum number of points in half-change scaling.

object A result object from metaMDS.

... Other parameters passed to functions.

Details

Non-metric Multidimensional Scaling (NMDS) is commonly regarded as the most robust uncon-
strained ordination method in community ecology (Minchin 1987). Functions initMDS and postMDS
together with some other functions are intended to help run NMDS wit isoMDS like recommended
by Minchin (1987). Function metaMDS combines all recommendations into one command for a
shotgun style analysis. The steps in metaMDS are:

1. Transformation: If the data values are larger than common class scales, the function performs a
Wisconsin double standardization using wisconsin. If the values look very large, the func-
tion also performs sqrt transformation. Both of these standardization are generally found to
improve the results. However, the limits are completely arbitrary (at present, data maximum
50 triggers sqrt and >9 triggers wisconsin). If you want to have a full control of the
analysis, you should set autotransform = FALSE and make explicit standardization in
the command.

2. Choice of dissimilarity: For a good result, you should use dissimilarity indices that have a
good rank order relation to ordering sites along gradients (Faith et al. 1987). The default is
Bray dissimilarity, because it often is the test winner. However, any other dissimilarity index
in vegdist can be used. Function rankindex can be used for finding the test winner for
you data and gradients.

3. Step-across dissimilarities: Ordination may be very difficult if a large proportion of sites have
no shared species. In this case, the results may be improved with stepacross dissimi-
larities, or flexible shortest paths among all sites. The stepacross is triggered by option
noshare. If you do not like manipulation of original distances, you should set noshare =
1.

4. NMDS with random starts: NMDS easily gets trapped into local optima, and you must start
NMDS several times from random start to be confident that you have found the global solution.
The default in isoMDS is to start from metric scaling (with cmdscale) which typically is
close to a local optimum. The strategy in metaMDS is to first run a default isoMDS, or use
the previous.best solution if supplied, and take its solution as the standard (Run 0).
Then metaMDS starts isoMDS from several random starts (maximum number is given by
trymax). If a solution is better (has a lower stress) than the previous standard, it is taken
as the new standard. If the solution is better or close to a standard, metaMDS compares two
solutions using Procrustes analysis using function procrustes with option symmetric
= TRUE. If the two solutions are very similar in their Procrustes rmse and the largest residual
is very small, the solutions are regarded as convergent and the best one is saved. Please note
that the conditions are stringent, and you may have found good and relatively stable solutions
although the function is not yet satisfied. Setting trace = TRUE will monitor the final
stresses, and plot = TRUE will display Procrustes overlay plots from each comparison.

5. Scaling of the results: metaMDS will run postMDS for the final result. Function postMDS
provides the following ways of “fixing” the indeterminacy of scaling and orientation of axes
in NMDS: Centring moves the origin to the average of the axes. Principal components rotate
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the configuration so that the variance of points is maximized on first dimension. Half-change
scaling scales the configuration so that one unit means halving of community similarity from
replicate similarity. Half-change scaling is based on closer dissimilarities where the relation
between ordination distance and community dissimilarity is rather linear; the limit is con-
trolled by parameter threshold. If there are enough points below this threshold (controlled
by the the parameter nthreshold), dissimilarities are regressed on distances. The intercept
of this regression is taken as the replicate dissimilarity, and half-change is the distance where
similarity halves according to linear regression. Obviously the method is applicable only for
dissimilarity indices scaled to 0 . . . 1, such as Kulczynski, Bray-Curtis and Canberra indices.

6. Species scores: Function adds the species scores to the final solution as weighted averages us-
ing function wascores with given value of parameter expand. The expansion of weighted
averages can be undone with shrink = TRUE in plot or scores functions, and the cal-
culation of species scores can be suppressed with wascores = FALSE.

Value

Function metaMDS returns an object of class metaMDS. The final site ordination is stored in the
item points, and species ordination in the item species. The other items store the infor-
mation on the steps taken by the function. The object has print, plot, points and text
methods. Functions metaMDSdist and metaMDSredist return vegdist objects. Function
initMDS returns a random configuration which is intended to be used within isoMDS only. Func-
tions metaMDSiter and postMDS returns the result of isoMDS with updated configuration.

Warning

The calculation of wascores for species was changed in vegan version 1.12-6. They are now
based on the community data transformed similarly as in the ordination. Previously the species
scores always were based on the original data. You can re-establish the old behaviour with argument
old.wa = TRUE.

Note

Function metaMDS is a simple wrapper for isoMDS and some support functions. You can call
these support functions separately for better control of results. Data transformation, dissmilarities
and possible stepacross are made in function metaMDSdist which returns a dissimilarity re-
sult. Iterative search (with starting values from initMDS) is made in metaMDSiter. Processing
of result configuration is done in postMDS, and species scores added by wascores. If you want
to be more certain of reaching a global solution, you can compare results from several independent
runs. You can also continue analysis from previous results or from your own configuration. Func-
tion does not save the used dissimilarity matrix, but metaMDSredist tries to reconstruct the used
dissimilarities with original data transformation and possible stepacross.

Author(s)

Jari Oksanen

References

Faith, D. P, Minchin, P. R. and Belbin, L. (1987). Compositional dissimilarity as a robust measure
of ecological distance. Vegetatio 69, 57–68.
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Minchin, P.R. (1987) An evaluation of relative robustness of techniques for ecological ordinations.
Vegetatio 71, 145-156.

See Also

isoMDS, decostand, wisconsin, vegdist, rankindex, stepacross, procrustes,
wascores, ordiplot.

Examples

## The recommended way of running NMDS (Minchin 1987)
##
data(dune)
library(MASS) ## isoMDS
# NMDS
sol <- metaMDS(dune)
sol
plot(sol, type="t")

mite Oribatid Mite Data with Explanatory Variables

Description

Oribatid mite data. 70 soil cores collected by Daniel Borcard in 1989. See Borcard et al. (1992,
1994) for details.

Usage

data(mite)
data(mite.env)
data(mite.pcnm)
data(mite.xy)

Format

There are three linked data sets: mite that contains the data on 35 species of Oribatid mites,
mite.env that contains environmental data in the same sampling sites, mite.xy that contains
geographic coordinates, and mite.pcnm that contains 22 PCNM base functions (columns) com-
puted from the geographic coordinates of the 70 sampling sites (Borcard & Legendre 2002). The
whole sampling area was 2.5 m x 10 m in size.

The fields in the environmental data are:

SubsDens Substrate density (g/L)
WatrCont Water content of the substrate (g/L)
Substrate Substrate type, factor with levels Sphagn1, Sphagn2 Sphagn3 Sphagn Litter

Barepeat Interface

Shrub Shrub density, an ordered factor with levels 1 < 2 < 3

Topo Microtopograhy, a factor with levels Blanket and Hummock
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Source

Pierre Legendre

References

Borcard, D., P. Legendre and P. Drapeau. 1992. Partialling out the spatial component of ecological
variation. Ecology 73: 1045-1055.

Borcard, D. and P. Legendre. 1994. Environmental control and spatial structure in ecological
communities: an example using Oribatid mites (Acari, Oribatei). Environmental and Ecological
Statistics 1: 37-61.

Borcard, D. and P. Legendre. 2002. All-scale spatial analysis of ecological data by means of
principal coordinates of neighbour matrices. Ecological Modelling 153: 51-68.

Examples

data(mite)

mrpp Multi Response Permutation Procedure of Within- versus Among-
Group Dissimilarities

Description

Multiple Response Permutation Procedure (MRPP) provides a test of whether there is a significant
difference between two or more groups of sampling units.

Usage

mrpp(dat, grouping, permutations = 1000, distance = "euclidean",
weight.type = 1, strata)

Arguments

dat data matrix or data frame in which rows are samples and columns are response
variable(s), or a dissimilarity object or a symmetric square matrix of dissimilar-
ities.

grouping Factor or numeric index for grouping observations.

permutations Number of permutations to assess the significance of the MRPP statistic, delta.

distance Choice of distance metric that measures the dissimilarity between two observa-
tions . See vegdist for options. This will be used if dat was not a dissimi-
larity structure of a symmetric square matrix.

weight.type choice of group weights. See Details below for options.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.
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Details

Multiple Response Permutation Procedure (MRPP) provides a test of whether there is a significant
difference between two or more groups of sampling units. This difference may be one of loca-
tion (differences in mean) or one of spread (differences in within-group distance). Function mrpp
operates on a data.frame matrix where rows are observations and responses data matrix. The
response(s) may be uni- or multivariate. The method is philosophically and mathematically allied
with analysis of variance, in that it compares dissimilarities within and among groups. If two groups
of sampling units are really different (e.g. in their species composition), then average of the within-
group compositional dissimilarities ought to be less than the average of the dissimilarities between
two random collection of sampling units drawn from the entire population.

The mrpp statistic δ is simply the overall weighted mean of within-group means of the pairwise
dissimilarities among sampling units. The correct choice of group weights is currently not clear.
The mrpp function offers three choices: (1) group size (n), (2) a degrees-of-freedom analogue
(n− 1), and (3) a weight that is the number of unique distances calculated among n sampling units
(n(n− 1)/2).

The mrpp algorithm first calculates all pairwise distances in the entire dataset, then calculates
δ. It then permutes the sampling units and their associated pairwise distances, and recalculates
a δ based on the permuted data. It repeats the permutation step permutations times. The
significance test is simply the fraction of permuted deltas that are less than the observed delta,
with a small sample correction. The function also calculates the change-corrected within-group
agreement A = 1− δ/E(δ), where E(δ) is the expected δ assessed as the average of permutations.

If the first argument dat can be interpreted as dissimilarities, they will be used directly. In other
cases the function treats dat as observations, and uses vegdist to find the dissimilarities. The
default distance is Euclidean as in the traditional use of the method, but other dissimilarities in
vegdist also are available.

Value

The function returns a list of class mrpp with following items:

call Function call.

delta The overall weighted mean of group mean distances.

E.delta expected delta, under the null hypothesis of no group structure. This is the mean
of the permuted deltas.

Pvalue Significance of the test.

A A chance-corrected estimate of the proportion of the distances explained by
group identity; a value analogous to a coefficient of determination in a linear
model.

distance Choice of distance metric used; the "method" entry of the dist object.

weight.type The choice of group weights used.

boot.deltas The vector of "permuted deltas," the deltas calculated from each of the permuted
datasets.

permutations The number of permutations used.
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Note

This difference may be one of location (differences in mean) or one of spread (differences in within-
group distance). That is, it may find a significant difference between two groups simply because
one of those groups has a greater dissimilarities among its sampling units. Most mrpp models can
be analysed with adonis which seems not suffer from the same problems as mrpp and is a more
robust alternative.

Author(s)

M. Herny H. Stevens 〈HStevens@muohio.edu〉 and Jari Oksanen.

References

P. W. Mielke and K. J. Berry. 2001. Permutation Methods: A Distance Function Approach. Springer
Series in Statistics. Springer.

B. McCune and J. B. Grace. 2002. Analysis of Ecological Communities. MjM Software Design,
Gleneden Beach, Oregon, USA.

See Also

anosim for a similar test based on ranks, and mantel for comparing dissimilarities against con-
tinuous variables, and vegdist for obtaining dissimilarities, adonis is a more robust alternative
in most cases.

Examples

data(dune)
data(dune.env)
dune.mrpp <- mrpp(dune, dune.env$Management)
dune.mrpp

# Save and change plotting parameters
def.par <- par(no.readonly = TRUE)
layout(matrix(1:2,nr=1))

plot(dune.ord <- metaMDS(dune), type="text", display="sites" )
ordihull(dune.ord, dune.env$Management)

with(dune.mrpp, {
fig.dist <- hist(boot.deltas, xlim=range(c(delta,boot.deltas)),

main="Test of Differences Among Groups")
abline(v=delta);
text(delta, 2*mean(fig.dist$counts), adj = -0.5,

expression(bold(delta)), cex=1.5 ) }
)
par(def.par)
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mso Functions for performing and displaying a spatial partitioning of cca
or rda results

Description

The function mso adds an attribute vario to an object of class "cca" that describes the spatial
partitioning of the cca object and performs an optional permutation test for the spatial indepen-
dence of residuals. The function plot.mso creates a diagnostic plot of the spatial partitioning of
the "cca" object.

Usage

mso(object.cca, object.xy, grain = 1, round.up = FALSE, permutations = FALSE)
msoplot(x, alpha = 0.05, explained = FALSE, ...)

Arguments

object.cca An object of class cca, created by the cca or rda function.

object.xy A vector, matrix or data frame with the spatial coordinates of the data repre-
sented by object.cca. Must have the same number of rows as object.cca$CA$Xbar
(see cca.object).

grain Interval size for distance classes.

round.up Determines the choice of breaks. If false, distances are rounded to the nearest
multiple of grain. If true, distances are rounded to the upper multiple of grain.

permutations If false, suppresses the permutation test. If an integer, determines the number of
permutations for the Mantel test of spatial independence of residual inertia.

x A result object of mso.

alpha Significance level for the two-sided permutation test of the Mantel statistic for
spatial independence of residual inertia and for the point-wise envelope of the
variogram of the total variance. A Bonferroni-type correction can be achieved
by dividing the overall significance value (e.g. 0.05) by the number of distance
classes.

explained If false, suppresses the plotting of the variogram of explained variance.

... Other arguments passed to functions.

Details

The Mantel test is an adaptation of the function mantel of the vegan package to the parallel testing
of several distance classes. It compares the mean inertia in each distance class to the pooled mean
inertia of all other distance classes.

If there are explanatory variables (RDA, CCA, pRDA, pCCA) and a significance test for residual
autocorrelation was performed when running the function mso, the function plot.mso will print
an estimate of how much the autocorrelation (based on significant distance classes) causes the global
error variance of the regression analysis to be underestimated



84 mso

Value

The function mso returns an amended cca or rda object with the additional attributes grain, H,
H.test and vario.

grain The grain attribute defines the interval size of the distance classes .

H H is an object of class ’dist’ and contains the geographic distances between
observations.

H.test H.test contains a set of dummy variables that describe which pairs of observa-
tions (rows = elements of object$H) fall in which distance class (columns).

vario The vario attribute is a data frame that contains some or all of the following
components for the rda case (cca case in brackets):

H Distance class as multiples of grain.

Dist Average distance of pairs of observations in distance class H.

n Number of unique pairs of observations in distance class H.

All Empirical (chi-square) variogram of total variance (inertia).

Sum Sum of empirical (chi-square) variograms of explained and residual variance
(inertia).

CA Empirical (chi-square) variogram of residual variance (inertia).

CCA Empirical (chi-square) variogram of explained variance (inertia).

pCCA Empirical (chi-square) variogram of conditioned variance (inertia).

se Standard error of the empirical (chi-square) variogram of total variance (inertia).

CA.signif P-value of permutation test for spatial independence of residual variance (iner-
tia).

Note

The function is based on the code published in the Ecological Archives E085-006 (http://www.
esapubs.org/archive/ecol/E085/006/default.htm).

Author(s)

The responsible author was Helene Wagner.

References

Wagner, H.H. 2004. Direct multi-scale ordination with canonical correspondence analysis. Ecology
85: 342–351.

See Also

Function cca and rda, cca.object.

http://www.esapubs.org/archive/ecol/E085/006/default.htm
http://www.esapubs.org/archive/ecol/E085/006/default.htm
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Examples

## Reconstruct worked example of Wagner (submitted):
X <- matrix(c(1, 2, 3, 2, 1, 0), 3, 2)
Y <- c(3, -1, -2)
tmat <- c(1:3)
## Canonical correspondence analysis (cca):
Example.cca <- cca(X, Y)
Example.cca <- mso(Example.cca, tmat)
msoplot(Example.cca)
Example.cca$vario

## Correspondence analysis (ca):
Example.ca <- mso(cca(X), tmat)
msoplot(Example.ca)

## Unconstrained ordination with test for autocorrelation
## using oribatid mite data set as in Wagner (2004)
data(mite)
data(mite.env)
data(mite.xy)

mite.cca <- cca(log(mite + 1))
mite.cca <- mso(mite.cca, mite.xy, grain = 1, permutations = 100)
msoplot(mite.cca)
mite.cca

## Constrained ordination with test for residual autocorrelation
## and scale-invariance of species-environment relationships
mite.cca <- cca(log(mite + 1) ~ SubsDens + WatrCont + Substrate + Shrub + Topo, mite.env)
mite.cca <- mso(mite.cca, mite.xy, permutations = 100)
msoplot(mite.cca)
mite.cca

nestedtemp Nestedness Indices for Communities of Islands or Patches

Description

Patches or local communities are regarded as nested if they all could be subsets of the same com-
munity. In general, species poor communities should be subsets of species rich communities, and
rare species should only occur in species rich communities.

Usage

nestedchecker(comm)
nestedn0(comm)
nesteddisc(comm)
nestedtemp(comm, ...)
## S3 method for class 'nestedtemp':
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plot(x, kind = c("temperature", "incidendce"),
col=rev(heat.colors(100)), names = FALSE, ...)

Arguments

comm Community data.

x Result object for a plot.

col Colour scheme for matrix temperatures.

kind The kind of plot produced.

names Label columns and rows in the plot using names in comm.

... Other arguments to functions.

Details

The nestedness functions evaluate alternative indices of nestedness. The functions are intended to
be used together with Null model communities and used as an argument in oecosimu to analyse
the nonrdanomness of results.

Function netstedchecker gives the number of checkerboard units, or 2x2 submatrices where
both species occur once but on different sites (Stone & Roberts 1990). Function nestedn0 imple-
ments nestedness measure N0 which is the number of absences from the sites which are richer than
the most pauperate site species occurs (Patterson & Atmar 1986). Function nesteddisc imple-
ments discrepancy index which is the number of ones that should be shifted to fill a row with ones
in a table arranged by species frequencies (Brualdi & Sanderson 1999). Function nestedtemp
finds the matrix temperature which is defined as the sum of “surprises” in arranged matrix. In ar-
ranged unsurprising matrix all species within proportion given by matrix fill are in the upper left
corner of the matrix, and the surprise of the absence or presences is the diagonal distance from the
fill line (Atmar & Patterson 1993). Function tries to pack species and sites to a low temperature
(Rodríguez-Gironés & Santamaria 2006), but this is an iterative procedure, and the temperatures
usually vary among runs. Function nestedtemp also has a plot method which can display ei-
ther incidences or temperatures of the surprises. Matrix temperature was rather vaguely described
(Atmar & Patterson 1993), but Rodríguez-Gironés & Santamaria (2006) are more explicit and their
description is used here. However, the results probably differ from other implementations, and
users should be cautious in interpreting the results. The details of calculations are explained in the
vignette Design decisions and implementation that you can read using functions vignette or
vegandocs.

Value

The result returned by a nestedness function contains an item called statistic, but the other
components differ among functions. The functions are constructed so that they can be handled by
oecosimu.

Author(s)

Jari Oksanen
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References

Atmar, W. & Patterson, B.D. (1993). The measurement of order and disorder in the distribution of
species in fragmented habitat. Oecologia 96, 373–382.

Brualdi, R.A. & Sanderson, J.G. (1999). Nested species subsets, gaps, and discrepancy. Oecologia
119, 256–264.

Patterson, B.D. & Atmar, W. (1986). Nested subsets and the structure of insular mammalian faunas
and archipelagos. Biol. J. Linnean Soc. 28, 65–82.

Rodríguez-Gironés, M.A. & Santamaria, L. (2006). A new algorithm to calculate the nestedness
temperature of presence-absence matrices. J. Biogeogr. 33, 924–935.

Stone, L. & Roberts, A. (1990). The checkerboard score and species distributions. Oecologia 85,
74–79.

Wright, D.H., Patterson, B.D., Mikkelson, G.M., Cutler, A. & Atmar, W. (1998). A comparative
analysis of nested subset patterns of species composition. Oecologia 113, 1–20.

See Also

In general, the functions should be used with oecosimu which generates Null model communities
to assess the nonrandomness of nestedness patterns.

Examples

data(sipoo)
## Matrix temperature
out <- nestedtemp(sipoo)
out
plot(out)
plot(out, kind="incid")
## Use oecosimu to assess the nonrandomness of checker board units
nestedchecker(sipoo)
oecosimu(sipoo, nestedchecker, "quasiswap")
## Another Null model and standardized checkerboard score
oecosimu(sipoo, nestedchecker, "r00", statistic = "C.score")

oecosimu Null Models for Biological Communities

Description

Null models generate random communities with different criteria to study the significance of nest-
edness or other community patterns. The function only simulates binary (presence/absence) models
with constraint for total number of presences, and optionally for numbers of species and/or species
frequencies.
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Usage

oecosimu(comm, nestfun, method, nsimul = 99, burnin = 0, thin = 1,
statistic = "statistic", ...)

commsimulator(x, method, thin=1)

Arguments

comm, x Community data.

nestfun Function to analyse nestedness. Some functions are provided in vegan, but
any function can be used if it accepts the community as the first argument, and
returns either a plain number or the result in list item with the name defined in
argument statistic. See Examples for defining your own functions.

method Null model method. See details.

nsimul Number of simulated null communities.

burnin Number of null communities discarded before proper analysis in sequential
methods "swap" and "tswap".

thin Number of discarded null communities between two evaluations of nestedness
statistic in sequential methods "swap" and "tswap".

statistic The name of the statistic returned by nestedfun

... Other arguments to functions.

Details

Function oecosimu is a wrapper that evaluates a nestedness statistic using function given by
nestfun, and then simulates a series of null models using commsimulator, and evaluates
the statistic on these null models. The vegan packages contains some nestedness functions that
are described separately (nestedchecker, nesteddisc, nestedn0, nestedtemp), but
many other functions can be used as long as they are meaningful with binary community mod-
els. An applicable function must return either the statistic as a plain number, or as a list ele-
ment "statistic" (like chisq.test), or in an item whose name is given in the argument
statistic. The statistic can be a single number (like typical for a nestedness index), or it can be
a vector. The vector indices can be used to analyse site (row) or species (column) properties, see
treedive for an example.

Function commsimulator implements null models for community composition. The imple-
mented models are r00 which maintains the number of presences but fills these anywhere so that
neither species (column) nor site (row) totals are preserved. Methods r0, r1 and r2 maintain the
site (row) frequencies. Method r0 fills presences anywhere on the row with no respect to species
(column) frequencies, r1 uses column marginal frequencies as probabilities, and r2 uses squared
column sums. Methods r1 and r2 try to simulate original species frequencies, but they are not
strictly constrained. All these methods are reviewed by Wright et al. (1998). Method c0 maintains
species frequencies, but does not honour site (row) frequencies (Jonsson 2001).

The other methods maintain both row and column frequencies. Methods swap and tswap imple-
ment sequential methods, where the matrix is changed only little in one step, but the changed matrix
is used as an input if the next step. Methods swap and tswap inspect random 2x2 submatrices
and if they are checkerboard units, the order of columns is swapped. This changes the matrix struc-
ture, but does not influence marginal sums (Gotelli & Entsminger 2003). Method swap inspects
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submatrices so long that a swap can be done. Miklós & Podani (2004) suggest that this may lead
into biased sequences, since some columns or rows may be more easily swapped, and they suggest
trying a fixed number of times and doing zero to many swaps at one step. This method is imple-
mented by method tswap or trial swap. Function commsimulator makes only one trial swap in
time (which probably does nothing), but oecosimu estimates how many submatrices are expected
before finding a swappable checkerboard, and uses that ratio to thin the results, so that on average
one swap will be found per step of tswap. However, the checkerboard frequency probably changes
during swaps, but this is not taken into account in estimating the thin. One swap still changes the
matrix only little, and it may be useful to thin the results so that the statistic is only evaluated after
burnin steps (and thinned).

Methods quasiswap and backtracking are not sequential, but each call produces a matrix
that is independent of previous matrices, and has the same marginal totals as the original data.
The recommended method is quasiswap which is much faster because it is implemented in C.
Method bactkracking is provided for comparison, but it is so slow that it may be dropped
from future releases of vegan (or also implemented in C). Method quasiswap (Miklós & Podani
2004) implements a method where matrix is first filled honouring row and column totals, but with
integers that may be larger than one. Then the method inspects random 2x2 matrices and performs
a quasiswap on them. Quasiswap is similar to ordinary swap, but it also can reduce numbers above
one to ones maintaining marginal totals. Method backtracking implements a filling method
with constraints both for row and column frequencies (Gotelli & Entsminger 2001). The matrix is
first filled randomly using row and column frequencies as probabilities. Typically row and column
sums are reached before all incidences are filled in. After that begins “backtracking”, where some
of the points are removed, and then filling is started again, and this backtracking is done so may
times that all incidences will be filled into matrix. The quasiswap method is not sequential, but
it produces a random incidence matrix with given marginal totals.

Value

Function oecosimu returns the result of nestfunwith one added component called oecosimu.
The oecosimu component contains the simulated values of the statistic (item simulated), the
name of the method, two-sided P value and z-value of the statistic based on simulation. The
commsimulator returns a null model matrix or a swap of the input matrix.

Note

Functions commsimulator and oecosimu do not have default nestfun nor default method,
because there is no clear natural choice. If you use these methods, you must be able to choose your
own strategy. The choice of nestedness index is difficult because the functions seem to imply very
different concepts of structure and randomness. The choice of swapping method is also problematic.
Method r00 has some heuristic value of being really random. However, it produces null models
which are different from observed communities in most respects, and a “significant” result may
simply mean that not all species are equally common (r0 is similar with this respect). It is also
difficult to find justification for r2. The methods maintaining both row and column totals only
study the community relations, but they can be very slow. Moreover, they regard marginal totals as
constraints instead of results of occurrence patterns. You should evaluate timings in small trials (one
cycle) before launching an extensive simulation. One swap is fast, but it changes data only little, and
you may need long burnin and strong thinning in large matrices. You should plot the simulated
values to see that they are more or less stationary and there is no trend. Method quasiswap is
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implemented in C and it is much faster than backtrack. Method backtrack may be removed
from later releases of vegan because it is slow, but it is still included for comparison.

If you wonder about the name of oecosimu, look at journal names in the References (and more
in nestedtemp).

Author(s)

Jari Oksanen

References

Gotelli, N.J. & Entsminger, N.J. (2001). Swap and fill algorithms in null model analyis: rethinking
the knight’s tour. Oecologia 129, 281–291.

Gotelli, N.J. & Entsminger, N.J. (2003). Swap algorithms in null model analysis. Ecology 84,
532–535.

Jonsson, B.G. (2001) A null model for randomization tests of nestedness in species assemblages.
Oecologia 127, 309–313.

Miklós, I. & Podani, J. (2004). Randomization of presence-absence matrices: comments and new
algorithms. Ecology 85, 86–92.

Wright, D.H., Patterson, B.D., Mikkelson, G.M., Cutler, A. & Atmar, W. (1998). A comparative
analysis of nested subset patterns of species composition. Oecologia 113, 1–20.

See Also

r2dtable generates table with given marginals but with entries above one. Functions permatfull
and permatswap generate Null models for count data. Function rndtaxa (labdsv package) ran-
domizes a community table. See also nestedtemp (that also discusses other nestedness functions)
and treedive for another application.

Examples

## Use the first eigenvalue of correspondence analysis as an index
## of structure: a model for making your own functions.
data(sipoo)
caeval <- function(x) decorana(x, ira=1)$evals
out <- oecosimu(sipoo, caeval, "swap", burnin=100, thin=10)
out
## Inspect the swap sequence
matplot(t(out$oecosimu$simulated), type="l")
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ordihull Add Graphical Items to Ordination Diagrams

Description

Functions to add convex hulls, arrows, line segments, regular grids of points, ‘spider’ graphs, el-
lipses or cluster dendrogram to ordination diagrams. The ordination diagrams can be produced by
vegan plot.cca, plot.decorana or ordiplot.

Usage

ordihull(ord, groups, display = "sites", draw = c("lines","polygon"),
show.groups, ...)

ordiarrows(ord, groups, levels, replicates, display = "sites",
show.groups, startmark, ...)

ordisegments(ord, groups, levels, replicates, display = "sites",
show.groups, ...)

ordigrid(ord, levels, replicates, display = "sites", ...)
ordispider(ord, groups, display="sites", w = weights(ord, display),

show.groups, ...)
ordiellipse(ord, groups, display="sites", kind = c("sd","se"), conf,

draw = c("lines","polygon"), w = weights(ord, display),
show.groups, ...)

ordicluster(ord, cluster, prune = 0, display = "sites",
w = weights(ord, display), ...)

Arguments

ord An ordination object or an ordiplot object.

groups Factor giving the groups for which the graphical item is drawn.
levels, replicates

Alternatively, regular groups can be defined with arguments levels and replicates,
where levels gives the number of groups, and replicates the number of
successive items at the same group.

display Item to displayed.

draw Use either lines or polygon to draw the line. Graphical parameters are
passed to both. The main difference is that polygons may be filled and non-
transparent.

show.groups Show only given groups. This can be a vector, or TRUE if you want to show
items for which condition is TRUE. This argument makes it possible to use dif-
ferent colours and line types for groups. The default is to show all groups.

startmark plotting characer used to mark the first item. The default is to use no mark, and
for instance, startmark = 1 will draw a circle. For other plotting charac-
ters, see pch in points.
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w Weights used to find the average within group. Weights are used automatically
for cca and decorana results, unless undone by the user. w=NULL sets equal
weights to all points.

kind Whether standard deviations of points (sd) or standard deviations of their (weighted)
averages (se) are used.

conf Confidence limit for ellipses, e.g. 0.95. If given, the corresponding sd or se is
multiplied with the corresponding value found from the Chi-squared distribution
with 2df.

cluster Result of hierarchic cluster analysis, such as hclust or agnes.
prune Number of upper level hierarchies removed from the dendrogram. If prune

> 0, dendrogram will be disconnected.
... Parameters passed to graphical functions such as lines, segments, arrows,

polygon or to scores to select axes and scaling etc.

Details

Function ordihull draws lines or polygons for the convex hulls found by function chull
encircling the items in the groups.
Function ordiarrows draws arrows and ordisegments draws line segments between
successive items in the groups. Function ordigrid draws line segments both within the groups
and for the corresponding items among the groups.
Function ordispider draws a ‘spider’ diagram where each point is connected to the group cen-
troid with segments. Weighted centroids are used in the correspondence analysis methods cca
and decorana or if the user gives the weights in the call. If ordispider is called with cca or
rda result without groups argument, the function connects each ‘WA’ scores to the correspoding
‘LC’ score.
Function ordiellipse draws lines or polygons for dispersion ellipse using either stan-
dard deviation of point scores or standard error of the (weighted) average of scores, and the (weighted)
correlation defines the direction of the principal axis of the ellipse. The function requires package
ellipse. An ellipsoid hull can be drawn with function ellipsoidhull of package cluster.
Function ordicluster overlays a cluster dendrogram onto ordination. It needs the result from
a hierarchic clustering such as hclust or agnes, or other with a similar structure. Function
ordicluster connects cluster centroids to each other with line segments. Function uses cen-
troids of all points in the clusters, and is therefore similar to average linkage methods.

Note

These functions add graphical items to ordination graph: You must draw a graph first.

Author(s)

Jari Oksanen

See Also

The functions pass parameters to basic graphical functions, and you may wish to change the default
values in arrows, lines, segments and polygon. You can pass parameters to scores as
well. Other underlying functions are chull and ellipse.
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Examples

data(dune)
data(dune.env)
mod <- cca(dune ~ Moisture, dune.env)
attach(dune.env)
## pass non-graphical arguments without warnings
plot(mod, type="n", scaling = 3)
ordihull(mod, Moisture, scaling = 3)
ordispider(mod, col="red", scaling = 3)
plot(mod, type = "p", display="sites")
ordicluster(mod, hclust(vegdist(dune)), prune=3, col = "blue")
# The following is not executed automatically because it needs
# a non-standard library `ellipse'.
## Not run:
ordiellipse(mod, Moisture, kind="se", conf=0.95, lwd=2, col="blue")
## End(Not run)

ordilabel Add Text on Non-transparent Label to an Ordination Plot

Description

Function ordilabel is similar to text, but the text is on an opaque label. This can help in
crowded ordination plots: you still cannot see all text labels, but at least the uppermost are readable.
Argument priority helps to make the most important labels visible.

Usage

ordilabel(x, display, labels, choices = c(1, 2), priority, cex = 0.8,
fill = "white", border = NULL, ...)

Arguments

x An ordination object an any object known to scores.

display Kind of scores displayed (passed to scores).

labels Optional text used in plots. If this is not given, the text is found from the ordi-
nation object.

choices Axes shown (passed to scores).

priority Vector of the same length as the number of labels. The items with high priority
will be plotted uppermost.

cex Character expansion for the text (passed to text).

fill Background colour of the labels (the col argument of polygon).

border The colour and visibilit of the border of the label as defined in polygon).

... Other arguments (passed to text).
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Details

The function may be useful with crowded ordination plots, in particular together with argument
priority. You will not see all text labels, but at least some are readable. Other alternatives to
crowded plots are identify.ordiplot, orditorp and orditkplot.

Author(s)

Jari Oksanen

See Also

scores, polygon, text. The function is modelled after s.label in ade4 package.

Examples

data(dune)
ord <- cca(dune)
plot(ord, type = "n")
ordilabel(ord, dis="sites", cex=1.2, font=3, fill="hotpink", col="blue")
## You may prefer separate plots, but here species as well
ordilabel(ord, dis="sp", font=2, priority=colSums(dune))

ordiplot Alternative plot and identify Functions for Ordination

Description

Ordination plot function especially for congested plots. Function ordiplot always plots only
unlabelled points, but identify.ordiplot can be used to add labels to selected site, species or
constraint points. Function identify.ordiplot can be used to identify points from plot.cca,
plot.decorana, plot.procrustes and plot.rad as well.

Usage

ordiplot(ord, choices = c(1, 2), type="points", display, xlim, ylim, ...)
## S3 method for class 'ordiplot':
identify(x, what, labels, ...)
## S3 method for class 'ordiplot':
points(x, what, select, ...)
## S3 method for class 'ordiplot':
text(x, what, labels, select, ...)
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Arguments

ord A result from an ordination.

choices Axes shown.

type The type of graph which may be "points", "text" or "none" for any
ordination method.

display Display only "sites" or "species". The default for most methods is to display
both, but for cca, rda and capscale it is the same as in plot.cca.

xlim, ylim the x and y limits (min,max) of the plot.

... Other graphical parameters.

x A result object from ordiplot.

what Items identified in the ordination plot. The types depend on the kind of plot used.
Most methods know sites and species, functions cca and rda know in
addition constraints (for ‘LC’ scores), centroids and biplot, and
plot.procrustes ordination plot has heads and points.

labels Optional text used for labels. Row names will be used if this is missing.

select Items to be displayed. This can either be a logical vector which is TRUE for
displayed items or a vector of indices of displayed items.

Details

Function ordiplot draws an ordination diagram using black circles for sites and red crosses for
species. It returns invisibly an object of class ordiplotwhich can be used by identify.ordiplot
to label selected sites or species, or constraints in cca and rda.

The function can handle output from several alternative ordination methods. For cca, rda and
decorana it uses their plot method with option type = "points". In addition, the plot
functions of these methods return invisibly an ordiplot object which can be used by identify.ordiplot
to label points. For other ordinations it relies on scores to extract the scores.

For full user control of plots, it is best to call ordiplot with type = "none" and save the
result, and then add sites and species using points.ordiplot or text.ordiplot which
both pass all their arguments to the corresponding default graphical functions.

Value

Function ordiplot returns invisibly an object of class ordiplot with items sites, species
and constraints (if these are available in the ordination object). Function identify.ordiplot
uses this object to label the point.

Note

The purpose of these functions is to provide similar functionality as the plot, plotid and
specid methods in library labdsv. The functions are somewhat limited in parametrization,
but you can call directly the standard identify and plot functions for a better user control.

Author(s)

Jari Oksanen
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See Also

identify for basic operations, plot.cca, plot.decorana, plot.procrustes which
also produce objects for identify.ordiplot and scores for extracting scores from non-
vegan ordinations.

Examples

# Draw a cute NMDS plot from a non-vegan ordination (isoMDS).
# Function metaMDS would be an easier alternative.
data(dune)
dune.dis <- vegdist(wisconsin(dune))
library(MASS)
dune.mds <- isoMDS(dune.dis)
dune.mds <- postMDS(dune.mds, dune.dis)
dune.mds$species <- wascores(dune.mds$points, dune, expand = TRUE)
fig <- ordiplot(dune.mds, type = "none")
points(fig, "sites", pch=21, col="red", bg="yellow")
text(fig, "species", col="blue", cex=0.9)
# Default plot of the previous using identify to label selected points
## Not run:
fig <- ordiplot(dune.mds)
identify(fig, "spec")
## End(Not run)

ordiplot3d Three-Dimensional and Dynamic Ordination Graphics

Description

Function ordiplot3d displays three-dimensional ordination graphics using scatterplot3d.
Function ordirgl displays three-dimensional dynamic ordination graphs which can be rotated
and zoomed into using rgl package. Both work with all ordination results form vegan and all
ordination results known by scores function.

Usage

ordiplot3d(object, display = "sites", choices = 1:3, ax.col = 2,
arr.len = 0.1, arr.col = 4, envfit, xlab, ylab, zlab, ...)

ordirgl(object, display = "sites", choices = 1:3, type = "p",
ax.col = "red", arr.col = "yellow", text, envfit, ...)

orglpoints(object, display = "sites", choices = 1:3, ...)
orgltext(object, text, display = "sites", choices = 1:3, justify = "center",

adj = 0.5, ...)
orglsegments(object, groups, display = "sites", choices = 1:3, ...)
orglspider(object, groups, display = "sites", w = weights(object, display),

choices = 1:3, ...)
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Arguments

object An ordination result or any object known by scores.

display Display "sites" or "species" or other ordination object recognized by
scores.

choices Selected three axes.

arr.len ’Length’ (width) of arrow head passed to arrows function.

arr.col Colour of biplot arrows and centroids of environmental variables.

type The type of plots: "p" for points or "t" for text labels.

ax.col Axis colour (concerns only the crossed axes through the origin).

text Text to override the default with type = "t".

envfit Fitted environmental variables from envfit displayed in the graph.
xlab, ylab, zlab

Axis labels passed to scatterplot3d. If missing, labels are taken from the
ordination result. Set to NA to supress labels.

justify, adj Text justification passed to rgl.texts. One of these is used depending on the
versionof rgl installed.

groups Factor giving the groups for which the graphical item is drawn.

w Weights used to find the average within group. Weights are used automatically
for cca and decorana results, unless undone by the user. w=NULL sets equal
weights to all points.

... Other parameters passed to graphical functions.

Details

Both function display three-dimensional ordination graphics. Function ordiplot3d plots static
scatter diagrams using scatterplot3d. Function ordirgl plots dynamic graphics using
OpenGL in rgl. Both functions use most default settings of underlying graphical functions, and
you must consult their help pages to change graphics to suit your taste (see scatterplot3d,
rgl, rgl.points,rgl.texts). Both functions will display only one selected set of scores,
typically either "sites" or "species", but for instance cca also has "lc" scores. In con-
strained ordination (cca, rda, capscale), biplot arrows and centroids are always displayed sim-
ilarly as in two-dimensional plotting function plot.cca. Alternatively, it is possible to display
fitted environmental vectors or class centroids from envfit in both graphs. These are displayed
similarly as the results of constrained ordination, and they can be shown only for non-constrained
ordination. The user must remember to specify at least three axes in envfit if the results are used
with these functions.

Function ordiplot3d plots only points. However, it returns invisibly an object inheriting from
ordiplot so that you can use identify.ordiplot to identify "points" or "arrows".
The underlying scatterplot3d function accepts type = "n" so that only the axes, biplot
arrows and centroids of environmental variables will be plotted, and the ordination scores can be
added with text.ordiplot or points.ordiplot. Further, you can use any functions from
the ordihull family with the invisble result of ordiplot3d, but you must remember to specify
the display as "points" or "arrows". To change the viewing angle, orientation etc. you
must see scatterplot3d.



98 ordiplot3d

Function ordigl makes a dynamic three-dimensional graph that can be rotated with mouse,
and zoomed into with mouse buttons or wheel (but Mac users with one-button mouse should see
rgl.viewpoint), or try ctrl-button. MacOS X users must start X11 before calling rgl com-
mands. Function ordirgl uses default settings, and you should consult the underlying func-
tions rgl.points, rgl.texts to see how to control the graphics. Function ordirgl always
cleans its graphic window before drawing. Functions orglpoints adds points and orgltext
adds text to existing ordirgl windows. In addition, function orglsegments combines points
within "groups" with line segments similarly as ordisegments. Function orglspider
works similarly as ordispider: it connects points to their weighted centroid within "groups",
and in constrained ordination it can connect "wa" or weighted averages scores to corresponding
"lc" or linear combination scores if "groups" is missing. In addition, basic rgl functions
rgl.points, rgl.texts, rgl.lines and many others can be used.

Value

Function ordiplot3d returns invisibly an object of class "ordiplot3d" inheriting from ordiplot.
The return object will contain the coordinates projected onto two dimensions for "points", and
possibly for the heads of "arrows" and "centroids" of environmental variables. Functions
like identify.ordiplot, points.ordiplot, text.ordiplot can use this result, as
well as ordihull and other functions documented with the latter. In addition, the result will
contain the object returned by scatterplot3d, including function xyz.converter which
projects three-dimensional coordinates onto the plane used in the current plot. Function ordirgl
returns nothing.

Warning

Function ordirgl uses OpenGL package rgl which may not be functional in all platforms, and
can crash R in some: use save.image before trying ordirgl. Mac users must start X11 (and
first install X11 and some other libraries) before being able to use rgl. It seems that rgl.texts
does not always position the text like supposed, and it may be safe to verify text location with
corresponding points.

Note

The user interface of rgl changed in version 0.65, but the ordirgl functions do not yet fully use
the new capablities. However, they should work both in old and new versions of rgl.

Author(s)

Jari Oksanen

See Also

scatterplot3d, rgl, rgl.points, rgl.texts, rgl.viewpoint, ordiplot, identify.ordiplot,
text.ordiplot, points.ordiplot, ordihull, plot.cca, envfit.

Examples

## Examples are not run, because they need non-standard packages
## 'scatterplot3d' and 'rgl' (and the latter needs user interaction).
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#####
#### Default 'ordiplot3d'
## Not run:
data(dune)
data(dune.env)
ord <- cca(dune ~ A1 + Moisture, dune.env)
ordiplot3d(ord)
#### A boxed 'pin' version
ordiplot3d(ord, type = "h")
#### More user control
pl <- ordiplot3d(ord, angle=15, type="n")
points(pl, "points", pch=16, col="red", cex = 0.7)
#### identify(pl, "arrows", col="blue") would put labels in better positions
text(pl, "arrows", col="blue", pos=3)
text(pl, "centroids", col="blue", pos=1, cex = 1.2)
#### ordirgl
ordirgl(ord, size=2)
ordirgl(ord, display = "species", type = "t")
rgl.quit()
## End(Not run)

ordipointlabel Ordination Plots with Points and Optimized Locations for Text

Description

The function ordipointlabel produces ordination plots with points and text label to the points.
The points are in the exact location given by the ordination, but the function tries to optimize the
location of the text labels to minimize overplotting text. The function may be useful with moderatly
crowded ordination plots.

Usage

ordipointlabel(x, display = c("sites", "species"), choices = c(1, 2),
col = c(1, 2), pch = c("o", "+"), font = c(1, 1),
cex = c(0.8, 0.8), add = FALSE, ...)

Arguments

x A result object from ordination.

display Scores displayed in the plot.

choices Axes shown.
col, pch, font, cex

Colours, point types, font style and character expansion for each kind of scores
displayed in the plot. These should be vectors of the same length as the number
of items in display.

add Add to an existing plot.

... Other rguments passed to points and text.
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Details

The function uses simulated annealing (optim, method = "SANN") to optimize the location
of the text labels to the points. There are eight possible locations: up, down, sides and corners.
There is a weak preference to text right above the point, and a weak avoidance of corner positions.
The exact locations and the goodness of solution varies between runs, and there is no guarantee of
finding the global optimum. The optimization can take a long time in difficult cases with a high
number of potential overlaps. Several sets of scores can be displayed in one plot.

The function is modelled after pointLabel in maptools package (which has chained dependen-
cies of S4 packages).

Value

The function returns invisibly an object of class ordipointlabel with items xy for coordinates
of points, labels for coordinates of labels, items pch, cex and font for graphical parameters of
each point or label. In addition, it returns the result of optim as an attribute "optim". The unit of
overlap is the area of character "m", and with variable cex it is the smallest alternative. The result
object inherits from orditkplot result, and can be replotted with its plot command. It may be
possible to further edit the result object with orditkplot, but for good results it is necessary that
the points span the whole horizontal axis without empty margins.

Note

The function is designed for ordination graphics, and the optimization works properly with plots of
isometric aspect ratio.

Author(s)

Jari Oksanen

References

See pointLabel for references.

See Also

pointLabel for the model implementation, and optim for the optimization.

Examples

data(varespec)
ord <- cca(varespec)
ordipointlabel(ord)
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ordiresids Plots of Residuals and Fitted Values for Constrained Ordination

Description

The function provides plot.lm style diagnostic plots for the results of constrained ordination
from cca, rda and capscale. Normally you do not need these plots, because ordination is
descriptive and does not make assumptions on the distribution of the residuals. However, if you
permute residuals in significance tests (anova.cca), you may be interested in inspecting that the
residuals really are exchangeable and independent of fitted values.

Usage

ordiresids(x, kind = c("residuals", "scale", "qqmath"),
residuals = "working", type = c("p", "smooth", "g"),
formula, ...)

Arguments

x Ordination result from cca, rda or capscale.

kind The type of plot: "residuals" plot residuals against fitted values, "scale"
the square root of absolute residuals against fitted values, and "qqmath" the
residuals against expected distribution (defaults qnorm), unless defined differ-
ently in the formula argument).

residuals The kind of residuals and fitted values. The argument is passed on to fitted.cca
with alternatives "working" and "response".

type The type of plot. The argument is passed on to lattice functions.

formula Formula to override the default plot. The formula can contain items Fitted,
Residuals, Species and Sites (provided that names of species and sites
are available in the ordination result).

... Other arguments passed to lattice functions.

Details

The default plots are similar as in plot.lm, but they use Lattice functions xyplot and
qqmath. The alternatives have default formulas but these can be replaced by the user. The el-
ements available in formula or in the groups argument are Fitted, Residuals, Species
and Sites.

Value

The function return a Lattice object that can displayed as plot.

Author(s)

Jari Oksanen
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See Also

plot.lm, Lattice, xyplot, qqmath.

Examples

data(varespec)
data(varechem)
mod <- cca(varespec ~ Al + P + K, varechem)
ordiresids(mod)

ordisurf Fit and Plot Smooth Surfaces of Variables on Ordination.

Description

Function ordisurf fits a smooth surface for given variable and plots the result on ordination
diagram.

Usage

ordisurf(x, y, choices=c(1, 2), knots=10, family="gaussian", col="red",
thinplate = TRUE, add = FALSE, display = "sites",
w = weights(x), main, nlevels = 10, levels, labcex = 0.6, ...)

Arguments

x Ordination configuration, either a matrix or a result known by scores.
y Variable to be plotted.
choices Ordination axes.
knots Number of initial knots in gam (one more than degrees of freedom).
family Error distribution in gam.
col Colour of contours.
thinplate Use thinplate splines in gam.
add Add contours on an existing diagram or draw a new plot.
display Type of scores known by scores: typically "sites" for ordinary site scores or

"lc" for linear combination scores.
w Prior weights on the data. Concerns mainly cca and decorana results which

have nonconstant weights.
main The main title for the plot, or as default the name of plotted variable in a new

plot.
nlevels, levels

Either a vector of levels for which contours are drawn, or suggested number
of contours in nlevels if levels are not supplied.

labcex Label size in contours. Setting this zero will suppress labels.
... Other graphical parameters.
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Details

Function ordisurf fits a smooth surface using thinplate splines in gam, and uses predict.gam
to find fitted values in a regular grid. Function plots the fitted contours with convex hull of data
poitns either over an existing ordination diagram or draws a new plot The function uses scores to
extract ordination scores, and x can be any result object known by that function.

User can supply a vector of prior weights w. If the ordination object has weights, these will be used.
In practise this means that the row totals are used as weights with cca or decorana results. If
you do not like this, but want to give equal weights to all sites, you should set w = NULL. The
behaviour is consistent with envfit. For complete accordance with constrained cca, you should
set display = "lc" (and possibly scaling = 2).

Value

Function is usually called for its side effect of drawing the contour plot, but it returns the result
object of gam.

Note

The default is to use thinplate splines. These make sense in ordination as they have equal smoothing
in all directions and are rotation invariant.

Author(s)

Dave Roberts and Jari Oksanen

See Also

For basic routines gam, and scores. Function envfit provides a more traditional and compact
alternative.

Examples

data(varespec)
data(varechem)
library(MASS)
vare.dist <- vegdist(varespec)
vare.mds <- isoMDS(vare.dist)
with(varechem, ordisurf(vare.mds, Baresoil))
## Cover of Cladina arbuscula
with(varespec, ordisurf(vare.mds, Cla.arb, family=quasipoisson))
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orditkplot Ordination Plot with Movable Labels

Description

Function orditkplot produces an editable ordination plot with points and labels. The labels can
be moved with mouse, and the edited plot can be saved as an encapsulated postscript file or exported
via R plot function to other graphical formats, or saved in the R session for further processing.

Usage

orditkplot(x, display = "species", choices = 1:2, width, xlim, ylim,
tcex = 0.8, tcol, pch = 1, pcol, pbg, pcex = 0.7, labels, ...)

## S3 method for class 'orditkplot':
plot(x, ...)
## S3 method for class 'orditkplot':
points(x, ...)
## S3 method for class 'orditkplot':
text(x, ...)
## S3 method for class 'orditkplot':
scores(x, display, ...)

Arguments

x An ordination result or any other object that scores can handle, or for the
plot function the object dumped from the interactive orditkplot session.

display Type of scores displayed. For ordination scores this typically is either "species"
or "sites", and for orditkplot result it is either "points" or "labels".

choices Axes displayed.

width Width of the plot in inches; defaults to the current width of the graphical device.

xlim, ylim x and y limits for plots: points outside these limits will be completely removed.

tcex Character expansion for text labels.

tcol Colour of text labels.
pch, pcol, pbg

Point type and outline and fill colours. Defaults pcol="black" and pbg="transparent".
Argument pbg has an effect only in filled plotting characters pch = 21 to 25.

pcex Expansion factor for point size.

labels Labels used instead of row names.

... Other arguments passed to the function. These can be graphical parameters (see
par) used in the plot, or extra arguments to scores. These arguments are
ignored in plot, but honoured in text and points.
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Details

Function orditkplot uses tcltk package to draw Tcl/Tk based ordination graphics with points
and labels. The function opens an editable canvas with fixed points, but the labels can be dragged
with mouse to better positions or edited. In addition, it is possible to zoom to a part of the graph.

The function knows the following mouse operations:

• Left mouse button can be used to move labels to better positions. A line will connect a label
to the corresponding point.

• Double clicking left mouse button opens a window where the label can be edited. After
editing the label, hit the Return key.

• Right mouse button (or alternatively, Shift-Mouse button with one-button mouse) can be
used for zooming to a part of the graph. Keeping the mouse button down and dragging will
draw a box of the zoomed area, and after releasing the button, a new plot window will be
created (this is still preliminary: all arguments are not passed to the new plot).

In addition there are buttons for the following tasks: Copy to EPS copies the current plot to an
encapsulated postscript (eps) file using standard Tcl/Tk utilities. The faithfullness of this copy is
system dependent. Button Export plot uses plot.orditkplot function to redraw the plot into
graphical file formats. Depending on the system, the following graphical formats may be available:
eps, pdf, png, jpeg or bmp. The file type is deduced from the file suffix or the selection of the file
type in the dialog box. Alternatively, the same dialog can be used to save the plot to an editable
xfig file. Button Dump to R writes the edited coordinates of labels and points to the R session
for further processing, and the plot.orditkplot function can be used to display the results.
For faithful replication of the plot, the graph must have similar dimensions as the orditkplot
canvas had originally. The plot function cannot be configured, but it uses the same settings as the
original Tcl/Tk plot. However, points and text functions are fully configurable, and unaware
of the original Tcl/Tk plot settings (probably you must set cex at least to get a decent plot). Finally,
button Dismiss closes the window.

The produced plot will have equal aspect ratio. The width of the horizontal axis is fixed, but vertical
axes will be scaled to needed height, and you can use scrollbar to move vertically if the whole
canvas does not fit the window. If you use dumped labels in ordinary R plots, your plot must have
the same dimensions as the orditkplot canvas to have identical location of the labels.

The function only displays one set of scores. However, you can use ordipointlabel to produce
a result object that has different points and text types for several sets of scores and this can further
edited fith orditkplot. For a good starting solution you need to scale the ordipointlabel
result so that the points span over the whole horizontal axis.

The plot is a Tcl/Tk canvas, but the function tries to replicate standard graphical device of the
platform, and it honours several graphical parameters (see par). Many of the graphical parameters
can be given on the command line, and they will be passed to the function without influencing other
graphical devices in R. At the moment, the following graphical parameters are honoured: pch bg,
cex, cex.axis, cex.lab, col (for labels), col.axis, col.lab, family (for font faces),
fg, font, font.axis, font.lab, lheight, lwd (for the box), mar, mex, mgp, ps, tcl.
These can be set with par, and they also will influence other plots similarly.

The tkcanvas text cannot be rotated, and therefore vertical axis is not labelled, and las parameter
will not be honoured in the Tcl/Tk plot, but it will be honoured in the exported R plots and in
plot.orditkplot.
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Value

Function returns nothing useful directly, but you can save the edited graph to a file or dump the
edited positions to an R session for further processing and plotting.

Note

You need tcltk package and R must have been configured with capabilities for tcltk when
building the binary. Depending on your OS, you may need to start X11 and set the display before
loading tcltk and starting the function (for instance, with Sys.setenv("DISPLAY"=":0")).
See tcltk-package.

Author(s)

Jari Oksanen

See Also

Function ordipointlabel is an automatic procedure with similar goals of avoiding overplot-
ting. See ordiplot, plot.cca, ordirgl and orditorp for alternative ordination plots, and
scores for extracting ordination scores.

Examples

## The example needs user interaction and is not executed directly.
## It should work when pasted to the window.
## Not run:
data(varespec)
ord <- cca(varespec)
## Do something with the graph and end by clicking "Dismiss"
orditkplot(ord, mar = c(4,4,1,1)+.1, font=3)
## Use ordipointlabel to produce a plot that has both species and site
## scores in different colors and plotting symbols
pl <- ordipointlabel(ord)
orditkplot(pl)
## End(Not run)

orditorp Add Text or Points to Ordination Plots

Description

The function adds text or points to ordination plots. Text will be used if this can be done
without overwriting other text labels, and points will be used otherwise. The function can help in
reducing clutter in ordination graphics, but manual editing may still be necessary.
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Usage

orditorp(x, display, labels, choices = c(1, 2), priority,
cex = 0.7, pcex, col = par("col"), pcol,
pch = par("pch"), air = 1, ...)

Arguments

x A result object from ordination or an ordiplot result.

display Items to be displayed in the plot. Only one alternative is allowed. Typically this
is "sites" or "species".

labels Optional text used for labels. Row names will be used if this is missing.

choices Axes shown.

priority Text will be used for items with higher priority if labels overlap. This should be
vector of the same length as the number of items plotted.

cex, pcex Text and point sizes, see plot.default..

col, pcol Text and point colours, see plot.default.

pch Plotting character, see points.

air Amount of empty space between text labels. Values <1 allow overlapping text.

... Other arguments to scores (and its various methods), text and points.

Details

Function orditorpwill add either text or points to an existing plot. The items with high priority
will be added first and textwill be used if this can be done without overwriting previous labels,and
pointswill be used otherwise. If priority is missing, labels will be added from the outskirts to
the centre. Function orditorp can be used with most ordination results, or plotting results from
ordiplot or ordination plot functions (plot.cca, plot.decorana, plot.metaMDS).

Arguments can be passed to the relevant scoresmethod for the ordination object (x) being drawn.
See the relevant scores help page for arguments that can be used.

Value

The function returns invisibly a logical vector where TRUE means that item was labelled with text
and FALSE means that it was marked with a point. The returned vector can be used as the select
argument in ordination text and points functions.

Author(s)

Jari Oksanen

Examples

## A cluttered ordination plot :
data(BCI)
mod <- cca(BCI)
plot(mod, dis="sp", type="t")
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# Now with orditorp and abbreviated species names
cnam <- make.cepnames(names(BCI))
plot(mod, dis="sp", type="n")
stems <- colSums(BCI)
orditorp(mod, "sp", label = cnam, priority=stems, pch="+", pcol="grey")

ordixyplot Trellis (Lattice) Plots for Ordination

Description

Functions ordicloud, ordisplom and ordixyplot provide an interface to plot ordination
results using Trellis functions cloud, splom and xyplot in package lattice.

Usage

ordixyplot(x, data = NULL, formula, display = "sites", choices = 1:3,
panel = "panel.ordi", aspect = "iso", envfit,
type = c("p", "biplot"), ...)

ordisplom(x, data=NULL, formula = NULL, display = "sites", choices = 1:3,
panel = "panel.ordi", type = "p", ...)

ordicloud(x, data = NULL, formula, display = "sites", choices = 1:3,
panel = "panel.ordi3d", prepanel = "prepanel.ordi3d", ...)

Arguments

x An ordination result that scores knows: any ordination result in vegan and
many others.

data Optional data to amend ordination results. The ordination results are found from
x, but you may give here data for other variables needed in plots. Typically these
are environmental data.

formula Formula to define the plots. A default formula will be used if this is omitted. The
ordination axes must be called by the same names as in the ordination results
(and these names vary among methods). In ordisplom, special character .
refers to the ordination result.

display The kind of scores: an argument passed to scores.
choices The axes selected: an argument passed to scores.
panel, prepanel

The names of the panel and prepanel functions.
aspect The aspect of the plot (passed to the lattice function).
envfit Result of envfit function displayed in ordixyplot. Please note that this

needs same choices as ordixyplot.
type The type of plot. This knows the same alternatives as panel.xyplot. In

addition ordixyplot has alternative "biplot"which displays fitted vectors
and factor centroids of envfit, or in constrained ordination, the biplot arrows
and factor centroids if envfit is not given.

... Arguments passed to scores methods or lattice functions.
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Details

The functions provide an interface to the corresponding lattice functions. All graphical parameters
are passed to the lattice function so that these graphs are extremely configurable. See Lattice
and xyplot, splom and cloud for details, usage and possibilities.

The argument x must always be an ordination result. The scores are extracted with vegan function
scores so that these functions work with all vegan ordinations and many others.

The formula is used to define the models. All functions have simple default formulas which
are used if formula is missing. If formula is omitted in ordisplom it produces a pairs plot of
ordination axes and variables in data. If formula is given, ordination results must be referred
to as . and other variables by their names. In other functions, the formula must use the names of
ordination scores and names of data.

The ordination scores are found from x, and data is optional. The data should contain other
variables than ordination scores to be used in plots. Typically, they are environmental variables
(typically factors) to define panels or plot symbols.

The proper work is done by the panel function. The layout can be changed by defining own panel
functions. See panel.xyplot, panel.splom and panel.cloud for details and survey of
possibilities.

Ordination graphics should always be isometric: same scale should be used in all axes. This is
controlled (and can be changed) with argument aspect in ordixyplot. In ordicloud the
isometric scaling is defined in panel and prepanel functions. You must replace these func-
tions if you want to have non-isometric scaling of graphs. You cannot select isometric scaling in
ordisplom.

Value

The function return Lattice objects of class "trellis".

Author(s)

Jari Oksanen

See Also

Lattice, xyplot, splom, cloud, panel.splom, panel.cloud

Examples

data(dune)
data(dune.env)
ord <- cca(dune)
## Pairs plots
ordisplom(ord)
ordisplom(ord, data=dune.env, choices=1:2)
ordisplom(ord, data=dune.env, form = ~ . | Management, groups=Manure)
## Scatter plot
ordixyplot(ord, data=dune.env, form = CA1 ~ CA2 | Management,
groups=Manure)

## Choose a different scaling
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ordixyplot(ord, scaling = 3)
## ... Slices of third axis
ordixyplot(ord, form = CA1 ~ CA2 | equal.count(CA3, 4), type = c("g","p"))
## Display environemntal variables
ordixyplot(ord, envfit = envfit(ord ~ Management + A1, dune.env, choices=1:3))
## 3D Scatter plots
ordicloud(ord, form = CA2 ~ CA3*CA1, groups = Manure, data = dune.env)
ordicloud(ord, form = CA2 ~ CA3*CA1 | Management, groups = Manure,

data = dune.env, auto.key = TRUE, type = c("p","h"))

permCheck Utility functions for permutation schemes

Description

permCheck provides checking of permutation schemes for validity. numPerms calculates the
maximum number of permutations possible under the current permutation scheme. allPerms
enumerates all possible permutations for the given scheme. getNumObs is a utility function to
return the number of observations for a range of R and ordination objects. permuplot produces
a graphical representation of the selected permutation design.

Usage

permCheck(object, control = permControl(), make.all = TRUE)

## S3 method for class 'permCheck':
summary(object, ...)

numPerms(object, control = permControl())

allPerms(n, control = permControl(), max = 9999,
observed = FALSE)

## S3 method for class 'allPerms':
summary(object, ...)

getNumObs(object, ...)

## Default S3 method:
getNumObs(object, ...)

## S3 method for class 'numeric':
getNumObs(object, ...)

## S3 method for class 'integer':
getNumObs(object, ...)

permuplot(n, control = permControl(), col = par("col"),
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hcol = "red", shade = "lightgrey", xlim = NULL, ylim = NULL,
inset = 0.1, main = NULL, sub = NULL, ann = par("ann"),
cex = par("cex"), ...)

Arguments

object an R object. Specifically, for getNumObs any object handled by scores,
data frames, matrices, and numeric and integer vectors. See Details for a com-
plete description, especially for numPerms. For summary.permCheck an
object of class "permCheck". For summary.allPerms an object of class
"allPerms".

control a list of control values describing properties of the permutation design, as re-
turned by a call to permControl.

make.all logical; should permCheck generate all possible permutations? Useful if want
to check permutation design but not produce the matrix of all permutations.

n the number of observations or an ’object’ from which the number of observa-
tions can be determined via getNumObs.

max the maximum number of permutations, below which complete enumeration will
be attempted. See Details.

observed logical, should the observed ordering of samples be returned as part of the com-
plete enumeration? Default is FALSE to facilitate usage in higher level func-
tions.

col, xlim, ylim, main, sub, ann, cex
Graphical parameters.

hcol Colour to use for highlighting observations and the border colour of the poly-
gons drawn when type = "strata".

shade The polygon shading colour (passed to argument col of function polygon)
when type = "strata".

inset Proportion of range of x and y coordinates to add to the plot x and y limits. Used
to create a bit of extra space around the margin of each plot.

... arguments to other methods. For permuplot graphical parameters can be
passed to plotting functions, though note that not all parameters will be accepted
gracefully at the moment.

Details

permCheck, allPerms, numPerms and permuplot are utility functions for working with the
new permutation schemes available in permuted.index2.

permCheck is used to check the current permutation schemes against the object to which it will be
applied. It calculates the maximum number of possible permutations for the number of observations
in object and the permutation scheme described by control. The returned object contains
component control, an object of class "permControl" suitably modified if permCheck
identifies a problem.

The main problem is requesting more permutations than possible with the number of observations
and the permutation design. In such cases, nperm is reduced to equal the number of possible
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permutations, and complete enumeration of all permutations is turned on (control$complete
is set to TRUE).

Alternatively, if the number of possible permutations is low, and less than control$minperm, it
is better to enumerate all possible permutations, and as such complete enumeration of all permuta-
tions is turned on (control$complete is set to TRUE).

Function numPerms returns the number of permutations for the passed object and the selected
permutation scheme. object can be one of a data frame, matrix, an object for which a scores
method exists, or a numeric or integer vector. In the case of a numeric or integer vector, a vector of
length 1 can be used and it will be expanded to a vector of length object (i.e., 1:object) before
computing the number of permutations. As such, object can be the number of observations not
just the object containing the observations.

Function allPerms enumerates all possible permutations for the number of observations and
the selected permutation scheme. It has print and summary methods. allPerms returns a
matrix containing all possible permutations, possibly containing the observed ordering (if argument
observed is TRUE). The rows of this matrix are the various permutations and the columns reflect
the number of samples.

With free permutation designs, and restricted permutation schemes with large numbers of obser-
vations, there are a potentially huge number of possible permutations of the samples. It would be
inefficient, not to mention incredibly time consuming, to enumerate them all. Storing all possible
permutations would also become problematic in such cases. To control this and guard against trying
to evaluate too large a number of permutations, if the number of possible permutations is larger than
max, allPerms exits with an error.

Function getNumObs is a simple generic function to return the number of observations in a range
of R objects. The default method will work for any object for which a scores method exists. This
includes matrices and data frames, as well as specific methods for numeric or integer vectors.

permuplot is a graphical utility function, which produces a graphical representation of a permu-
tation design. It takes the number of observations and an object returned by permControl as
arguments and produces a plot on the currently active device. If strata are present in the design, the
plotting region is split into sufficient plotting regions (one for each stratum), and the design in each
stratum plotted.

Free permutation designs are represented by plotting the observation number at random x and y
coordinates. Series designs (time series or line transects) are represented by plotting the observation
numbers comprising the series in a circle and the start of the permuted series is highlighted using
colour hcol. Grid designs are drawn on a regular grid and the top left observation in the original
grid is highlighted using colour hcol. Note the ordering used is R’s standard ordering for matrices
- columns are filled first.

Value

For permCheck a list containing the maximum number of permutations possible and an object of
class "permControl".

For allPerms, and object of class "allPerms", a matrix whose rows are the set of all possi-
ble permutations for the supplies number of observations and permutation scheme selected. The
matrix has two additional attributes control and observed. Attribute control contains the
argument control (possibly updated via permCheck). Attribute observed contains argument
observed.
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For numPerms, the (numeric) number of possible permutations.

For getNumObs, the (numeric) number of observations in object.

For permuplot, a plot on the currently active device.

Note

In general, mirroring "series" or "grid" designs doubles or quadruples, respectively,the num-
ber of permutations without mirroring (within levels of strata if present). This is not true in two
special cases:

1. In "grid" designs where the number of columns is equal to 2, and

2. In "series" designs where the number of observations in a series is equal to 2.

For example, with 2 observations there are 2 permutations for "series" designs:

1. 1-2, and

2. 2-1.

If these two permutations were mirrored, we would have:

1. 2-1, and

2. 1-2.

It is immediately clear that this is the same set of permutations without mirroring (if one reorders
the rows). A similar situation arises in "grid" designs where the number of columns per grid is
equal to 2. Note that the number of rows per grid is not an issue here.

Author(s)

Gavin Simpson

See Also

permuted.index2 and permControl.

Examples

## use example data from ?pyrifos
example(pyrifos)

## Demonstrate the maximum number of permutations for the pyrifos data
## under a series of permutation schemes

## no restrictions - lots of perms
(check1 <- permCheck(pyrifos, control = permControl(type = "free")))
summary(check1)

## no strata but data are series with no mirroring, so 132 permutations
permCheck(pyrifos, control = permControl(type = "series",

mirror = FALSE))
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## no strata but data are series with mirroring, so 264 permutations
permCheck(pyrifos, control = permControl(type = "series",

mirror = TRUE))

## unrestricted within strata
permCheck(pyrifos, control = permControl(strata = ditch,

type = "free"))

## time series within strata, no mirroring
permCheck(pyrifos, control = permControl(strata = ditch,

type = "series", mirror = FALSE))

## time series within strata, with mirroring
permCheck(pyrifos, control = permControl(strata = ditch,

type = "series", mirror = TRUE))

## time series within strata, no mirroring, same permutation within strata
permCheck(pyrifos, control = permControl(strata = ditch,

type = "series", constant = TRUE))

## time series within strata, with mirroring, same permutation within strata
permCheck(pyrifos, control = permControl(strata = ditch,

type = "series", mirror = TRUE, constant = TRUE))

## permute strata
permCheck(pyrifos, permControl(strata = ditch, type = "free",

permute.strata = TRUE))

## this should also also for arbitrary vectors
vec1 <- permCheck(1:100)
vec2 <- permCheck(1:100, permControl())
all.equal(vec1, vec2)
vec3 <- permCheck(1:100, permControl(type = "series"))
all.equal(100, vec3$n)
vec4 <- permCheck(1:100, permControl(type = "series", mirror = TRUE))
all.equal(vec4$n, 200)

## enumerate all possible permutations
fac <- gl(2,6)
ctrl <- permControl(type = "grid", mirror = FALSE, strata = fac,

constant = TRUE, nrow = 3, ncol = 2)
numPerms(1:12, control = ctrl)
(tmp <- allPerms(12, control = ctrl, observed = TRUE))
(tmp2 <- allPerms(12, control = ctrl))
## turn on mirroring
ctrl$mirror <- TRUE
numPerms(1:12, control = ctrl)
(tmp3 <- allPerms(12, control = ctrl, observed = TRUE))
(tmp4 <- allPerms(12, control = ctrl))
## prints out details of the permutation scheme as
## well as the matrix of permutations
summary(tmp)
summary(tmp2)



permCheck 115

## different numbers of observations per level of strata
fac <- factor(rep(1:3, times = c(3,2,2)))
## free permutations in levels of strata
numPerms(7, permControl(type = "free", strata = fac))
allPerms(7, permControl(type = "free", strata = fac))
## series permutations in levels of strata
numPerms(7, permControl(type = "series", strata = fac))
allPerms(7, permControl(type = "series", strata = fac))

## allPerms can work with a vector
vec <- c(3,4,5)
allPerms(vec)

## Tests for permuplot
n <- 25
## standard permutation designs
permuplot(n, permControl(type = "free"))
permuplot(n, permControl(type = "series"))
permuplot(n, permControl(type = "grid", nrow = 5, ncol = 5))

## restricted perms with mirroring
permuplot(n, permControl(type = "series", mirror = TRUE))
permuplot(n, permControl(type = "grid", nrow = 5, ncol = 5,

mirror = TRUE))

## perms within strata
fac <- gl(6, 20)
control <- permControl(type = "free", strata = fac)
permuplot(120, control = control, cex = 0.8)
control <- permControl(type = "series", strata = fac)
permuplot(120, control = control, cex = 0.8)
fac <- gl(6, 25)
control <- permControl(type = "grid", strata = fac,

nrow = 5, ncol = 5)
permuplot(150, control = control, cex = 0.8)

## perms within strata with mirroring
fac <- gl(6, 20)
control <- permControl(type = "series", strata = fac,

mirror = TRUE)
permuplot(120, control = control, cex = 0.8)
fac <- gl(6, 25)
control <- permControl(type = "grid", strata = fac,

nrow = 5, ncol = 5, mirror = TRUE)
permuplot(150, control = control, cex = 0.8)

## same perms within strata
fac <- gl(6, 20)
control <- permControl(type = "free", strata = fac,

constant = TRUE)
permuplot(120, control = control, cex = 0.8)
control <- permControl(type = "series", strata = fac,
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constant = TRUE)
permuplot(120, control = control, cex = 0.8)
fac <- gl(6, 25)
control <- permControl(type = "grid", strata = fac,

nrow = 5, ncol = 5, constant = TRUE)
permuplot(150, control = control, cex = 0.8)

## same perms within strata with mirroring
fac <- gl(6, 20)
control <- permControl(type = "series", strata = fac,

mirror = TRUE, constant = TRUE)
permuplot(120, control = control, cex = 0.8)
fac <- gl(6, 25)
control <- permControl(type = "grid", strata = fac,

nrow = 5, ncol = 5, mirror = TRUE,
constant = TRUE)

permuplot(150, control = control, cex = 0.8)

permat Matrix Permutation Algorithms for Presence-Absence and Count Data

Description

Individual (for count data) or incidence (for presence-absence data) based null models can be gener-
ated for community level simulations. Options for preserving characteristics of the original matrix
(rows/columns sums, matrix fill) and restricted permutations (within strata based on spatial units,
habitat classes or both) are discussed in the Details section. By using these functions, hypothesis
testing can be separated from the null model generation, thus several tests might be applied on the
same set of random matrices.

Usage

permatfull(m, fixedmar = "both", reg = NULL,
hab = NULL, mtype = "count", times = 100)

permatswap(m, reg = NULL, hab = NULL, mtype = "count",
method = "swap", times = 100, burnin = 10000, thin = 1000)

## S3 method for class 'permat':
plot(x, ...)
## S3 method for class 'permat':
summary(object, ...)
## S3 method for class 'summary.permat':
print(x, digits = 2, ...)

Arguments

m a community data matrix with plots (samples) as rows and species (taxa) as
columns.
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fixedmar character, stating which of the row/column sums should be preserved ("none",
"rows", "columns", "both").

reg numeric vector or factor with length same as nrow(m) for grouping rows
within strata (regions) for restricted permutations. Unique values or levels are
used.

hab numeric vector or factor with length same as nrow(m) for grouping rows
within strata (habitat classes) for restricted permutations. Unique values or lev-
els are used.

mtype matrix data type, either "count" for count data, or "prab" for presence-
absence type incidence data.

times number of permuted matrices.

method character for method used for the swap algorithm ("swap", "tswap", "backtrack")
as described for function commsimulator. If mtype="count" only "swap"
is available.

burnin number of null communities discarded before proper analysis in sequential ("swap",
"tswap") methods.

thin number of discarded permuted matrices between two evaluations in sequential
("swap", "tswap") methods.

x, object object of class "permat"

digits number of digits used for rounding.

... other arguments passed to methods.

Details

The function permatfull is useful when matrix fill is allowed to vary, and matrix type is count.
The fixedmar argument is used to set constraints for permutation. If none of the margins
are fixed, cells are randomised within the matrix. If rows or columns are fixed, cells within
rows or columns are randomised, respectively. If both margins are fixed, the r2dtable func-
tion is used that is based on Patefield’s (1981) algorithm. For presence absence data, matrix fill
should be necessarily fixed, and permatfull is a wrapper for the function commsimulator.
The r00, r0, c0, quasiswap algorithms of commsimulator are used for "none",
"rows", "columns", "both" values of the fixedmar argument, respectively

The function permatswap is useful when matrix fill (i.e. the proportion of empty cells) should be
kept constant. permatswap uses different kinds of swap algorithms, and row and columns sums
are fixed in all cases. For presence-absence data, the swap and tswapmethods of commsimulator
can be used. For count data, an experimental swap algorithm (’swapcount’) is implemented that re-
sults in permuted matrices with fixed marginals and matrix fill at the same time. However, it seems
that this model may not give true random matrices, and its use should be avoided in generating Null
hypotheses. The code is provided only for methods comparisons, and may be removed from the
future versions of vegan.

The ’swapcount’ algorithm tries to find 2x2 submatrices (identified by 2 random row and 2 random
column indices), that can be swapped in order to leave column and row totals and fill unchanged.
First, the algorithm finds the largest value in the submatrix that can be swapped (d) and whether in
diagonal or antidiagonal way. Submatrices that contain values larger than zero in either diagonal
or antidiagonal position can be swapped. Swap means that the values in diagonal or antidiagonal



118 permat

positions are decreased by d, while remaining cells are increased by d. A swap is made only if fill
doesn’t change.

Constraints on row/colum sums, matrix fill, total sum and sums within strata can be checked by the
summary method. plot method is for visually testing the randomness of the permuted matrices,
especially for the swap algorithms. If there are any tendency in the graph, higher burnin and
thin values can help.

Unrestricted and restricted permutations: if both reg and hab are NULL, functions perform un-
restricted permutations. If either of the two is given, it is used as is for restricted permutations. If
both are given, interaction is used for restricted permutations. Each strata should contain at least 2
rows in order to perform randomization (in case of low row numbers, swap algorithms can be rather
slow).

Value

Functions permatfull and permatswap return an object of class "permat".

call the function call.

orig the original data matrix used for permutations.

perm a list of permuted matrices with length times.

specs a list of other specifications (variable in length, depending on the function used):
reg, hab, burnin, thin.

summary.permat returns a list containing mean Bray-Curtis dissimilarities calculated pairvise
among original and permuted matrices, and check results of the constraints.

Author(s)

Péter Sólymos, 〈solymos@ualberta.ca〉; Jari Oksanen translated the original ’swapcount’ algorithm
for count data into C

References

Original references for presence-absence swap methods are given on help page of commsimulator.

Patefield, W. M. (1981) Algorithm AS159. An efficient method of generating r x c tables with given
row and column totals. Applied Statistics 30, 91-97.

See Also

commsimulator, r2dtable, sample

Examples

## A simple artificial community data matrix.
m <- matrix(c(

1,3,2,0,3,1,
0,2,1,0,2,1,
0,0,1,2,0,3,
0,0,0,1,4,3
), 4, 6, byrow=TRUE)
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## Using the swap algorithm to create a
## list of permuted matrices, where
## row/columns sums and matrix fill are preserved:
x1 <- permatswap(m, burnin = 1000, thin = 100)
summary(x1)
plot(x1)
## Unrestricted permutation retaining
## row/columns sums but not matrix fill:
x2 <- permatfull(m)
summary(x2)
plot(x2)
## Unrestricted permutation of presence-absence type
## not retaining row/columns sums:
x3 <- permatfull(m, "none", mtype="prab")
x3$orig ## note: original matrix is binarized!
summary(x3)
## Restricted permutation,
## check sums within strata:
x4 <- permatfull(m, reg=c(1,1,2,2))
summary(x4)

permuted.index2 Unrestricted and restricted permutations

Description

Unrestricted and restricted permutation designs for time series, line transects, spatial grids and
blocking factors.

Usage

permuted.index2(n, control = permControl())

permControl(strata = NULL, nperm = 199, complete = FALSE,
type = c("free", "series", "grid"),
permute.strata = FALSE,
maxperm = 9999, minperm = 99,
mirror = FALSE, constant = FALSE,
ncol = NULL, nrow = NULL,
all.perms = NULL)

permute(i, n, control)

Arguments

n numeric; the length of the returned vector of permuted values. Usually the num-
ber of observations under consideration.

control a list of control values describing properties of the permutation design, as re-
turned by a call to permControl.
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strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

nperm the number of permutations.

complete logical; should complete enumeration of all permutations be performed?

type the type of permutations required. One of "free", "series", or "grid".
See Details.

permute.strata
logical; should strata be permuted? See Details.

maxperm the maximum number of permutations to perform. Currently unused.

minperm the lower limit to the number of possible permutations at which complete enu-
meration is performed. See argument complete and Details, below.

mirror logical; should mirroring of sequences be allowed?

constant logical; should the same permutation be used within each level of strata? If
FALSE a separate, possibly restricted, permutation is produced for each level of
strata.

ncol, nrow numeric; the number of columns and rows of samples in the spatial grid respec-
tiavly.

all.perms an object of class allPerms, the result of a call to allPerms.

i integer; row of control$all.perms to return.

Details

permuted.index2 can generate permutations for a wide range of restricted permutation schemes.
A small selection of the available combinations of options is provided in the Examples section be-
low.

Argument mirror determines whether grid or series permutations can be mirrored. Consider the
sequence 1,2,3,4. The relationship between consecutive observations is preserved if we reverse
the sequence to 4,3,2,1. If there is no inherent direction in your experimental design, mirrored
permutations can be considered part of the Null model, and as such increase the number of possible
permutations. The default is to not use mirroring so you must explicitly turn this on using mirror
= TRUE in permControl.

To permute strata rather than the observations within the levels of strata, use permute.strata
= TRUE. However, note that the number of observations within each level of strata must be equal!

For some experiments, such as BACI designs, one might wish to use the same permutation within
each level of strata. This is controlled by argument constant. If constant = TRUE then
the same permutation will be generated for each level of strata. The default is constant =
FALSE.

permute is a higher level utility function for use in a loop within a function implementing a per-
mutation test. The main purpose of permute is to return the correct permutation in each iteration
of the loop, either a random permutation from the current design or the next permutation from
control$all.perms if it is not NULL and control$complete is TRUE.
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Value

For permuted.index2 a vector of length n containing a permutation of the observations 1, . . . ,
n using the permutation scheme described by argument control.

For permControl a list with components for each of the possible arguments.

Note

permuted.index2 is currently used in one Vegan function; permutest.betadisper. Over
time, the other functions that currently use the older permuted.index will be updated to use
permuted.index2.

Author(s)

Gavin Simpson

See Also

permCheck, a utility function for checking permutation scheme described by permControl.

Examples

set.seed(1234)

## unrestricted permutations
permuted.index2(20)

## observations represent a time series of line transect
permuted.index2(20, control = permControl(type = "series"))

## observations represent a time series of line transect
## but with mirroring allowed
permuted.index2(20, control = permControl(type = "series", mirror = TRUE))

## observations represent a spatial grid
perms <- permuted.index2(20, permControl(type = "grid",

ncol = 4, nrow = 5))
## view the permutation as a grid
matrix(matrix(1:20, nrow = 5, ncol = 4)[perms], ncol = 4, nrow = 5)

## random permutations in presence of strata
block <- gl(4, 5)
permuted.index2(20, permControl(strata = block, type = "free"))
## as above but same random permutation within strata
permuted.index2(20, permControl(strata = block, type = "free",

constant = TRUE))

## time series within each level of block
permuted.index2(20, permControl(strata = block, type = "series"))
## as above, but with same permutation for each level
permuted.index2(20, permControl(strata = block, type = "series",

constant = TRUE))
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## spatial grids within each level of block
permuted.index2(100, permControl(strata = block, type = "grid",

ncol = 5, nrow = 5))
## as above, but with same permutation for each level
permuted.index2(100, permControl(strata = block, type = "grid",

ncol = 5, nrow = 5, constant = TRUE))

## permuting levels of block instead of observations
permuted.index2(20, permControl(strata = block, type = "free",

permute.strata = TRUE))

## Simple function using permute() to assess significance
## of a t.test
pt.test <- function(x, group, control) {

## function to calculate t
t.statistic <- function(x, y) {

m <- length(x)
n <- length(y)
## means and variances, but for speed
xbar <- .Internal(mean(x))
ybar <- .Internal(mean(y))
xvar <- .Internal(cov(x, NULL, 1, FALSE))
yvar <- .Internal(cov(y, NULL, 1, FALSE))
pooled <- sqrt(((m-1)*xvar + (n-1)*yvar) / (m+n-2))
(xbar - ybar) / (pooled * sqrt(1/m + 1/n))

}
## check the control object
control <- permCheck(x, control)$control
## number of observations
nobs <- getNumObs(x)
## group names
lev <- names(table(group))
## vector to hold results, +1 because of observed t
t.permu <- numeric(length = control$nperm) + 1
## calculate observed t
t.permu[1] <- t.statistic(x[group == lev[1]], x[group == lev[2]])
## generate randomisation distribution of t
for(i in seq_along(t.permu)) {

## return a permutation
want <- permute(i, nobs, control)
## calculate permuted t
t.permu[i+1] <- t.statistic(x[want][group == lev[1]],

x[want][group == lev[2]])
}
## pval from permutation test
pval <- sum(abs(t.permu) >= abs(t.permu[1])) / (control$nperm + 1)
## return value
return(list(t.stat = t.permu[1], pval = pval))

}

## generate some data with slightly different means
set.seed(1234)
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gr1 <- rnorm(20, mean = 9)
gr2 <- rnorm(20, mean = 10)
dat <- c(gr1, gr2)
## grouping variable
grp <- gl(2, 20, labels = paste("Group", 1:2))
## create the permutation design
control <- permControl(type = "free", nperm = 999)
## perform permutation t test
perm.val <- pt.test(dat, grp, control)
perm.val

## compare perm.val with the p-value from t.test()
t.test(dat ~ grp, var.equal = TRUE)

permutest.betadisper
Permutation test of ultivariate homogeneity of groups dispersions
(variances)

Description

Implements a permutation-based test of multivariate homogeneity of group dispersions (variances)
for the results of a call to betadisper.

Usage

## S3 method for class 'betadisper':
permutest(x, pairwise = FALSE,

control = permControl(nperm = 999), ...)

Arguments

x an object of class "betadisper", the result of a call to betadisper.

pairwise logical; perform pairwise comparisons of group means?

control a list of control values for the permutations to replace the default values returned
by the function permControl

... Arguments passed to other methods.

Details

To test if one or more groups is more variable than the others, ANOVA of the distances to group
centroids can be performed and parametric theory used to interpret the significance of F. An al-
ternative is to use a permutation test. permutest.betadisper permutes model residuals to
generate a permutation distribution of F under the Null hypothesis of no difference in dispersion
between groups.

Pairwise comprisons of group mean dispersions can be performed by setting argument pairwise
to TRUE. A classicial t test is performed on the pairwise group dispersions. This is combined with a
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permutation test based on the t statistic calculated on pariwise group dispersions. An alternative to
the classical comparison of group dispersions, is to calculate Tukey’s Honest Significant Differences
between groups, via TukeyHSD.betadisper.

Value

permutest.betadisper returns a list of class "permutest.betadisper" with the fol-
lowing components:

tab the ANOVA table which is an object inheriting from class "data.frame".

pairwise a list with components observed and permuted containing the observed
and permuted p-values for pairwise comparisons of group mean distances (dis-
persions or variances).

groups character; the levels of the grouping factor.

control a list, the result of a call to permControl.

Author(s)

Gavin L. Simpson

References

Anderson, M.J. (2006) Distance-based tests for homogeneity of multivariate dispersions. Biomet-
rics 62(1), 245–253.

Anderson, M.J., Ellingsen, K.E. & McArdle, B.H. (2006) Multivariate dispersion as a measure of
beta diversity. Ecology Letters 9(6), 683–693.

See Also

For the main fitting function see betadisper. For an alternative approach to determining which
groups are more variable, see TukeyHSD.betadisper.

Examples

data(varespec)

## Bray-Curtis distances between samples
dis <- vegdist(varespec)

## First 16 sites grazed, remaining 8 sites ungrazed
groups <- factor(c(rep(1,16), rep(2,8)), labels = c("grazed","ungrazed"))

## Calculate multivariate dispersions
mod <- betadisper(dis, groups)
mod

## Perform test
anova(mod)

## Permutation test for F
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permutest(mod, pairwise = TRUE)

## Tukey's Honest Significant Differences
(mod.HSD <- TukeyHSD(mod))
plot(mod.HSD)

plot.cca Plot or Extract Results of Constrained Correspondence Analysis or
Redundancy Analysis

Description

Functions to plot or extract results of constrained correspondence analysis (cca), redundancy anal-
ysis (rda) or constrained analysis of principal coordinates (capscale).

Usage

## S3 method for class 'cca':
plot(x, choices = c(1, 2), display = c("sp", "wa", "cn"),

scaling = 2, type, xlim, ylim, const, ...)
## S3 method for class 'cca':
text(x, display = "sites", labels, choices = c(1, 2), scaling = 2,

arrow.mul, head.arrow = 0.05, select, ...)
## S3 method for class 'cca':
points(x, display = "sites", choices = c(1, 2), scaling = 2,

arrow.mul, head.arrow = 0.05, select, ...)
## S3 method for class 'cca':
scores(x, choices=c(1,2), display=c("sp","wa","cn"), scaling=2, ...)
## S3 method for class 'rda':
scores(x, choices=c(1,2), display=c("sp","wa","cn"), scaling=2,

const, ...)
## S3 method for class 'cca':
summary(object, scaling = 2, axes = 6, display = c("sp", "wa",

"lc", "bp", "cn"), digits = max(3, getOption("digits") - 3), ...)
## S3 method for class 'summary.cca':
print(x, digits = x$digits, head = NA, tail = head, ...)
## S3 method for class 'summary.cca':
head(x, n = 6, tail = 0, ...)
## S3 method for class 'summary.cca':
tail(x, n = 6, head = 0, ...)

Arguments

x, object A cca result object.

choices Axes shown.
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display Scores shown. These must some of the alternatives species or sp for species
scores, sites or wa for site scores, lc for linear constraints or “LC scores”,
or bp for biplot arrows or cn for centroids of factor constraints instead of an
arrow.

scaling Scaling for species and site scores. Either species (2) or site (1) scores are
scaled by eigenvalues, and the other set of scores is left unscaled, or with 3 both
are scaled symmetrically by square root of eigenvalues. Corresponding negative
values can be used in cca to additionally multiply results with

√
(1/(1 − λ)).

This scaling is know as Hill scaling (although it has nothing to do with Hill’s
rescaling of decorana). With corresponding negative values inrda, species
scores are divided by standard deviation of each species and multiplied with an
equalizing constant. Unscaled raw scores stored in the result can be accessed
with scaling = 0.

type Type of plot: partial match to text for text labels, points for points, and
none for setting frames only. If omitted, text is selected for smaller data sets,
and points for larger.

xlim, ylim the x and y limits (min,max) of the plot.

labels Optional text to be used instead of row names.

arrow.mul Factor to expand arrows in the graph. Arrows will be scaled automatically to fit
the graph if this is missing.

head.arrow Default length of arrow heads.

select Items to be displayed. This can either be a logical vector which is TRUE for
displayed items or a vector of indices of displayed items.

const General scaling constant to rda scores. The default is to use constant to give
biplot scores, or scores that approximate original data.

axes Number of axes in summaries.

digits Number of digits in output.
n, head, tail

Number of rows printed from the head and tail of species and site scores. Default
NA prints all.

... Parameters passed to other functions.

Details

Same plot function will be used for cca and rda. This produces a quick, standard plot with
current scaling.

The plot function sets colours (col), plotting characters (pch) and character sizes (cex) to cer-
tain standard values. For a fuller control of produced plot, it is best to call plotwith type="none"
first, and then add each plotting item separately using text.cca or points.cca functions.
These use the default settings of standard text and points functions and accept all their param-
eters, allowing a full user control of produced plots.

Environmental variables receive a special treatment. With display="bp", arrows will be drawn.
These are labelled with text and unlabelled with points. The basic plot function uses a
simple (but not very clever) heuristics for adjusting arrow lengths to plots, but the user can give
the expansion factor in mul.arrow. With display="cn" the centroids of levels of factor
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variables are displayed (these are available only if there were factors and a formula interface was
used in cca or rda). With this option continuous variables still are presented as arrows and ordered
factors as arrows and centroids.

If you want to have still a better control of plots, it is better to produce them using primitive
plot commands. Function scores helps in extracting the needed components with the selected
scaling.

Function summary lists all scores and the output can be very long. You can suppress scores by
setting axes = 0 or display = NA or display = NULL. You can display some first or last
(or both) rows of scores by using head or tail or explicit print command for the summary.

Palmer (1993) suggested using linear constraints (“LC scores”) in ordination diagrams, because
these gave better results in simulations and site scores (“WA scores”) are a step from constrained
to unconstrained analysis. However, McCune (1997) showed that noisy environmental variables
(and all environmental measurements are noisy) destroy “LC scores” whereas “WA scores” were
little affected. Therefore the plot function uses site scores (“WA scores”) as the default. This is
consistent with the usage in statistics and other functions in R (lda, cancor).

Value

The plot function returns invisibly a plotting structure which can be used by function identify.ordiplot
to identify the points or other functions in the ordiplot family.

Note

Package ade4 has function cca which returns constrained correspondence analysis of the same
class as the vegan function. If you have results of ade4 in your working environment, vegan
functions may try to handle them and fail with cryptic error messages. However, there is a simple
utility function ade2vegancca which tries to translate ade4 cca results to vegan cca results so
that some vegan functions may work partially with ade4 objects (with a warning).

Author(s)

Jari Oksanen

See Also

cca, rda and capscale for getting something to plot, ordiplot for an alternative plotting
routine and more support functions, and text, points and arrows for the basic routines.

Examples

data(dune)
data(dune.env)
mod <- cca(dune ~ A1 + Moisture + Management, dune.env)
plot(mod, type="n")
text(mod, dis="cn")
points(mod, pch=21, col="red", bg="yellow", cex=1.2)
text(mod, "species", col="blue", cex=0.8)
## Limited output of 'summary'
head(summary(mod), tail=2)
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prc Principal Response Curves for Treatments with Repeated Observa-
tions

Description

Principal Response Curves (PRC) are a special case of Redundancy Analysis (rda) for multivariate
responses in repeated observation design. They were originally suggested for ecological communi-
ties. They should be easier to interpret than traditional constrained ordination.

Usage

prc(response, treatment, time, ...)
## S3 method for class 'prc':
summary(object, axis = 1, scaling = 2, digits = 4, ...)
## S3 method for class 'prc':
plot(x, species = TRUE, select, scaling = 2, axis = 1, type = "l",

xlab, ylab, ylim, lty = 1:5, col = 1:6, pch, legpos, cex = 0.8,
...)

Arguments

response Multivariate response data. Typically these are community (species) data. If the
data are counts, they probably should be log transformed prior to the analysis.

treatment A factor for treatments.

time An unordered factor defining the observations times in the repeated design.

object, x An prc result object.

axis Axis shown (only one axis can be selected).

scaling Scaling of species scores, identical to the scaling in scores.rda.

digits Number of significant digits displayed.

species Display species scores.

select Vector to select displayed species. This can be a vector of indices or a logical
vector which is TRUE for the selected species

type Type of plot: "l" for lines, "p" for points or "b" for both.

xlab, ylab Text to replace default axis labels.

ylim Limits for the vertical axis.
lty, col, pch

Line type, colour and plotting characters (defaults supplied).

legpos The position of the legend. A guess is made if this is not supplied, and NA
will suppress legend.

cex Character expansion for symbols and species labels.

... Other parameters passed to functions.
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Details

PRC is a special case of rda with a single factor for treatment and a single factor for time
points in repeated observations. In vegan, the corresponding rdamodel is defined as rda(response
~ treatment * time + Condition(time)). Since the time appears twice in the model
formula, its main effects will be aliased, and only interaction terms are available, and will be used
in PRC. Instead of usual multivariate ordination diagrams, PRC uses canonical (regression) coeffi-
cients and species scores for a single axis. All that the current functions do is to provide a special
summary and plot methods that display the rda results in the PRC fashion. With default con-
trasts (contr.treatment) the coefficients are contrasts against the first level, and the levels
must be arranged so that the first level is the control.

Function summary prints the species scores and the coefficients. Function plot plots coefficients
against time using matplot, and has similar defaults. The graph (and PRC) is meaningful only
if the first treatment level is the control, as the results are contrasts to the first level when
unordered factors are used. The plot also displays species scores on the right vertical axis using
function linestack. Typically the number of species is so high that not all can be displayed
with the default settings, but users can reduce character size or padding (air) in linestack, or
select only a subset of the species. A legend will be displayed unless suppressed with legpos
= NA, and the functions tries to guess where to put the legend if legpos is not supplied.

Value

The function is a special case of rda and returns its result object (see cca.object). However, a
special summary and plot methods display returns differently than in rda.

Warning

The first level of treatment must be the control, and the treatment contrasts must be used (see
contr.treatment), so that results are expressed as contrasts to the control. The function works
with other contrast types also, but then the user must take care that the resulting coefficients are
meaningful. The time must be an unordered factor.

Author(s)

Jari Oksanen

References

van den Brink, P.J. & ter Braak, C.J.F. (1999). Principal response curves: Analysis of time-
dependent multivariate responses of biological community to stress. Environmental Toxicology
and Chemistry, 18, 138–148.

See Also

rda, anova.cca.
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Examples

# Chlorpyrifos experiment and experimental design
data(pyrifos)
week <- gl(11, 12, labels=c(-4, -1, 0.1, 1, 2, 4, 8, 12, 15, 19, 24))
dose <- factor(rep(c(0.1, 0, 0, 0.9, 0, 44, 6, 0.1, 44, 0.9, 0, 6), 11))
# PRC
mod <- prc(pyrifos, dose, week)
mod # RDA
summary(mod) # PRC
logabu <- colSums(pyrifos)
plot(mod, select = logabu > 100)
# Permutations should be done only within one week, and we only
# are interested on the first axis
anova(mod, strata = week, first=TRUE)

predict.cca Prediction Tools for [Constrained] Ordination (CCA, RDA, DCA, CA,
PCA)

Description

Function predict can be used to find site and species scores with new data sets.

Usage

## S3 method for class 'cca':
fitted(object, model = c("CCA", "CA"),

type = c("response", "working"), ...)
## S3 method for class 'cca':
predict(object, newdata, type = c("response", "wa", "sp", "lc"),

rank = "full", model = c("CCA", "CA"), scaling = FALSE, ...)
calibrate.cca(object, newdata, rank = "full", ...)
## S3 method for class 'cca':
coef(object, ...)
## S3 method for class 'decorana':
predict(object, newdata, type = c("response", "sites", "species"),

rank = 4, ...)

Arguments

object A result object from cca, rda, capscale or decorana.

model Show constrained ("CCA") or unconstrained ("CA") results.

newdata New data frame to be used in prediction of species and site scores or for calibra-
tion. Usually this a new community data frame, but for predict.cca type
= "lc" it must be an environment data frame, and for type = "response"
this is ignored.
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type The type of prediction, fitted values or residuals: In fitted and residuals,
"response" scales results so that the same ordination gives the same results,
and "working" gives the values used internally, that is after Chi-square stan-
dardization in cca and scaling and centring in rda. In predict "response"
gives an approximation of the original data matrix, "wa" the site scores as
weighted averages of the community data, "lc" the site scores as linear combi-
nations of environmental data, and "sp" the species scores. In predict.decorana
the alternatives are scores for "sites" or "species".

rank The rank or the number of axes used in the approximation. The default is to use
all axes (full rank) of the "model" or all available four axes in predict.decorana.

scaling Scaling or predicted scores with the same meaning as in cca, rda and capscale.

... Other parameters to the functions.

Details

Function fitted gives the approximation of the original data matrix from the ordination result ei-
ther in the scale of the response or as scaled internally by the function. Function residuals gives
the approximation of the original data from the unconstrained ordination. With argument type =
"response" the fitted.cca and residuals.cca function both give the same marginal
totals as the original data matrix, and their entries do not add up to the original data. They are
defined so that for model mod <- cca(y ~ x), cca(fitted(mod)) is equal to constrained
ordination, and cca(residuals(mod)) is equal to unconstrained part of the ordination.

Function predict can find the estimate of the original data matrix (type = "response")
with any rank. With rank = "full" it is identical to fitted. In addition, the function can
find the species scores or site scores from the community data matrix. The function can be used
with new data, and it can be used to add new species or site scores to existing ordinations. The
function returns (weighted) orthonormal scores by default, and you must specify explicit scaling
to add those scores to ordination diagrams. With type = "wa" the function finds the site scores
from species scores. In that case, the new data can contain new sites, but species must match in the
original and new data. With type = "sp" the function finds species scores from site constraints
(linear combination scores). In that case the new data can contain new species, but sites must match
in the original and new data. With type = "lc" the function finds the linear combination scores
for sites from environmental data. In that case the new data frame must contain all constraining
and conditioning environmental variables of the model formula. If a completely new data frame is
created, extreme care is needed defining variables similarly as in the original model, in particular
with (ordered) factors. If ordination was performed with the formula interface, the newdata also
can be a data frame or matrix, but extreme care is needed that the columns match in the original and
newdata.

Function calibrate.cca finds estimates of constraints from community ordination or "wa"
scores from cca, rda and capscale. This is often known as calibration, bioindication or en-
vironmental reconstruction. Basically, the method is similar to projecting site scores onto biplot
arrows, but it uses regression coefficients. The function can be called with newdata so that cross-
validation is possible. The newdata may contain new sites, but species must match in the original
and new data The function does not work with ‘partial’ models with Condition term, and it
cannot be used with newdata for capscale results. The results may only be interpretable for
continuous variables.
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Function coef will give the regression coefficients from centred environmental variables (con-
straints and conditions) to linear combination scores. The coefficients are for unstandardized envi-
ronmental variables. The coefficients will be NA for aliased effects.

Function predict.decorana is similar to predict.cca. However, type = "species"
is not available in detrended correspondence analysis (DCA), because detrending destroys the mu-
tual reciprocal averaging (except for the first axis when rescaling is not used). Detrended CA does
not attempt to approximate the original data matrix, so type = "response" has no meaning in
detrended analysis (except with rank = 1).

Value

The functions return matrices or vectors as is appropriate.

Author(s)

Jari Oksanen.

References

Greenacre, M. J. (1984). Theory and applications of correspondence analysis. Academic Press,
London.

See Also

cca, rda, capscale, decorana, vif, goodness.cca.

Examples

data(dune)
data(dune.env)
mod <- cca(dune ~ A1 + Management + Condition(Moisture), data=dune.env)
# Definition of the concepts 'fitted' and 'residuals'
mod
cca(fitted(mod))
cca(residuals(mod))
# Remove rare species (freq==1) from 'cca' and find their scores
# 'passively'.
freq <- specnumber(dune, MARGIN=2)
freq
mod <- cca(dune[, freq>1] ~ A1 + Management + Condition(Moisture), dune.env)
predict(mod, type="sp", newdata=dune[, freq==1], scaling=2)
# New sites
predict(mod, type="lc", new=data.frame(A1 = 3, Management="NM", Moisture="2"), scal=2)
# Calibration and residual plot
mod <- cca(dune ~ A1 + Moisture, dune.env)
pred <- calibrate.cca(mod)
pred
with(dune.env, plot(A1, pred[,"A1"] - A1, ylab="Prediction Error"))
abline(h=0)
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procrustes Procrustes Rotation of Two Configurations and PROTEST

Description

Function procrustes rotates a configuration to maximum similarity with another configuration.
Function protest tests the non-randomness (‘significance’) between two configurations.

Usage

procrustes(X, Y, scale = TRUE, symmetric = FALSE, scores = "sites", ...)
## S3 method for class 'procrustes':
summary(object, digits = getOption("digits"), ...)
## S3 method for class 'procrustes':
plot(x, kind=1, choices=c(1,2), xlab, ylab, main,

ar.col = "blue", len=0.05, ...)
## S3 method for class 'procrustes':
points(x, display = c("target", "rotated"), ...)
## S3 method for class 'procrustes':
lines(x, type = c("segments", "arrows"), choices = c(1, 2), ...)
## S3 method for class 'procrustes':
residuals(object, ...)
## S3 method for class 'procrustes':
fitted(object, truemean = TRUE, ...)
protest(X, Y, scores = "sites", permutations = 1000, strata, ...)

Arguments

X Target matrix

Y Matrix to be rotated.

scale Allow scaling of axes of Y.

symmetric Use symmetric Procrustes statistic (the rotation will still be non-symmetric).

scores Kind of scores used. This is the display argument used with the correspond-
ing scores function: see scores, scores.cca and scores.cca for al-
ternatives.

x, object An object of class procrustes.

digits Number of digits in the output.

kind For plot function, the kind of plot produced: kind = 1 plots shifts in two
configurations, kind = 0 draws a corresponding empty plot, and kind = 2
plots an impulse diagram of residuals.

choices Axes (dimensions) plotted.

xlab, ylab Axis labels, if defaults unacceptable.

main Plot title, if default unacceptable.

display Show only the "target" or "rotated" matrix as points.



134 procrustes

type Combine target and rotated points with line segments or arrows.

truemean Use the original range of target matrix instead of centring the fitted values.

permutations Number of permutation to assess the significance of the symmetric Procrustes
statistic.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

ar.col Arrow colour.

len Width of the arrow head.

... Other parameters passed to functions. In procrustes and protest parame-
ters are passed to scores, in graphical functions to underlying graphical func-
tions.

Details

Procrustes rotation rotates a matrix to maximum similarity with a target matrix minimizing sum of
squared differences. Procrustes rotation is typically used in comparison of ordination results. It is
particularly useful in comparing alternative solutions in multidimensional scaling. If scale=FALSE,
the function only rotates matrix Y. If scale=TRUE, it scales linearly configuration Y for maximum
similarity. Since Y is scaled to fit X, the scaling is non-symmetric. However, with symmetric=TRUE,
the configurations are scaled to equal dispersions and a symmetric version of the Procrustes statistic
is computed.

Instead of matrix, X and Y can be results from an ordination from which scores can extract results.
Function procrustes passes extra arguments to scores, scores.cca etc. so that you can
specify arguments such as scaling.

Function plot plots a procrustes object and returns invisibly an ordiplot object so that
function identify.ordiplot can be used for identifying points. The items in the ordiplot
object are called heads and pointswith kind=1 (ordination diagram) and siteswith kind=2
(residuals). In ordination diagrams, the arrow heads point to the target configuration, which may
be either logical or illogical. Target and original rotated axes are shown as cross hairs in two-
dimensional Procrustes analysis, and with a higher number of dimensions, the rotated axes are
projected onto plot with their scaled and centred range. Function plot passes parameters to under-
lying plotting functions. For full control of plots, you can draw the axes using plot with kind =
0, and then add items with points or lines. These functions pass all parameters to the underly-
ing functions so that you can select the plotting characters, their size, colours etc., or you can select
the width, colour and type of line segments or arrows, or you can select the orientation and head
width of arrows.

Function residuals returns the pointwise residuals, and fitted the fitted values, either cen-
tred to zero mean (if truemean=FALSE) or with the original scale (these hardly make sense if
symmetric = TRUE). In addition, there are summary and print methods.

If matrix X has a lower number of columns than matrix Y, then matrix X will be filled with zero
columns to match dimensions. This means that the function can be used to rotate an ordination
configuration to an environmental variable (most practically extracting the result with the fitted
function).

Function protest calls procrustes(..., symmetric = TRUE) repeatedly to estimate
the ‘significance’ of the Procrustes statistic. Function protest uses a correlation-like statistic
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derived from the symmetric Procrustes sum of squares ss as r =
√

(1− ss), and sometimes called
m12. Function protest has own print method, but otherwise uses procrustes methods.
Thus plot with a protest object yields a “Procrustean superimposition plot.”

Value

Function procrustes returns an object of class procrustes with items. Function protest
inherits from procrustes, but amends that with some new items:

Yrot Rotated matrix Y.

X Target matrix.

ss Sum of squared differences between X and Yrot.

rotation Orthogonal rotation matrix.

translation Translation of the origin.

scale Scaling factor.

symmetric Type of ss statistic.

call Function call.

t0 This and the following items are only in class protest: Procrustes correlation
from non-permuted solution.

t Procrustes correlations from permutations.

signif ‘Significance’ of t

permutations Number of permutations.

strata The name of the stratifying variable.
stratum.values

Values of the stratifying variable.

Note

The function protest follows Peres-Neto & Jackson (2001), but the implementation is still after
Mardia et al. (1979).

Author(s)

Jari Oksanen

References

Mardia, K.V., Kent, J.T. and Bibby, J.M. (1979). Multivariate Analysis. Academic Press.

Peres-Neto, P.R. and Jackson, D.A. (2001). How well do multivariate data sets match? The advan-
tages of a Procrustean superimposition approach over the Mantel test. Oecologia 129: 169-178.

See Also

isoMDS, initMDS for obtaining objects for procrustes, and mantel for an alternative to
protest without need of dimension reduction.
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Examples

data(varespec)
vare.dist <- vegdist(wisconsin(varespec))
library(MASS) ## isoMDS
mds.null <- isoMDS(vare.dist, tol=1e-7)
mds.alt <- isoMDS(vare.dist, initMDS(vare.dist), maxit=200, tol=1e-7)
vare.proc <- procrustes(mds.alt, mds.null)
vare.proc
summary(vare.proc)
plot(vare.proc)
plot(vare.proc, kind=2)
residuals(vare.proc)

pyrifos Response of Aquatic Invertebrates to Insecticide Treatment

Description

The data are log transformed abundances of aquatic invertebrate in twelve ditches studied in eleven
times before and after an insecticide treatment.

Usage

data(pyrifos)

Format

A data frame with 132 observations on the log-transformed abundances of 178 species. There are
only twelve sites (ditches, mesocosms), but these were studied repeatedly in eleven occasions. The
treatment levels, treatment times, or ditch ID’s are not in the data frame, but the data are very
regular, and the example below shows how to obtain these external variables.

Details

This data set was obtained from an experiment in outdoor experimental ditches. Twelve mesocosms
were allocated at random to treatments; four served as controls, and the remaining eight were treated
once with the insecticide chlorpyrifos, with nominal dose levels of 0.1, 0.9, 6, and 44 µg/ L in two
mesocosms each. The example data set invertebrates. Sampling was done 11 times, from week -4
pre-treatment through week 24 post-treatment, giving a total of 132 samples (12 mesocosms times
11 sampling dates), see van den Brink & ter Braak (1999) for details. The data set contains only the
species data, but the example below shows how to obtain the treatment, time and ditch ID variables.

Source

CANOCO 4 example data, with the permission of Cajo J. F. ter Braak.
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References

van den Brink, P.J. & ter Braak, C.J.F. (1999). Principal response curves: Analysis of time-
dependent multivariate responses of biological community to stress. Environmental Toxicology
and Chemistry, 18, 138–148.

Examples

data(pyrifos)
ditch <- gl(12, 1, length=132)
week <- gl(11, 12, labels=c(-4, -1, 0.1, 1, 2, 4, 8, 12, 15, 19, 24))
dose <- factor(rep(c(0.1, 0, 0, 0.9, 0, 44, 6, 0.1, 44, 0.9, 0, 6), 11))

radfit Rank – Abundance or Dominance / Diversity Models

Description

Functions construct rank – abundance or dominance / diversity or Whittaker plots and fit broken-
stick, pre-emption, log-Normal, Zipf and Zipf-Mandelbrot models of species abundance.

Usage

## S3 method for class 'data.frame':
radfit(df, ...)
## S3 method for class 'radfit.frame':
plot(x, order.by, BIC = FALSE, model, legend = TRUE,

as.table = TRUE, ...)
## Default S3 method:
radfit(x, ...)
## S3 method for class 'radfit':
plot(x, BIC = FALSE, legend = TRUE, ...)
rad.null(x, family=poisson, ...)
rad.preempt(x, family = poisson, ...)
rad.lognormal(x, family = poisson, ...)
rad.zipf(x, family = poisson, ...)
rad.zipfbrot(x, family = poisson, ...)
## S3 method for class 'radline':
plot(x, xlab = "Rank", ylab = "Abundance", type = "b", ...)
## S3 method for class 'radline':
lines(x, ...)
## S3 method for class 'radline':
points(x, ...)
as.rad(x)
## S3 method for class 'rad':
plot(x, xlab = "Rank", ylab = "Abundance", ...)
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Arguments

df Data frame where sites are rows and species are columns.

x A vector giving species abundances in a site, or an object to be plotted.

order.by A vector used for ordering sites in plots.

BIC Use Bayesian Information Criterion, BIC, instead of Akaike’s AIC. The penalty
for a parameter is k = log(S) where S is the number of species, whereas AIC
uses k = 2.

model Show only the specified model. If missing, AIC is used to select the model.
The model names (which can be abbreviated) are Preemption, Lognormal,
Veiled.LN, Zipf, Mandelbrot.

legend Add legend of line colours.

as.table Arrange panels starting from upper left corner (passed to xyplot).

family Error distribution (passed to glm). All alternatives accepting link = "log"
in family can be used, although not all make sense.

xlab,ylab Labels for x and y axes.

type Type of the plot, "b" for plotting both observed points and fitted lines, "p" for
only points, "l" for only fitted lines, and "n" for only setting the frame.

... Other parameters to functions.

Details

Rank – Abundance Dominance (RAD) or Dominance/Diversity plots (Whittaker 1965) display log-
arithmic species abundances against species rank order. These plots are supposed to be effective in
analysing types of abundance distributions in communities. These functions fit some of the most
popular models mainly following Wilson (1991). Function as.rad constructs observed RAD data.
Functions rad.XXXX (where XXXX is a name) fit the individual models, and function radfit fits
all models. The argument of the function radfit can be either a vector for a single community or
a data frame where each row represents a distinct community. All these functions have their own
plot functions. When the argument is a data frame, plot uses Lattice graphics, and other
functions use ordinary graphics. The ordinary graphics functions return invisibly an ordiplot
object for observed points, and function identify.ordiplot can be used to label selected
species. The most complete control of graphics can be achieved with rad.XXXX methods which
have points and lines functions to add observed values and fitted models into existing graphs.

Function rad.null fits a brokenstick model where the expected abundance of species at rank r is
ar = (J/S)

∑S
x=r(1/x) (Pielou 1975), where J is the total number of individuals (site total) and

S is the total number of species in the community. This gives a Null model where the individuals
are randomly distributed among observed species, and there are no fitted parameters. Function
rad.preempt fits the niche preemption model, a.k.a. geometric series or Motomura model,
where the expected abundance a of species at rank r is ar = Jα(1 − α)r−1. The only estimated
parameter is the preemption coefficient α which gives the decay rate of abundance per rank. The
niche preemption model is a straight line in a RAD plot. Function rad.lognormal fits a log-
Normal model which assumes that the logarithmic abundances are distributed Normally, or ar =
exp(log µ + log σN), where N is a Normal deviate. Function rad.zipf fits the Zipf model
ar = Jp1r

γ where p1 is the fitted proportion of the most abundant species, and γ is a decay
coefficient. The Zipf – Mandelbrot model (rad.zipfbrot) adds one parameter: ar = Jc(r+β)γ
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after which p1 of the Zipf model changes into a meaningless scaling constant c. There are grand
narratives about ecological mechanisms behind each model (Wilson 1991), but several alternative
and contrasting mechanisms can produce similar models and a good fit does not imply a specific
mechanism.

Log-Normal and Zipf models are generalized linear models (glm) with logarithmic link function.
Zipf-Mandelbrot adds one nonlinear parameter to the Zipf model, and is fitted using nlm for the
nonlinear parameter and estimating other parameters and log-Likelihood with glm. Pre-emption
model is fitted as purely nonlinear model. There are no estimated parameters in the Null model.
The default family is poisson which is appropriate only for genuine counts (integers), but
other families that accept link = "log" can be used. Family Gamma may be appropriate for
abundance data, such as cover. The “best” model is selected by AIC. Therefore “quasi” families
such as quasipoisson cannot be used: they do not have AIC nor log-Likelihood needed in
non-linear models.

Value

Function rad.XXXX will return an object of class radline, which is constructed to resemble re-
sults of glm and has many (but not all) of its components, even when only nlm was used in fitting.
At least the following glm methods can be applied to the result: fitted, residuals.glm
with alternatives "deviance" (default), "pearson", "response", function coef, AIC,
extractAIC, and deviance. Function radfit applied to a vector will return an object of class
radfit with item y for the constructed RAD, item family for the error distribution, and item
models containing each radline object as an item. In addition, there are special AIC, coef and
fitted implementations for radfit results. When applied to a data frame radfit will return
an object of class radfit.frame which is a list of radfit objects; function summary can be
used to display the results for individual radfit objects. The functions are still preliminary, and
the items in the radline objects may change.

Note

The RAD models are usually fitted for proportions instead of original abundances. However, noth-
ing in these models seems to require division of abundances by site totals, and original observations
are used in these functions. If you wish to use proportions, you must standardize your data by site
totals, e.g. with decostand and use appropriate family such as Gamma.

The lognormal model is fitted in a standard way, but I do think this is not quite correct – at least it is
not equivalent to fitting Normal density to log abundances like originally suggested (Preston 1948).

Some models may fail. In particular, estimation of the Zipf-Mandelbrot model is difficult. If the
fitting fails, NA is returned.

Wilson (1991) defined preemption model as ar = Jp1(1− α)r−1, where p1 is the fitted proportion
of the first species. However, parameter p1 is completely defined by α since the fitted proportions
must add to one, and therefore I handle preemption as a one-parameter model.

Veiled log-Normal model was included in earlier releases of this function, but it was removed
because it was flawed: an implicit veil line also appears in the ordinary log-Normal. The latest
release version with rad.veil was 1.6-10.

Author(s)

Jari Oksanen
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References

Pielou, E.C. (1975) Ecological Diversity. Wiley & Sons.

Preston, F.W. (1948) The commonness and rarity of species. Ecology 29, 254–283.

Whittaker, R. H. (1965) Dominance and diversity in plant communities. Science 147, 250–260.

Wilson, J. B. (1991) Methods for fitting dominance/diversity curves. Journal of Vegetation Science
2, 35–46.

See Also

fisherfit and prestonfit. An alternative approach is to use qqnorm or qqplot with any
distribution. For controlling graphics: Lattice, xyplot, lset.

Examples

data(BCI)
mod <- rad.lognormal(BCI[1,])
mod
plot(mod)
mod <- radfit(BCI[1,])
plot(mod)
# Take a subset of BCI to save time and nerves
mod <- radfit(BCI[2:5,])
mod
plot(mod, pch=".")

rankindex Compares Dissimilarity Indices for Gradient Detection

Description

Rank correlations between dissimilarity indices and gradient separation.

Usage

rankindex(grad, veg, indices = c("euc", "man", "gow", "bra", "kul"),
stepacross = FALSE, method = "spearman", ...)

Arguments

grad The gradient variable or matrix.
veg The community data matrix.
indices Dissimilarity indices compared, partial matches to alternatives in vegdist.
stepacross Use stepacross to find a shorter path dissimilarity. The dissimilarities for

site pairs with no shared species are set NA using no.shared so that indices
with no fixed upper limit can also be analysed.

method Correlation method used.
... Other parameters to stepacross.
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Details

A good dissimilarity index for multidimensional scaling should have a high rank-order similarity
with gradient separation. The function compares most indices in vegdist against gradient sep-
aration using rank correlation coefficients in cor.test. The gradient separation between each
point is assessed as Euclidean distance for continuous variables, and as Gower metric for mixed
data using function daisy when grad has factors.

Value

Returns a named vector of rank correlations.

Note

There are several problems in using rank correlation coefficients. Typically there are very many ties
when n(n − 1)/2 gradient separation values are derived from just n observations. Due to floating
point arithmetics, many tied values differ by machine epsilon and are arbitrarily ranked differently
by rank used in cor.test. Two indices which are identical with certain transformation or stan-
dardization may differ slightly (magnitude 10−15) and this may lead into third or fourth decimal
instability in rank correlations. Small differences in rank correlations should not be taken too se-
riously. Probably this method should be replaced with a sounder method, but I do not yet know
which. . . You may experiment with mantel, anosim or even protest.

Earlier version of this function used method = "kendall", but that is far too slow in large data
sets.

Author(s)

Jari Oksanen

References

Faith, F.P., Minchin, P.R. and Belbin, L. (1987). Compositional dissimilarity as a robust measure of
ecological distance. Vegetatio 69, 57-68.

See Also

vegdist, stepacross, no.shared, isoMDS, cor, Machine, and for alternatives anosim,
mantel and protest.

Examples

data(varespec)
data(varechem)
## The next scales all environmental variables to unit variance.
## Some would use PCA transformation.
rankindex(scale(varechem), varespec)
rankindex(scale(varechem), wisconsin(varespec))
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read.cep Reads a CEP (Canoco) data file

Description

read.cep reads a file formatted by relaxed strict CEP format used by Canoco software, among
others.

Usage

read.cep(file, maxdata=10000, positive=TRUE, trace=FALSE, force=FALSE)

Arguments

file File name (character variable).

maxdata Maximum number of non-zero entries.

positive Only positive entries, like in community data.

trace Work verbosely.

force Run function, even if R refuses first.

Details

Cornell Ecology Programs (CEP) introduced several data formats designed for punched cards. One
of these was the ‘condensed strict’ format which was adopted by popular software DECORANA and
TWINSPAN. Later, Cajo ter Braak wrote Canoco based on DECORANA, where he adopted the
format, but relaxed it somewhat (that’s why I call it a ‘relaxed strict’ format). Further, he introduced
a more ordinary ‘free’ format, and allowed the use of classical Fortran style ‘open’ format with
fixed field widths. This function should be able to deal with all these Canoco formats, whereas it
cannot read many of the traditional CEP alternatives.

All variants of CEP formats have:

• Two or three title cards, most importantly specifying the format (or word FREE) and the
number of items per record (number of species and sites for FREE format).

• Data in one of three accepted formats:

1. Condensed format: First number on the line is the site identifier, and it is followed by
pairs (‘couplets’) of numbers identifying the species and its abundance (an integer and a
floating point number).

2. Open Fortran format, where the first number on the line must be the site number, followed
by abundance values in fields of fixed widths. Empty fields are interpreted as zeros.

3. ‘Free’ format, where the numbers are interpreted as abundance values. These numbers
must be separated by blank space, and zeros must be written as zeros.

• Species and site names, given in Fortran format (10A8): Ten names per line, eight columns
for each.
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With option positive = TRUE the function removes all lines and columns with zero or negative
marginal sums. In community data with only positive entries, this removes empty sites and species.
If data entries can be negative, this ruins data, and such data sets should be read in with option
positive = FALSE.

Value

Returns a data frame, where columns are species and rows are sites. Column and row names are
taken from the CEP file, and changed into unique R names by make.names after stripping the
blanks.

Note

The function relies on smooth linking of Fortran file IO in R session. This is not guaranteed to work,
and therefore the function may not work in your system, but it can crash the R session. Therefore
the default is that the function does not run. If you still want to try:

1. Save your session

2. Run read.cep() with switch force=TRUE

If you transfer files between operating systems or platforms, you should always check that your file
is formatted to your current platform. For instance, if you transfer files from Windows to Linux,
you should change the files to unix format, or your session may crash when Fortran program tries
to read the invisible characters that Windows uses at the end of each line.

If you compiled vegan using gfortran, the input is probably corrupted. You either should
compile vegan with other FORTRAN compilers or not to use read.cep. The problems still
persist in gfortran 4.01.

Author(s)

Jari Oksanen

References

Ter Braak, C.J.F. (1984–): CANOCO – a FORTRAN program for canonical community ordination
by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and re-
dundancy analysis. TNO Inst. of Applied Computer Sci., Stat. Dept. Wageningen, The Netherlands.

Examples

## Provided that you have the file `dune.spe'
## Not run:
theclassic <- read.cep("dune.spe", force=T)
## End(Not run)
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renyi Renyi and Hill Diversities and Corresponding Accumulation Curves

Description

Function renyi find Rényi diversities with any scale or the corresponding Hill number (Hill 1973).
Function renyiaccum finds these statistics with accumulating sites.

Usage

renyi(x, scales = c(0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, Inf), hill = FALSE)
## S3 method for class 'renyi':
plot(x, ...)
renyiaccum(x, scales = c(0, 0.5, 1, 2, 4, Inf), permutations = 100,

raw = FALSE, ...)
## S3 method for class 'renyiaccum':
plot (x, what = c("mean", "Qnt 0.025", "Qnt 0.975"), type = "l",

...)
## S3 method for class 'renyiaccum':
persp (x, theta = 220, col = heat.colors(100), zlim, ...)
rgl.renyiaccum(x, rgl.height = 0.2, ...)

Arguments

x Community data matrix or plotting object.

scales Scales of Rényi diversity.

hill Calculate Hill numbers.

permutations Number of random permutations in accumulating sites.

raw if FALSE then return summary statistics of permutations, and if TRUE then
returns the individual permutations.

what Items to be plotted.

type Type of plot, where type = "l" means lines.

theta Angle defining the viewing direction (azimuthal) in persp.

col Colours used for surface. Single colour will be passed on, and vector colours
will be selected by the midpoint of a rectangle in persp.

zlim Limits of vertical axis.

rgl.height Scaling of vertical axis.

... Other arguments which are passed to renyi and to graphical functions.
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Details

Common diversity indices are special cases of Rényi diversity

Ha =
1

1− a
log

∑
pa

i

where a is a scale parameter, and Hill (1975) suggested to use so-called “Hill numbers” defined
as Na = exp(Ha). Some Hill numbers are the number of species with a = 0, exp(H ′) or the
exponent of Shannon diversity with a = 1, inverse Simpson with a = 2 and 1/ max(pi) with
a = ∞. According to the theory of diversity ordering, one community can be regarded as more
diverse than another only if its Rényi diversities are all higher (Tóthmérész 1995).

The plot method for renyi uses lattice graphics, and displays the diversity values against each
scale in separate panel for each site together with minimum, maximum and median values in the
complete data.

Function renyiaccum is similar to specaccum but finds Rényi or Hill diversities at given
scales for random permutations of accumulated sites. Its plot function uses lattice function
xyplot to display the accumulation curves for each value of scales in a separate panel. In ad-
dition, it has a persp method to plot the diversity surface against scale and number and sites. Dy-
namic graphics with rgl.renyiaccum use rgl package, and produces similar surface as persp
with a mesh showing the empirical confidence levels.

Value

Function renyi returns a data frame of selected indices. Function renyiaccum with argument
raw = FALSE returns a three-dimensional array, where the first dimension are the accumulated
sites, second dimension are the diveristy scales, and third dimension are the summary statistics
mean, stdev, min, max, Qnt 0.025 and Qnt 0.975. With argument raw = TRUE the
statistics on the third dimension are replaced with individual permutation results.

Author(s)

Roeland Kindt 〈r.kindt@cgiar.org〉 and Jari Oksanen

References

http://www.worldagroforestry.org/treesandmarkets/tree_diversity_analysis.
asp

Hill, M.O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology 54,
427–473.

Kindt R, Van Damme P, Simons AJ. 2006. Tree diversity in western Kenya: using profiles to
characterise richness and evenness. Biodiversity and Conservation 15: 1253-1270.

Tóthmérész, B. (1995). Comparison of different methods for diversity ordering. Journal of Vegeta-
tion Science 6, 283–290.

See Also

diversity for diversity indices, and specaccum for ordinaty species accumulation curves, and
xyplot, persp and rgl for controlling graphics.

http://www.worldagroforestry.org/treesandmarkets/tree_diversity_analysis.asp
http://www.worldagroforestry.org/treesandmarkets/tree_diversity_analysis.asp
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Examples

data(BCI)
i <- sample(nrow(BCI), 12)
mod <- renyi(BCI[i,])
plot(mod)
mod <- renyiaccum(BCI[i,])
plot(mod, as.table=TRUE, col = c(1, 2, 2))
persp(mod)

scores Get Species or Site Scores from an Ordination

Description

Function to access either species or site scores for specified axes in some ordination methods.

Usage

## Default S3 method:
scores(x, choices, display=c("sites", "species"), ...)

Arguments

x An ordination result.

choices Ordination axes. If missing, returns all axes.

display Partial match to access scores for sites or species.

... Other parameters (unused).

Details

Functions cca and decorana have specific scores function to access their ordination scores.
Most standard ordination methods of libraries mva, multiv and MASS do not have a specific
class, and no specific method can be written for them. However, scores.default guesses
where some commonly used functions keep their site scores and possible species scores. For site
scores, the function seeks items in order points, rproj, x, and scores. For species, the seek-
ing order is cproj, rotation, and loadings. If x is a matrix, scores.default returns
the chosen columns of that matrix, ignoring whether species or sites were requested (do not regard
this as a bug but as a feature, please). Currently the function seems to work at least for isoMDS,
prcomp, princomp, ca, pca. It may work in other cases or fail mysteriously.

Value

The function returns a matrix of requested scores.

Author(s)

Jari Oksanen
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See Also

scores.cca, scores.decorana. These have somewhat different interface – scores.cca
in particular – but all work with keywords display="sites" and display="species" and
return a matrix with these.

Examples

data(varespec)
vare.pca <- prcomp(varespec)
scores(vare.pca, choices=c(1,2))

screeplot.cca Screeplots for Ordination Results and Broken Stick Distributions

Description

Screeplot methods for plotting variances of ordination axes/components and overlaying broken stick
distributions. Also, provides alternative screeplot methods for princomp and prcomp.

Usage

## S3 method for class 'cca':
screeplot(x, bstick = FALSE, type = c("barplot", "lines"),

npcs = min(10, if (is.null(x$CCA)) x$CA$rank else x$CCA$rank),
ptype = "o", bst.col = "red", bst.lty = "solid",
xlab = "Component", ylab = "Inertia",
main = deparse(substitute(x)),
...)

## S3 method for class 'decorana':
screeplot(x, bstick = FALSE, type = c("barplot", "lines"),

npcs = 4,
ptype = "o", bst.col = "red", bst.lty = "solid",
xlab = "Component", ylab = "Inertia",
main = deparse(substitute(x)),
...)

## S3 method for class 'prcomp':
screeplot(x, bstick = FALSE, type = c("barplot", "lines"),

npcs = min(10, length(x$sdev)),
ptype = "o", bst.col = "red", bst.lty = "solid",
xlab = "Component", ylab = "Inertia",
main = deparse(substitute(x)),
...)

## S3 method for class 'princomp':
screeplot(x, bstick = FALSE, type = c("barplot", "lines"),
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npcs = min(10, length(x$sdev)),
ptype = "o", bst.col = "red", bst.lty = "solid",
xlab = "Component", ylab = "Inertia",
main = deparse(substitute(x)),
...)

bstick(n, ...)

## Default S3 method:
bstick(n, tot.var = 1, ...)

## S3 method for class 'cca':
bstick(n, ...)

## S3 method for class 'prcomp':
bstick(n, ...)

## S3 method for class 'princomp':
bstick(n, ...)

## S3 method for class 'decorana':
bstick(n, ...)

Arguments

x an object from which the component variances can be determined.

bstick logical; should the broken stick distribution be drawn?

npcs the number of components to be plotted.

type the type of plot.

ptype if type == "lines" or bstick = TRUE, a character indicating the type
of plotting used for the lines; actually any of the types as in plot.default.

bst.col, bst.lty
the colour and line type used to draw the broken stick distribution.

xlab, ylab, main
graphics parameters.

n an object from which the variances can be extracted or the number of variances
(components) in the case of bstick.default.

tot.var the total variance to be split.

... arguments passed to other methods.

Details

The functions provide screeplots for most ordination methods in vegan and enhanced versions with
broken stick for prcomp and princomp.

Function bstick gives the brokenstick values which are ordered random proportions, defined as
pi = (tot/n)

∑n
x=i(1/x) (Legendre & Legendre 1998), where tot is the total and n is the number



screeplot.cca 149

of brokenstick components (cf. radfit). Broken stick has been recommended as a stopping rule
in principal component analysis (Jackson 1993): principal components should be retained as long
as observed eigenvalues are higher than corresponding random broken stick components.

The bstick function is generic. The default needs the number of components and the total,
and specific methods extract this information from ordination results. There also is a bstick
method for cca. However, the broken stick model is not strictly valid for correspondence analysis
(CA), because eigenvalues of CA are defined to be ≤ 1, whereas brokenstick components have
no such restrictions. The brokenstick components are not available for decorana where the sum
of eigenvalues (total inertia) is unknown, and the eigenvalues of single axes are not additive in
detrended analysis.

Value

Function screeplot draws a plot on the currently active device, and returns invisibly the xy.coords
of the points or bars for the eigenvalues.

Function bstick returns a numeric vector of broken stick components.

Note

Function screeplot is generic from R version 2.5.0. In these versions you can use plain screeplot
command without suffices cca, prcomp etc.

Author(s)

Gavin L. Simpson

References

Jackson, D. A. (1993). Stopping rules in principal components analysis: a comparison of heuristical
and statistical approaches. Ecology 74, 2204–2214.

Legendre, P. and Legendre, L. (1998) Numerical Ecology. 2nd English ed. Elsevier.

See Also

cca, decorana, princomp and prcomp for the ordination functions, and screeplot for the
stock version.

Examples

data(varespec)
vare.pca <- rda(varespec, scale = TRUE)
bstick(vare.pca)
screeplot.cca(vare.pca, bstick = TRUE, type = "lines")
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sipoo Birds in the Archipelago of Sipoo (Sibbo)

Description

Land birds on islands covered by coniferous forest in the Sipoo archipelago, southern Finland (land-
bridge/ oceanic distinction unclear from source).

Usage

data(sipoo)

Format

A data frame with 18 sites and 50 species (Simberloff & Martin, 1991, Appendix 3). The species
are referred by 4+4 letter abbreviation of their Latin names (but using five letters in two species
names to make these unique). The example gives the areas of the studies islands in hectares.

Source

http://www.aics-research.com/nested/

References

Simberloff, D. & Martin, J.-L. (1991). Nestedness of insular avifaunas: simple summary statistics
masking complex species patterns. Ornis Fennica 68:178–192.

Examples

data(sipoo)
## Areas of the islands in hectares
sipoo.area <- c(1.1, 2.1, 2.2, 3.1, 3.5, 5.8, 6, 6.1, 6.5, 11.4, 13,
14.5, 16.1 ,17.5, 28.7, 40.5, 104.5, 233)

spantree Minimum Spanning Tree

Description

Function spantree finds a minimum spanning tree connecting all points, but disregarding dis-
similarities that are at or above the threshold or NA.

http://www.aics-research.com/nested/
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Usage

spantree(dis, toolong = 0)
## S3 method for class 'spantree':
cophenetic(x)
## S3 method for class 'spantree':
plot(x, ord, cex = 0.7, type = "p", labels, dlim,

FUN = sammon, ...)
## S3 method for class 'spantree':
lines(x, ord, display="sites", ...)

Arguments

dis Dissimilarity data inheriting from class dist or a an object, such as a matrix,
that can be converted to a dissimilarity matrix. Functions vegdist and dist
are some functions producing suitable dissimilarity data.

toolong Shortest dissimilarity regarded as NA. The function uses a fuzz factor, so that
dissimilarities close to the limit will be made NA, too. If toolong = 0 (or
negative), no dissimmilarity is regarded as too long.

x A spantree result object.

ord An ordination configuration, or an ordination result known by scores.

cex Character expansion factor.

type Observations are plotted as points with type="p" or type="b", or as text
with type="t". The tree (lines) will always be plotted.

labels Text used with type="t" or row names if this is missing.

dlim A ceiling value used to highest cophenetic dissimilarity.

FUN Ordination function to find the configuration from cophenetic dissimilarities.

display Type of scores used for ord.

... Other parameters passed to functions.

Details

Function spantree finds a minimum spanning tree for dissimilarities (there may be several min-
imum spanning trees, but the function finds only one). Dissimilarities at or above the threshold
toolong and NAs are disregarded, and the spanning tree is found through other dissimilarities. If
the data are disconnected, the function will return a disconnected tree (or a forest), and the corre-
sponding link is NA. Connected subtrees can be identified using distconnected.

Function cophenetic finds distances between all points along the tree segments. Function plot
displays the tree over a supplied ordination configuration, and lines adds a spanning tree to an
ordination graph. If configuration is not supplied for plot, the function ordinates the the cophe-
netic dissimilarities of the spanning tree and overlays the tree on this result. The default ordination
function is sammon (package MASS), because Sammon scaling emphasizes structure in the neigh-
bourhood of nodes and may be able to beautifully represent the tree (you may need to set dlim,
and sometimes the results will remain twisted). These ordination methods do not work with discon-
nected trees, but you must supply the ordination configuration. Function lines will overlay the
tree in an existing plot.
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Function spantree uses Prim’s method implemented as priority-first search for dense graphs
(Sedgewick 1990). Function cophenetic uses function stepacross with option path =
"extended". The spantree is very fast, but cophenetic is slow in very large data sets.

Value

Function spantree returns an object of class spantree which is a list with two vectors, each
of length n − 1. The number of links in a tree is one less the number of observations, and the first
item is omitted. The items are

kid The child node of the parent, starting from parent number two. If there is no link
from the parent, value will be NA and tree is disconnected at the node.

dist Corresponding distance. If kid = NA, then dist = 0.

Note

In principle, minimum spanning tree is equivalent to single linkage clustering that can be performed
using hclust or agnes. However, these functions combine clusters to each other and the infor-
mation of the actually connected points (the “single link”) cannot be recovered from the result. The
graphical output of a single linkage clustering plotted with ordicluster will look very different
from an equivalent spanning tree plotted with lines.spantree.

Author(s)

Jari Oksanen

References

Sedgewick, R. (1990). Algorithms in C. Addison Wesley.

See Also

vegdist or dist for getting dissimilarities, and hclust or agnes for single linkage clustering.

Examples

data(dune)
dis <- vegdist(dune)
tr <- spantree(dis)
## Add tree to a metric scaling
plot(tr, cmdscale(dis))
## Find a configuration to display the tree neatly
plot(tr)
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specaccum Species Accumulation Curves

Description

Function specaccum finds species accumulation curves or the number of species for a certain
number of sampled sites or individuals.

Usage

specaccum(comm, method = "exact", permutations = 100,
conditioned =TRUE, gamma = "Jack.1", ...)

## S3 method for class 'specaccum':
plot(x, add = FALSE, ci = 2, ci.type = c("bar", "line", "polygon"),

col = par("fg"), ci.col = col, ci.lty = 1, xlab = "Sites",
ylab = x$method, ylim, ...)

## S3 method for class 'specaccum':
boxplot(x, add = FALSE, ...)

Arguments

comm Community data set.
method Species accumulation method (partial match). Method "collector" adds

sites in the order they happen to be in the data, "random" adds sites in random
order, "exact" finds the expected (mean) species richness, "coleman" finds
the expected richness following Coleman et al. 1982, and "rarefaction"
finds the mean when accumulating individuals instead of sites.

permutations Number of permutations with method = "random".
conditioned Estimation of standard deviation is conditional on the empirical dataset for the

exact SAC
gamma Method for estimating the total extrapolated number of species in the survey

area by function specpool
x A specaccum result object
add Add to an existing graph.
ci Multiplier used to get confidence intervals from standard deviation (standard

error of the estimate). Value ci = 0 suppresses drawing confidence intervals.
ci.type Type of confidence intervals in the graph: "bar" draws vertical bars, "line"

draws lines, and "polygon" draws a shaded area.
col Colour for drawing lines.
ci.col Colour for drawing lines or filling the "polygon".
ci.lty Line type for confidence intervals or border of the "polygon".
xlab,ylab Labels for x and y axis.
ylim the y limits of the plot.
... Other parameters to functions.
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Details

Species accumulation curves (SAC) are used to compare diversity properties of community data
sets using different accumulator functions. The classic method is "random" which finds the mean
SAC and its standard deviation from random permutations of the data, or subsampling without
replacement (Gotelli & Colwell 2001). The "exact" method finds the expected SAC using the
method that was independently developed by Ugland et al. (2003), Colwell et al. (2004) and Kindt
et al. (2006). The unconditional standard deviation for the exact SAC represents a moment-based
estimation that is not conditioned on the empirical data set (sd for all samples > 0), unlike the
conditional standard deviation that was developed by Jari Oksanen (not published, sd=0 for all
samples). The unconditional standard deviation is based on an estimation of the total extrapolated
number of species in the survey area (a.k.a. gamma diversity), as estimated by function specpool.
Method "coleman" finds the expected SAC and its standard deviation following Coleman et
al. (1982). All these methods are based on sampling sites without replacement. In contrast, the
method = "rarefaction" finds the expected species richness and its standard deviation by
sampling individuals instead of sites. It achieves this by applying function rarefy with number
of individuals corresponding to average number of individuals per site.

The function has a plotmethod. In addition, method = "random" has summary and boxplot
methods.

Value

The function returns an object of class "specaccum" with items:

call Function call.

method Accumulator method.

sites Number of sites. For method = "rarefaction" this is the number of sites
corresponding to a certain number of individuals and generally not an integer,
and the average number of individuals is also retunred in item individuals.

richness The number of species corresponding to number of sites. With method =
"collector" this is the observed richness, for other methods the average or
expected richness.

sd The standard deviation of SAC (or its standard error). This is NULL in method
= "collector", and it is estimated from permutations in method = "random",
and from analytic equations in other methods.

perm Permutation results with method = "random" and NULL in other cases.
Each column in perm holds one permutation.

Note

The SAC with method = "exact" was developed by Roeland Kindt, and its standard deviation
by Jari Oksanen (both are unpublished). The method = "coleman" underestimates the SAC
because it does not handle properly sampling without replacement. Further, its standard deviation
does not take into account species correlations, and is generally too low.

Author(s)

Roeland Kindt 〈r.kindt@cgiar.org〉 and Jari Oksanen.
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References
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See Also

rarefy and renyiaccum. Underlying graphical functions are boxplot, matlines, segments
and polygon.

Examples

data(BCI)
sp1 <- specaccum(BCI)
sp2 <- specaccum(BCI, "random")
sp2
summary(sp2)
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue")
boxplot(sp2, col="yellow", add=TRUE, pch="+")

specpool Extrapolated Species Richness in a Species Pool

Description

The functions estimate the extrapolated species richness in a species pool, or the number of un-
observed species. Function specpool is based on incidences in sample sites, and gives a single
estimate for a collection of sample sites (matrix). Function estimateR is based on abundances
(counts) on single sample site.

Usage

specpool(x, pool)
specpool2vect(X, index = c("Jack.1","Jack.2", "Chao", "Boot","Species"))
estimateR(x, ...)
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Arguments

x Data frame or matrix with species data.

pool A vector giving a classification for pooling the sites in the species data. If miss-
ing, all sites are pooled together.

X A specpool result object.

index The selected index of extrapolated richness.

... Other parameters (not used).

Details

Many species will always remain unseen or undetected in a collection of sample plots. The function
uses some popular ways of estimating the number of these unseen species and adding them to the
observed species richness (Palmer 1990, Colwell & Coddington 1994).

The incidence-based estimates in specpool use the frequencies of species in a collection of sites.
In the following, SP is the extrapolated richness in a pool, S0 is the observed number of species
in the collection, a1 and a2 are the number of species occurring only in one or only in two sites in
the collection, pi is the frequency of species i, and N is the number of sites in the collection. The
variants of extrapolated richness in specpool are:

Chao SP = S0 + a12/(2 ∗ a2)
First order jackknife SP = S0 + a1

N−1
N

Second order jackknife SP = S0 + a1
2N−3

N − a2
(N−2)2

N(N−1)

Bootstrap SP = S0 +
∑S0

i=1(1− pi)N

The abundance-based estimates in estimateR use counts (frequencies) of species in a single site.
If called for a matrix or data frame, the function will give separate estimates for each site. The two
variants of extrapolated richness in estimateR are Chao (unbiased variant) and ACE. In the Chao
estimate ai refers to number of species with abundance i instead of incidence:

Chao SP = S0 + a1(a1−1)
2(a2+1)

ACE SP = Sabund + Srare

Cace
+ a1

Cace
γ2

ace

where Cace = 1− a1
Nrare

γ2
ace = max

[
Srare

∑10

i=1
i(i−1)ai

CaceNrare(Nrare−1) − 1, 0
]

Here ai refers to number of species with abundance i and Srare is the number of rare species,
Sabund is the number of abundant species, with an arbitrary threshold of abundance 10 for rare
species, and Nrare is the number of individuals in rare species.

Functions estimate the the standard errors of the estimates. These only concern the number of added
species, and assume that there is no variance in the observed richness. The equations of standard
errors are too complicated to be reproduced in this help page, but they can be studied in the R
source code of the function. The standard error are based on the following sources: Chao (1987)
for the Chao estimate and Smith and van Belle (1984) for the first-order Jackknife and the bootstrap
(second-order jackknife is still missing). The variance estimator of Sace was developed by Bob
O’Hara (unpublished).
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Value

Function specpool returns a data frame with entries for observed richness and each of the indices
for each class in pool vector. The utility function specpool2vect maps the pooled values into
a vector giving the value of selected index for each original site. Function estimateR returns
the estimates and their standard errors for each site.

Note

The functions are based on assumption that there is a species pool: The community is closed so that
there is a fixed pool size SP . Such cases may exist, although I have not seen them yet. All indices
are biased for open communities.

See http://viceroy.eeb.uconn.edu/EstimateS for a more complete (and positive)
discussion and alternative software for some platforms.

Author(s)

Bob O’Hara (estimateR) and Jari Oksanen (specpool).

References

Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchabil-
ity. Biometrics 43, 783–791.

Colwell, R.K. & Coddington, J.A. (1994). Estimating terrestrial biodiversity through extrapolation.
Phil. Trans. Roy. Soc. London B 345, 101–118.

Palmer, M.W. (1990). The estimation of species richness by extrapolation. Ecology 71, 1195–1198.

Smith, E.P & van Belle, G. (1984). Nonparametric estimation of species richness. Biometrics 40,
119–129.

See Also

veiledspec, diversity, beals.

Examples

data(dune)
data(dune.env)
attach(dune.env)
pool <- specpool(dune, Management)
pool
op <- par(mfrow=c(1,2))
boxplot(specnumber(dune) ~ Management, col="hotpink", border="cyan3",
notch=TRUE)
boxplot(specnumber(dune)/specpool2vect(pool) ~ Management, col="hotpink",
border="cyan3", notch=TRUE)
par(op)
data(BCI)
estimateR(BCI[1:5,])

http://viceroy.eeb.uconn.edu/EstimateS
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stepacross Stepacross as Flexible Shortest Paths or Extended Dissimilarities

Description

Function stepacross tries to replace dissimilarities with shortest paths stepping across interme-
diate sites while regarding dissimilarities above a threshold as missing data (NA). With path =
"shortest" this is the flexible shortest path (Williamson 1978, Bradfield & Kenkel 1987), and
with path = "extended" an approximation known as extended dissimilarities (De’ath 1999).
The use of stepacross should improve the ordination with high beta diversity, when there are
many sites with no species in common.

Usage

stepacross(dis, path = "shortest", toolong = 1, trace = TRUE, ...)

Arguments

dis Dissimilarity data inheriting from class dist or a an object, such as a matrix,
that can be converted to a dissimilarity matrix. Functions vegdist and dist
are some functions producing suitable dissimilarity data.

path The method of stepping across (partial match) Alternative "shortest" finds
the shortest paths, and "extended" their approximation known as extended
dissimilarities.

toolong Shortest dissimilarity regarded as NA. The function uses a fuzz factor, so that
dissimilarities close to the limit will be made NA, too.

trace Trace the calculations.

... Other parameters (ignored).

Details

Williamson (1978) suggested using flexible shortest paths to estimate dissimilarities between sites
which have nothing in common, or no shared species. With path = "shortest" function
stepacross replaces dissimilarities that are toolong or longer with NA, and tries to find short-
est paths between all sites using remaining dissimilarities. Several dissimilarity indices are semi-
metric which means that they do not obey the triangle inequality dij ≤ dik + dkj , and shortest path
algorithm can replace these dissimilarities as well, even when they are shorter than toolong.

De’ath (1999) suggested a simplified method known as extended dissimilarities, which are calcu-
lated with path = "extended". In this method, dissimilarities that are toolong or longer
are first made NA, and then the function tries to replace these NA dissimilarities with a path through
single stepping stone points. If not all NA could be replaced with one pass, the function will make
new passes with updated dissimilarities as long as all NA are replaced with extended dissimilarities.
This mean that in the second and further passes, the remaining NA dissimilarities are allowed to have
more than one stepping stone site, but previously replaced dissimilarities are not updated. Further,
the function does not consider dissimilarities shorter than toolong, although some of these could
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be replaced with a shorter path in semi-metric indices, and used as a part of other paths. In optimal
cases, the extended dissimilarities are equal to shortest paths, but they may be longer.

As an alternative to defining too long dissimilarities with parameter toolong, the input dissimi-
larities can contain NAs. If toolong is zero or negative, the function does not make any dissimi-
larities into NA. If there are no NAs in the input and toolong = 0, path = "shortest" will
find shorter paths for semi-metric indices, and path = "extended" will do nothing. Function
no.shared can be used to set dissimilarities to NA.

If the data are disconnected or there is no path between all points, the result will contain NAs and
a warning is issued. Several methods cannot handle NA dissimilarities, and this warning should be
taken seriously. Function distconnected can be used to find connected groups and remove rare
outlier observations or groups of observations.

Alternative path = "shortest" uses Dijkstra’s method for finding flexible shortest paths,
implemented as priority-first search for dense graphs (Sedgewick 1990). Alternative path =
"extended" follows De’ath (1999), but implementation is simpler than in his code.

Value

Function returns an object of class dist with extended dissimilarities (see functions vegdist
and dist). The value of path is appended to the method attribute.

Note

The function changes the original dissimilarities, and not all like this. It may be best to use the
function only when you really must: extremely high beta diversity where a large proportion of
dissimilarities are at their upper limit (no species in common).

Semi-metric indices vary in their degree of violating the triangle inequality. Morisita and Horn–
Morisita indices of vegdist may be very strongly semi-metric, and shortest paths can change
these indices very much. Mountford index violates basic rules of dissimilarities: non-identical sites
have zero dissimilarity if species composition of the poorer site is a subset of the richer. With
Mountford index, you can find three sites i, j, k so that dik = 0 and djk = 0, but dij > 0. The
results of stepacross on Mountford index can be very weird. If stepacross is needed, it is
best to try to use it with more metric indices only.

Author(s)

Jari Oksanen

References

Bradfield, G.E. & Kenkel, N.C. (1987). Nonlinear ordination using flexible shortest path adjustment
of ecological distances. Ecology 68, 750–753.

De’ath, G. (1999). Extended dissimilarity: a method of robust estimation of ecological distances
from high beta diversity data. Plant Ecol. 144, 191–199.

Sedgewick, R. (1990). Algorithms in C. Addison Wesley.

Williamson, M.H. (1978). The ordination of incidence data. J. Ecol. 66, 911-920.
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See Also

Function distconnected can find connected groups in disconnected data, and function no.shared
can be used to set dissimilarities as NA. See swan for an alternative approach. Function stepacross
is an essential component in isomap and cophenetic.spantree.

Examples

# There are no data sets with high beta diversity in vegan, but this
# should give an idea.
data(dune)
dis <- vegdist(dune)
edis <- stepacross(dis)
plot(edis, dis, xlab = "Shortest path", ylab = "Original")
## Manhattan distance have no fixed upper limit.
dis <- vegdist(dune, "manhattan")
is.na(dis) <- no.shared(dune)
dis <- stepacross(dis, toolong=0)

taxondive Indices of Taxonomic Diversity and Distinctness

Description

Function finds indices of taxonomic diversity and distinctiness, which are averaged taxonomic dis-
tances among species or individuals in the community (Clarke & Warwick 1998, 2001)

Usage

taxondive(comm, dis, match.force = FALSE)
taxa2dist(x, varstep = FALSE, check = TRUE, labels)

Arguments

comm Community data.

dis Taxonomic distances among taxa in comm. This should be a dist object or a
symmetric square matrix.

match.force Force matching of column names in comm and labels in dis. If FALSE, match-
ing only happens when dimensions differ, and in that case the species must be
in identical order in both.

x Classification table with a row for each species or other basic taxon, and columns
for identifiers of its classication at higher levels.

varstep Vary step lengths between successive levels relative to proportional loss of the
number of distinct classes.



taxondive 161

check If TRUE, remove all redundant levels which are different for all rows or constant
for all rows and regard each row as a different basal taxon (species). If FALSE
all levels are retained and basal taxa (species) also must be coded as variables
(columns). You will get a warning if species are not coded, but you can ignore
this if that was your intention.

labels The labels attribute of taxonomic distances. Row names will be used if this
is not given. Species will be matched by these labels in comm and dis in
taxondive if these have different dimensions.

Details

Clarke & Warwick (1998, 2001) suggested several alternative indices of taxonomic diversity or
distinctness. Two basic indices are called taxonomic diversity (∆) and distinctness (∆∗):

∆ = (
∑∑

i<j ωijxixj)/(n(n− 1)/2)
∆∗ = (

∑∑
i<j ωijxixj)/(

∑∑
i<j xixj)

The equations give the index value for a single site, and summation goes over species i and j. Here
ω are taxonomic distances among taxa, and x are species abundances, and n is the total abundance
for a site. With presence/absence data both indices reduce to the same index ∆+, and for this index
Clarke & Warwick (1998) also have an estimate of its standard deviation. Clarke & Warwick (2001)
presented two new indices: s∆+ is the product of species richness and ∆+, and index of variation
in taxonomic distinctness (Λ+) defined as

Λ+ = (
∑∑

i<j ω2
ij)/(n(n− 1)/2)− (∆+)2

The dis argument must be species dissimilarities. These must be similar to dissimilarities pro-
duced by dist. It is customary to have integer steps of taxonomic hierarchies, but other kind of
dissimilarities can be used, such as those from phylogenetic trees or genetic differences. Further,
the dis need not be taxonomic, but other species classifications can be used.

Function taxa2dist can produce a suitable dist object from a classification table. Each species
(or basic taxon) corresponds to a row of the classification table, and columns give the classification
at different levels. With varstep = FALSE the successive levels will be separated by equal
steps, and with varstep = TRUE the step length is relative to the proportional decrease in the
number of classes (Clarke & Warwick 1999). With check = TRUE, the function removes classes
which are distinct for all species or which combine all species into one class, and assumes that each
row presents a distinct basic taxon. The function scales the distances so that longesth path length
between taxa is 100 (not necessarily when check = FALSE).

Function plot.taxondive plots ∆+ against Number of species, together with expectation and
its approximate 2*sd limits. Function summary.taxondive finds the z values and their signifi-
cances from Normal distribution for ∆+.

Value

Function returns an object of class taxondive with following items:

Species Number of species for each site.



162 taxondive

D, Dstar, Dplus, SDplus, Lambda
∆, ∆∗, ∆+, s∆+ and Λ+ for each site.

sd.Dplus Standard deviation of ∆+.
ED, EDstar, EDplus

Expected values of corresponding statistics.

Function taxa2dist returns an object of class "dist", with an attribute "steps" for the step
lengths between successive levels.

Note

The function is still preliminary and may change. The scaling of taxonomic dissimilarities influ-
ences the results. If you multiply taxonomic distances (or step lengths) by a constant, the values
of all Deltas will be multiplied with the same constant, and the value of Λ+ by the square of the
constant.

Author(s)

Jari Oksanen

References

Clarke, K.R & Warwick, R.M. (1998) A taxonomic distinctness index and its statistical properties.
Journal of Applied Ecology 35, 523–531.

Clarke, K.R. & Warwick, R.M. (1999) The taxonomic distinctness measure of biodiversity: weight-
ing of step lengths between hierarchical levels. Marine Ecology Progress Series 184: 21–29.

Clarke, K.R. & Warwick, R.M. (2001) A further biodiversity index applicable to species lists: vari-
ation in taxonomic distinctness. Marine Ecology Progress Series 216, 265–278.

See Also

diversity.

Examples

## Preliminary: needs better data and some support functions
data(dune)
data(dune.taxon)
# Taxonomic distances from a classification table with variable step lengths.
taxdis <- taxa2dist(dune.taxon, varstep=TRUE)
plot(hclust(taxdis), hang = -1)
# Indices
mod <- taxondive(dune, taxdis)
mod
summary(mod)
plot(mod)
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treedive Functional Diversity estimated from a Species Dendrogram

Description

Functional diversity is defined as the total branch length in a trait dendrogram connecting all species,
but excluding the unnecessary root segments of the tree (Petchey and Gaston 2006).

Usage

treedive(comm, tree, match.force = FALSE)
treeheight(tree)

Arguments

comm Community data frame or matrix.
tree A dendrogram which for treedive must be for species (columns).
match.force Force matching of column names in comm and labels in tree. If FALSE,

matching only happens when dimensions differ, and in that case the species
must be in identical order in both.

Details

Function treeheight finds the sum of lengths of connecting segments in a dendrogram produced
by hclust, or other dendrogram that can be coerced to a correct type using as.hclust. When
applied to a clustering of species traits, this is a measure of functional diversity (Petchey and Gaston
2002, 2006).

Function treedive finds the treeheight for each site (row) of a community matrix. The
function uses a subset of dendrogram for those species that occur in each site, and excludes the
tree root if that is not needed to connect the species (Petchey and Gaston 2006). The subset of the
dendrogram is found by first calculating cophenetic distances from the input dendrogram, then
reconstructing the dendrogram for the subset of the cophenetic distance matrix for species occuring
in each site.

The functions need a dendrogram of species traits as an input. If species traits contain factor
or ordered factor variables, it is recommended to use Gower distances for mixed data (function
daisy in package cluster), and usually the recommended clustering method is UPGMA (method
= "average" in function hclust) (Podani and Schmera 2006).

It is possible to analyse the non-randomness of functional diversity using oecosimu. This pro-
vided specifying an adequate Null model, and the results will change with this choice.

Value

A vector of diversity values or a single tree height.

Author(s)

Jari Oksanen
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References

Petchey, O.L. and Gaston, K.J. 2002. Funcional diversity (FD), species richness and community
composition. Ecology Letters 5, 402–411.

Petchey, O.L. and Gaston, K.J. 2006. Functional diversity: back to basics and looking forward.
Ecology Letters 9, 741–758.

Podani J. and Schmera, D. 2006. On dendrogram-based methods of functional diversity. Oikos 115,
179–185.

See Also

taxondive is something very similar from another world.

Examples

## There is no data set on species properties yet, and therefore
## the example uses taxonomy
data(dune)
data(dune.taxon)
d <- taxa2dist(dune.taxon, varstep=TRUE)
cl <- hclust(d, "aver")
treedive(dune, cl)
## Significance test using Null model communities.
## The current choice fixes both species and site totals.
oecosimu(dune, treedive, "quasiswap", tree = cl)

tsallis Tsallis Diversity and Corresponding Accumulation Curves

Description

Function tsallis find Tsallis diversities with any scale or the corresponding evenness measures.
Function tsallisaccum finds these statistics with accumulating sites.

Usage

tsallis(x, scales = seq(0, 2, 0.2), norm = FALSE)
tsallisaccum(x, scales = seq(0, 2, 0.2), permutations = 100, raw = FALSE, ...)
## S3 method for class 'tsallisaccum':
persp(x, theta = 220, phi = 15, col = heat.colors(100), zlim, ...)

Arguments

x Community data matrix or plotting object.

scales Scales of Tsallis diversity.

norm Logical, if TRUE diversity values are normalized by their maximum (diversity
value at equiprobability conditions).
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permutations Number of random permutations in accumulating sites.

raw If FALSE then return summary statistics of permutations, and if TRUE then
returns the individual permutations.

theta, phi angles defining the viewing direction. theta gives the azimuthal direction and
phi the colatitude.

col Colours used for surface.

zlim Limits of vertical axis.

... Other arguments which are passed to tsallis and to graphical functions.

Details

The Tsallis diversity (also equivalent to Patil and Taillie diversity) is a one-parametric generalised
entropy function, defined as:

Hq =
1

q − 1
(1−

S∑
i=1

pq
i )

where q is a scale parameter, S the number of species in the sample (Tsallis 1988, Tothmeresz
1995). This diversity is concave for all q > 0, but non-additive (Keylock 2005). For q = 0 it gives
the number of species minus one, as q tends to 1 this gives Shannon diversity, for q = 2 this gives
the Simpson index (see function diversity).

When norm = TRUE, tsallis gives values normalized by the maximum:

Hq(max) =
S1−q − 1

1− q

where S is the number of species. As q tends to 1, maximum is defined as ln(S).

Details on plotting methods and accumulating values can be found on the help pages of the functions
renyi and renyiaccum.

Value

Function tsallis returns a data frame of selected indices. Function tsallisaccum with argu-
ment raw = FALSE returns a three-dimensional array, where the first dimension are the accumu-
lated sites, second dimension are the diveristy scales, and third dimension are the summary statis-
tics mean, stdev, min, max, Qnt 0.025 and Qnt 0.975. With argument raw = TRUE the
statistics on the third dimension are replaced with individual permutation results.

Author(s)

Péter Sólymos, 〈solymos@ualberta.ca〉, based on the code of Roeland Kindt and Jari Oksanen
written for renyi
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References

Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phis. 52, 479–
487.

Tothmeresz, B. (1995). Comparison of different methods for diversity ordering. Journal of Vegeta-
tion Science 6, 283–290.

Patil, GP and Taillie, C. (1982). Diversity as a concep and its measurement. J. Am. Stat. Ass. 77,
548–567.

Keylock, CJ (2005). Simpson diversity and the Shannon-Wiener index as special cases of a gener-
alized entropy. Oikos 109, 203–207.

See Also

Plotting methods and accumulation routins are based on functions renyi and renyiaccum. An
object of class ’tsallisaccum’ can be used with function rgl.renyiaccum as well. See also
settings for persp.

Examples

data(BCI)
i <- sample(nrow(BCI), 12)
x1 <- tsallis(BCI[i,])
x1
diversity(BCI[i,],"simpson") == x1[["2"]]
plot(x1)
x2 <- tsallis(BCI[i,],norm=TRUE)
x2
plot(x2)
mod1 <- tsallisaccum(BCI[i,])
plot(mod1, as.table=TRUE, col = c(1, 2, 2))
persp(mod1)
mod2 <- tsallisaccum(BCI[i,], norm=TRUE)
persp(mod2,theta=100,phi=30)

varespec Vegetation and environment in lichen pastures

Description

The varespec data frame has 24 rows and 44 columns. Columns are estimated cover values
of 44 species. The variable names are formed from the scientific names, and are self explanatory
for anybody familiar with the vegetation type. The varechem data frame has 24 rows and 14
columns, giving the soil characteristics of the very same sites as in the varespec data frame. The
chemical measurements have obvious names. Baresoil gives the estimated cover of bare soil,
Humpdepth the thickness of the humus layer.
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Usage

data(varechem)
data(varespec)

References

Väre, H., Ohtonen, R. and Oksanen, J. (1995) Effects of reindeer grazing on understorey vegetation
in dry Pinus sylvestris forests. Journal of Vegetation Science 6, 523–530.

Examples

data(varespec)
data(varechem)

varpart Partition the Variation of Community Matrix by 2, 3, or 4 Explanatory
Matrices

Description

The function partitions the variation of response table Y with respect to two, three, or four explana-
tory tables, using redundancy analysis ordination (RDA). If Y contains a single vector, partitioning
is by partial regression. Collinear variables in the explanatory tables do NOT have to be removed
prior to partitioning.

Usage

varpart(Y, X, ..., data, transfo, scale = FALSE)
showvarparts(parts, labels, ...)
## S3 method for class 'varpart234':
plot(x, cutoff = 0, digits = 1, ...)

Arguments

Y Data frame or matrix containing the response data table. In community ecology,
that table is often a site-by-species table.

X Two to four explanatory models, variables or tables. These can be defined in
three alternative ways: (1) one-sided model formulae beginning with ~ and then
defining the model, (2) name of a single numeric variable, or (3) name of data
frame or matrix with numeric variables. The model formulae can have factors,
interaction terms and transformations of variables. The names of the variables
in the model formula are found in data frame given in data argument, and if
not found there, in the user environment. Single numeric variables, data frames
or matrices are found in the user environment. All entries till the next argument
(data or transfo) are interpreted as explanatory models, and the names of
these arguments cannot be abbreviated nor omitted.

data The data frame with the variables used in the formulae in X.
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transfo Transformation for Y (community data) using decostand. All alternatives
in decostand can be used, and those preserving Euclidean metric include
"hellinger", "chi.square", "total", "norm".

scale Should the columns of Y be standardized to unit variance

parts Number of explanatory tables (circles) displayed.

labels Labels used for displayed fractions. Default is to use the same letters as in the
printed output.

x The varpart result.

cutoff The values below cutoff will not be displayed.

digits The number of significant digits; the number of decimal places is at least one
higher.

... Other parameters passed to functions.

Details

The functions partition the variation in Y into components accounted for by two to four explanatory
tables and their combined effects. If Y is a multicolumn data frame or matrix, the partitioning is
based on redundancy analysis (RDA, see rda), and if Y is a single variable, the partitioning is
based on linear regression. A simplified, fast version of RDA is used (function simpleRDA2).
The actual calculations are done in functions varpart2 to varpart4, but these are not intended
to be called directly by the user.

The function primarily uses adjusted R squares to assess the partitions explained by the explanatory
tables and their combinations, because this is the only unbiased method (Peres-Neto et al., 2006).
The raw R squares for basic fractions are also displayed, but these are biased estimates of variation
explained by the explanatory table.

The identifiable fractions are designated by lower case alphabets. The meaning of the symbols can
be found in the separate document "partionining.pdf" (which can be read using vegandocs), or
can be displayed graphically using function showvarparts.

A fraction is testable if it can be directly expressed as an RDA model. In these cases the printed
output also displays the corresponding RDA model using notation where explanatory tables after
| are conditions (partialled out; see rda for details). Although single fractions can be testable,
this does not mean that all fractions simultaneously can be tested, since there number of testable
fractions is higher than the number of estimated models.

An abridged explanation of the alphabetic symbols for the individual fractions follows, but com-
putational details should be checked in "partitioning.pdf" (readable with vegandocs) or in the
source code.

With two explanatory tables, the fractions explained uniquely by each of the two tables are [a] and
[c], and their joint effect is [b] following Borcard et al. (1992).

With three explanatory tables, the fractions explained uniquely by each of the three tables are [a]
to [c], joint fractions between two tables are [d] to [f], and the joint fraction between all three
tables is [g].

With four explanatory tables, the fractions explained uniquely by each of the four tables are [a] to
[d], joint fractions between two tables are [e] to [j], joint fractions between three variables are
[k] to [n], and the joint fraction between all four tables is [o].
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There is a plot function that displays the Venn diagram and labels each intersection (individual
fraction) with the adjusted R squared if this is higher than cutoff. A helper function showvarpart
displays the fraction labels.

Value

Function varpart returns an object of class "varpart" with items scale and transfo
(can be missing) which hold information on standardizations, tables which contains names of
explanatory tables, and call with the function call. The function varpart calls function
varpart2, varpart3 or varpart4 which return an object of class "varpart234" and
saves its result in the item part. The items in this object are:

SS.Y Sum of squares of matrix Y.

n Number of observations (rows).

nsets Number of explanatory tables

bigwarning Warnings on collinearity.

fract Basic fractions from all estimated constrained models.

indfract Invididual fractions or all possible subsections in the Venn diagram (see showvarparts).

contr1 Fractions that can be found after conditioning on single explanatory table in
models with three or four explanatory tables.

contr2 Fractions that can be found after conditioning on two explanatory tables in mod-
els with four explanatory tables.

Fraction Data Frames

Items fract, indfract, contr1 and contr2 are all data frames with items:

Df Degrees of freedom of numerator of the F -statististic for the fraction.

R.square Raw R-squared. This is calculated only for fract and this is NA in other items.

Adj.R.square Adjusted R-squared.

Testable If the fraction can be expressed as a (partial) RDA model, it is directly Testable, and this
field is TRUE. In that case the fraction label also gives the specification of the testable RDA
model.

Note

You can use command vegandocs to display document "partitioning.pdf" which presents Venn
diagrams showing the fraction names in partitioning the variation of Y with respect to 2, 3, and 4
tables of explanatory variables, as well as the equations used in variation partitioning.

The functions frequently give negative estimates of variation. Adjusted R-squares can be negative
for any fraction; unadjusted R squares of testable fractions always will be non-negative. Non-
testable fractions cannot be found directly, but by subtracting different models, and these subtraction
results can be negative. The fractions are orthogonal, or linearly independent, but more complicated
or nonlinear dependencies can cause negative non-testable fractions.

The current function will only use RDA in multivariate partitioning. It is much more complicated
to estimate the adjusted R-squares for CCA, and unbiased analysis of CCA is not currently imple-
mented.
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Author(s)

Pierre Legendre, Departement de Sciences Biologiques, Universite de Montreal, Canada. Adapted
to vegan by Jari Oksanen.

References

(a) References on variation partioning

Borcard, D., P. Legendre & P. Drapeau. 1992. Partialling out the spatial component of ecological
variation. Ecology 73: 1045–1055.

Legendre, P. & L. Legendre. 1998. Numerical ecology, 2nd English edition. Elsevier Science BV,
Amsterdam.

(b) Reference on transformations for species data

Legendre, P. and E. D. Gallagher. 2001. Ecologically meaningful transformations for ordination of
species data. Oecologia 129: 271–280.

(c) Reference on adjustment of the bimultivariate redundancy statistic

Peres-Neto, P., P. Legendre, S. Dray and D. Borcard. 2006. Variation partioning of species data
matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.

See Also

For analysing testable fractions, see rda and anova.cca. For data transformation, see decostand.
Function inertcomp gives (unadjusted) components of variation for each species or site sepa-
rately.

Examples

data(mite)
data(mite.env)
data(mite.pcnm)

## See detailed documentation:
## Not run:
vegandocs("partition")
## End(Not run)

# Two explanatory matrices -- Hellinger-transform Y
# Formula shortcut "~ ." means: use all variables in 'data'.
mod <- varpart(mite, ~ ., mite.pcnm, data=mite.env, transfo="hel")
mod
showvarparts(2)
plot(mod)
# Alternative way of to conduct this partitioning
# Change the data frame with factors into numeric model matrix
mm <- model.matrix(~ SubsDens + WatrCont + Substrate + Shrub + Topo, mite.env)[,-1]
mod <- varpart(decostand(mite, "hel"), mm, mite.pcnm)
# Test fraction [a] using RDA:
rda.result <- rda(decostand(mite, "hell"), mm, mite.pcnm)
anova(rda.result, step=200, perm.max=200)
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# Three explanatory matrices
mod <- varpart(mite, ~ SubsDens + WatrCont, ~ Substrate + Shrub + Topo,

mite.pcnm, data=mite.env, transfo="hel")
mod
showvarparts(3)
plot(mod)
# An alternative formulation of the previous model using
# matrices mm1 amd mm2 and Hellinger transformed species data
mm1 <- model.matrix(~ SubsDens + WatrCont, mite.env)[,-1]
mm2 <- model.matrix(~ Substrate + Shrub + Topo, mite.env)[, -1]
mite.hel <- decostand(mite, "hel")
mod <- varpart(mite.hel, mm1, mm2, mite.pcnm)
# Use RDA to test fraction [a]
# Matrix can be an argument in formula
rda.result <- rda(mite.hel ~ mm1 + Condition(mm2) +

Condition(as.matrix(mite.pcnm)))
anova(rda.result, step=200, perm.max=200)

# Four explanatory tables
mod <- varpart(mite, ~ SubsDens + WatrCont, ~Substrate + Shrub + Topo,
mite.pcnm[,1:11], mite.pcnm[,12:22], data=mite.env, transfo="hel")

mod
plot(mod)
# Show values for all partitions by putting 'cutoff' low enough:
plot(mod, cutoff = -Inf, cex = 0.7)

vegan-internal Internal vegan functions

Description

Internal vegan functions that are not intended to be called directly, but only within other functions.

Usage

ordiGetData(call, env)
ordiParseFormula(formula, data, xlev = NULL, envdepth = 2)
ordiTerminfo(d, data)
ordiArrowMul(x, at = c(0,0), fill = 0.75)
ordiArgAbsorber(..., shrink, origin, scaling, triangular,

display, choices, const, FUN)
centroids.cca(x, mf, wt)
permuted.index(n, strata)
pasteCall(call, prefix = "Call:")

Details

The description here is only intended for vegan developers: these functions are not intended for
users, but they only should be used within functions



172 vegandocs

ordiGetData finds the model frame of constraints and conditions in constrained ordination in the
defined environment. ordiParseFormula returns a list of three matrices (dependent variables,
and model.matrix of constraints and conditions, possibly NULL) needed in constrained ordina-
tion. Argument xlev is passed to model.frame and argument envdepth specifies the depth at
which the community data (dependent data) is evaluated; default envdepth = 2 evaluates that in
the environment of the parent of the calling function, and envdepth = 1 within the calling func-
tion (see eval.parent). ordiTermInfo finds the term information for constrained ordination
as described in cca.object.

ordiArgAbsorber absorbs arguments of scores function of vegan so that these do not cause
superfluous warnings in graphical function FUN. If you implement scores functions with new
arguments, you should update ordiArgAbsorber.

centroids.cca finds the weighted centroids of variables.

permuted.index creates permuted index of length n possibly stratified within strata. This is
the basic vegan permutation function that should be replaced with more powerful permuted.index2
in the future releases of vegan, and all new functions should use permuted.index2.

pasteCall prints the function call so that it is nicely wrapped in Sweave output.

vegandocs Display Package Documentation

Description

Display package documentation using pager or pdfviewer defined in options.

Usage

vegandocs(doc = c("NEWS", "ChangeLog", "FAQ-vegan.pdf",
"intro-vegan.pdf", "diversity-vegan.pdf", "decision-vegan.pdf",
"partitioning.pdf"))

Arguments

doc The name of the document (partial match, case sensitive).

Note

The function is a kluge, since R does not have this facility (I hope it will come there). Function
vignette only works with vignettes.

Author(s)

Jari Oksanen

See Also

vignette.
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Examples

## Not run:
vegandocs("Change")
## End(Not run)

vegdist Dissimilarity Indices for Community Ecologists

Description

The function computes dissimilarity indices that are useful for or popular with community ecolo-
gists. All indices use quantitative data, although they would be named by the corresponding binary
index, but you can calculate the binary index using an appropriate argument. If you do not find
your favourite index here, you can see if it can be implemented using designdist. Gower,
Bray–Curtis, Jaccard and Kulczynski indices are good in detecting underlying ecological gradients
(Faith et al. 1987). Morisita, Horn–Morisita, Binomial and Chao indices should be able to handle
different sample sizes (Wolda 1981, Krebs 1999, Anderson & Millar 2004), and Mountford (1962)
and Raup-Crick indices for presence–absence data should be able to handle unknown (and variable)
sample sizes.

Usage

vegdist(x, method="bray", binary=FALSE, diag=FALSE, upper=FALSE,
na.rm = FALSE, ...)

Arguments

x Community data matrix.

method Dissimilarity index, partial match to "manhattan", "euclidean", "canberra",
"bray", "kulczynski", "jaccard", "gower", "morisita", "horn",
"mountford", "raup" , "binomial" or "chao".

binary Perform presence/absence standardization before analysis using decostand.

diag Compute diagonals.

upper Return only the upper diagonal.

na.rm Pairwise deletion of missing observations when computing dissimilarities.

... Other parameters. These are ignored, except in method ="gower" which
accepts range.global parameter of decostand. .

Details

Jaccard ("jaccard"), Mountford ("mountford"), Raup–Crick ("raup"), Binomial and Chao
indices are discussed below. The other indices are defined as:

euclidean djk =
√∑

i(xij − xik)2
manhattan djk =

∑
i |xij − xik|
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gower djk = (1/M)
∑

i
|xij−xik|

max xi−min xi

where M is the number of columns (excluding missing values)
canberra djk = 1

NZ

∑
i
|xij−xik|
xij+xik

where NZ is the number of non-zero entries.

bray djk =
∑

i
|xij−xik|∑

i
(xij+xik)

kulczynski djk = 1− 0.5(
∑

i
min(xij ,xik)∑

i
xij

+
∑

i
min(xij ,xik)∑

i
xik

)

morisita djk =
2
∑

i
xijxik

(λj+λk)
∑

i
xij

∑
i
xik

where λj =
∑

i
xij(xij−1)∑

i
xij

∑
i
(xij−1)

horn Like morisita, but λj =
∑

i x2
ij/(

∑
i xij)2

binomial djk =
∑

i[xij log(xij

ni
) + xik log(xik

ni
)− ni log( 1

2 )]/ni

where ni = xij + xik

Jaccard index is computed as 2B/(1 + B), where B is Bray–Curtis dissimilarity.

Binomial index is derived from Binomial deviance under null hypothesis that the two compared
communities are equal. It should be able to handle variable sample sizes. The index does not have
a fixed upper limit, but can vary among sites with no shared species. For further discussion, see
Anderson & Millar (2004).

Mountford index is defined as M = 1/α where α is the parameter of Fisher’s logseries assum-
ing that the compared communities are samples from the same community (cf. fisherfit,
fisher.alpha). The index M is found as the positive root of equation exp(aM) + exp(bM) =
1 + exp[(a + b − j)M ], where j is the number of species occurring in both communities, and a
and b are the number of species in each separate community (so the index uses presence–absence
information). Mountford index is usually misrepresented in the literature: indeed Mountford (1962)
suggested an approximation to be used as starting value in iterations, but the proper index is defined
as the root of the equation above. The function vegdist solves M with the Newton method.
Please note that if either a or b are equal to j, one of the communities could be a subset of other, and
the dissimilarity is 0 meaning that non-identical objects may be regarded as similar and the index is
non-metric. The Mountford index is in the range 0 . . . log(2), but the dissimilarities are divided by
log(2) so that the results will be in the conventional range 0 . . . 1.

Raup–Crick dissimilarity (method = "raup") is a probabilistic index based on presensec/absence
data. It is defined as 1 − prob(j), or based on the probability of observing at least j species in
shared in compared communities. Legendre & Legendre (1998) suggest using simulations to as-
sess the probability, but the current function uses analytic result from hypergeometric distribution
(phyper) instead. This probability (and the index) is dependent on the number of species missing
in both sites, and adding all-zero species to the data or removing missing species from the data
will influence the index. The probability (and the index) may be almost zero or almost one for a
wide range of parameter values. The index is nonmetric: two communities with no shared species
may have a dissimilarity slightly below one, and two identical communities may have dissimilarity
slightly above zero.

Chao index tries to take into account the number of unseen species pairs, similarly as Chao’s method
in specpool. Function vegdist implements a Jaccard type index defined as djk = UjUk/(Uj+
Uk−UjUk), where Uj = Cj/Nj +(Nk−1)/Nk×a1/(2a2)×Sj/Nj . Here Cj is the total number
of individuals in species shared with site k, N is the total number of individuals, a1 and a2 are
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number of species occurring only with one or two individuals in another site, and Sj is the number
of individuals in species that occur only with one individual in another site (Chao et al. 2005).

Morisita index can be used with genuine count data (integers) only. Its Horn–Morisita variant is
able to handle any abundance data.

Euclidean and Manhattan dissimilarities are not good in gradient separation without proper stan-
dardization but are still included for comparison and special needs.

Bray–Curtis and Jaccard indices are rank-order similar, and some other indices become identical or
rank-order similar after some standardizations, especially with presence/absence transformation of
equalizing site totals with decostand. Jaccard index is metric, and probably should be preferred
instead of the default Bray-Curtis which is semimetric.

The naming conventions vary. The one adopted here is traditional rather than truthful to priority.
The function finds either quantitative or binary variants of the indices under the same name, which
correctly may refer only to one of these alternatives For instance, the Bray index is known also as
Steinhaus, Czekanowski and Sørensen index. The quantitative version of Jaccard should probably
called Ružička index. The abbreviation "horn" for the Horn–Morisita index is misleading, since
there is a separate Horn index. The abbreviation will be changed if that index is implemented in
vegan.

Value

Should provide a drop-in replacement for dist and return a distance object of the same type.

Note

The function is an alternative to dist adding some ecologically meaningful indices. Both methods
should produce similar types of objects which can be interchanged in any method accepting either.
Manhattan and Euclidean dissimilarities should be identical in both methods. Canberra index is
divided by the number of variables in vegdist, but not in dist. So these differ by a constant
multiplier, and the alternative in vegdist is in range (0,1). Function daisy (package cluster)
provides alternative implentation of Gower index for mixed data of numeric and class variables (but
it works for mixed variables only).

Most dissimilarity indices in vegdist are designed for community data, and they will give mis-
leading values if there are negative data entries. The results may also be misleading or NA or NaN
if there are empty sites. In principle, you cannot study species compostion without species and you
should remove empty sites from community data.

Author(s)

Jari Oksanen, with contributions from Tyler Smith (Gower index) and Michael Bedward (Raup–
Crick index).

References

Anderson, M.J. and Millar, R.B. (2004). Spatial variation and effects of habitat on temperate reef
fish assemblages in northeastern New Zealand. Journal of Experimental Marine Biology and Ecol-
ogy 305, 191–221.
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Chao, A., Chazdon, R. L., Colwell, R. K. and Shen, T. (2005). A new statistical approach for
assessing similarity of species composition with incidence and abundance data. Ecology Letters 8,
148–159.

Faith, D. P, Minchin, P. R. and Belbin, L. (1987). Compositional dissimilarity as a robust measure
of ecological distance. Vegetatio 69, 57–68.

Krebs, C. J. (1999). Ecological Methodology. Addison Wesley Longman.

Legendre, P, & Legendre, L. (1998) Numerical Ecology. 2nd English Edition. Elsevier.

Mountford, M. D. (1962). An index of similarity and its application to classification problems. In:
P.W.Murphy (ed.), Progress in Soil Zoology, 43–50. Butterworths.

Wolda, H. (1981). Similarity indices, sample size and diversity. Oecologia 50, 296–302.

See Also

Function designdist can be used for defining your own dissimilarity index. Alternative dissimi-
larity functions include dist in base R, daisy (package cluster), and dsvdis (package labdsv).
Function betadiver provides indices intended for the analysis of beta diversity.

Examples

data(varespec)
vare.dist <- vegdist(varespec)
# Orlóci's Chord distance: range 0 .. sqrt(2)
vare.dist <- vegdist(decostand(varespec, "norm"), "euclidean")

vegemite Prints a Compact, Ordered Vegetation Table

Description

The function prints a compact vegetation table, where species are rows, and each site takes only one
column without spaces. The vegetation table can be ordered by explicit indexing, by environmental
variables or results from an ordination or cluster analysis.

Usage

vegemite(x, use, scale, sp.ind, site.ind, zero=".", select ,...)
coverscale(x, scale=c("Braun.Blanquet", "Domin", "Hult", "Hill", "fix","log"),

maxabund)

Arguments

x Vegetation data.

use Either a vector, or an object from cca, decorana etc. or hclust or a
dendrogram for ordering sites and species.

sp.ind Species indices.
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site.ind Site indices.

zero Character used for zeros.

select Select a subset of sites. This can be a logical vector (TRUE for selected sites),
or a vector of indices of selected sites. The order of indices does not influence
results, but you must specify use or site.ind to reorder sites.

scale Cover scale used (can be abbreviated).

maxabund Maximum abundance used with scale = "log". Data maximum in the
selected subset will be usd if this is missing.

... Arguments passed to coverscale (i.e., maxabund).

Details

The function prints a traditional vegetation table. Unlike in ordinary data matrices, species are used
as rows and sites as columns. The table is printed in compact form: only one character can be used
for abundance, and there are no spaces between columns. Species with no occurrences are dropped
from the table.

The parameter use can be a vector or an object from hclust, a dendrogram or any ordination
result recognized by scores (all ordination methods in vegan and some of those not in vegan).
If use is a vector, it is used for ordering sites. If use is an object from ordination, both sites and
species are arranged by the first axis. When use is an object from hclust or a dendrogram,
the sites are ordered similarly as in the cluster dendrogram. If ordination methods provide species
scores, these are used for ordering species. In all cases where species scores are missing, species
are ordered by their weighted averages (wascores) on site scores. There is no natural, unique
ordering in hierarchic clustering, but in some cases species are still nicely ordered (please note that
you can reorder.dendrogram to have such a natural order). Alternatively, species and sites
can be ordered explicitly giving their indices or names in parameters sp.ind and site.ind. If
these are given, they take precedence over use. A subset of sites can be displayed using argument
select, but this cannot be used to order sites, but you still must give use or site.ind.

If scale is given, vegemite calls coverscale to transform percent cover scale or some other
scales into traditional class scales used in vegetation science (coverscale can be called directly,
too). Braun-Blanquet and Domin scales are actually not strict cover scales, and the limits used
for codes r and + are arbitrary. Scale Hill may be inappropriately named, since Mark O. Hill
probably never intended this as a cover scale. However, it is used as default ’cut levels’ in his
TWINSPAN, and surprisingly many users stick to this default, and this is a de facto standard in
publications. All traditional scales assume that values are cover percentages with maximum 100.
However, non-traditional alternative log can be used with any scale range. Its class limits are
integer powers of 1/2 of the maximum (argument maxabund), with + used for non-zero entries
less than 1/512 of the maximum (log stands alternatively for logarithmic or logical). Scale fix
is intended for ‘fixing’ 10-point scales: it truncates scale values to integers, and replaces 10 with X
and positive values below 1 with +.

Value

The function is used mainly to print a table, but it returns (invisibly) a list with items:

species Ordered species indices

sites Ordered site indices
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These items can be used as arguments sp.ind and site.ind to reproduce the table. In addition
to the proper table, the function prints the numbers of species and sites and the name of the used
cover scale at the end.

Note

This function was called vegetab in older versions of vegan. The new name was chosen because
the output is so compact (and to avoid confusion with the vegtab function in the labdsv package).

Author(s)

Jari Oksanen

References

The cover scales are presented in many textbooks of vegetation science; I used:

Shimwell, D.W. (1971) The Description and Classification of Vegetation. Sidgwick & Jackson.

See Also

cut and approx for making your own ‘cover scales’, wascores for weighted averages.

Examples

data(varespec)
## Print only more common species
freq <- apply(varespec > 0, 2, sum)
vegemite(varespec, scale="Hult", sp.ind = freq > 10)
## Order by correspondence analysis, use Hill scaling and layout:
dca <- decorana(varespec)
vegemite(varespec, dca, "Hill", zero="-")
## Show one class from cluster analysis, but retain the ordering above
clus <- hclust(vegdist(varespec))
cl <- cutree(clus, 3)
sel <- vegemite(varespec, use=dca, select = cl == 3, scale="Br")
# Re-create previous
vegemite(varespec, sp=sel$sp, site=sel$site, scale="Hult")

wascores Weighted Averages Scores for Species

Description

Computes Weighted Averages scores of species for ordination configuration or for environmental
variables.

Usage

wascores(x, w, expand=FALSE)
eigengrad(x, w)
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Arguments

x Environmental variables or ordination scores.
w Weights: species abundances.
expand Expand weighted averages so that they have the same weighted variance as the

corresponding environmental variables.

Details

Function wascores computes weighted averages. Weighted averages ‘shrink’: they cannot be
more extreme than values used for calculating the averages. With expand = TRUE, the function
‘dehsrinks’ the weighted averages by making their biased weighted variance equal to the biased
weighted variance of the corresponding environmental variable. Function eigengrad returns the
inverses of squared expansion factors or the attribute shrinkage of the wascores result for
each environmental gradient. This is equal to the constrained eigenvalue of cca when only this one
gradient was used as a constraint, and describes the strength of the gradient.

Value

Function wascores returns a matrix where species define rows and ordination axes or environ-
mental variables define columns. If expand = TRUE, attribute shrinkage has the inverses of
squared expansion factors or cca eigenvalues for the variable. Function eigengrad returns only
the shrinkage attribute.

Author(s)

Jari Oksanen

See Also

isoMDS, cca.

Examples

data(varespec)
data(varechem)
library(MASS) ## isoMDS
vare.dist <- vegdist(wisconsin(varespec))
vare.mds <- isoMDS(vare.dist)
vare.points <- postMDS(vare.mds$points, vare.dist)
vare.wa <- wascores(vare.points, varespec)
plot(scores(vare.points), pch="+", asp=1)
text(vare.wa, rownames(vare.wa), cex=0.8, col="blue")
## Omit rare species (frequency <= 4)
freq <- apply(varespec>0, 2, sum)
plot(scores(vare.points), pch="+", asp=1)
text(vare.wa[freq > 4,], rownames(vare.wa)[freq > 4],cex=0.8,col="blue")
## Works for environmental variables, too.
wascores(varechem, varespec)
## And the strengths of these variables are:
eigengrad(varechem, varespec)
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wcmdscale Weighted Classical (Metric) Multidimensional Scaling

Description

Weighted classical multidimensional scaling, also known as weighted principal coordinates analy-
sis.

Usage

wcmdscale(d, k, eig = FALSE, add = FALSE, x.ret = FALSE, w)

Arguments

d a distance structure such as that returned by dist or a full symmetric matrix
containing the dissimilarities.

k the dimension of the space which the data are to be represented in; must be in
{1, 2, . . . , n− 1}. If missing, all dimensions with above zero eigenvalue.

eig indicates whether eigenvalues should be returned.

add logical indicating if an additive constant c∗ should be computed, and added to
the non-diagonal dissimilarities such that all n−1 eigenvalues are non-negative.
Not implemented.

x.ret indicates whether the doubly centred symmetric distance matrix should be re-
turned.

w Weights of points.

Details

Function wcmdscale is based on function cmdscale (package stats of base R), but it uses point
weights. Points with high weights will have a stronger influence on the result than those with low
weights. Setting equal weights w = 1 will give ordinary multidimensional scaling.

Value

If eig = FALSE and x.ret = FALSE (default), a matrix with k columns whose rows give the
coordinates of the points chosen to represent the dissimilarities.

Otherwise, an object of class wcmdscale list containing the following components.

points a matrix with k columns whose rows give the coordinates of the points chosen
to represent the dissimilarities.

eig the n− 1 eigenvalues computed during the scaling process if eig is true.

x the doubly centred and weighted distance matrix if x.ret is true.

weights Weights.
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See Also

cmdscale. Also isoMDS and sammon in package MASS.

Examples

## Correspondence analysis as a weighted principal coordinates
## analysis of Euclidean distances of Chi-square transformed data
data(dune)
rs <- rowSums(dune)/sum(dune)
d <- dist(decostand(dune, "chi"))
ord <- wcmdscale(d, w = rs, eig = TRUE)
## Ordinary CA
ca <- cca(dune)
## Eigevalues are numerically similar
ca$CA$eig - ord$eig
## Configurations are similar when site scores are scaled by
## eigenvalues in CA
procrustes(ord, ca, choices=1:19, scaling = 1)
plot(procrustes(ord, ca, choices=1:2, scaling=1))
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procrustes, 132
rankindex, 139
scores, 145
screeplot.cca, 146
spantree, 149
stepacross, 157
tsallis, 163
varpart, 166
vegdist, 172
wascores, 177
wcmdscale, 179

∗Topic nonlinear
humpfit, 65

∗Topic nonparametric
adonis, 6
anosim, 8
bgdispersal, 22
mrpp, 79

∗Topic print
vegemite, 175

∗Topic regression
humpfit, 65

∗Topic smooth
beals, 14

∗Topic spatial
mso, 82

∗Topic univar
diversity, 51
fisherfit, 58
nestedtemp, 84
radfit, 136
renyi, 143
specaccum, 152
specpool, 154
taxondive, 159
treedive, 162
wascores, 177

∗Topic utilities
permCheck, 109
vegandocs, 171

.Random.seed, 12

abbreviate, 71, 72
add1, 5
add1.cca, 4, 12, 48
add1.default, 5
ade2vegancca (plot.cca), 124
adonis, 6, 10, 20, 21, 81
agnes, 91, 151
AIC, 47, 48, 66, 138
AIC.radfit (radfit), 136
alias.cca, 37, 39
alias.cca (goodness.cca), 61
alias.lm, 63
allPerms, 119
allPerms (permCheck), 109
amova, 7
anosim, 8, 8, 73, 81, 140
anova, 12
anova.betadisper (betadisper), 16
anova.cca, 5, 10, 29, 30, 36, 48, 100, 128,

169
anova.ccabyaxis (anova.cca), 10
anova.ccabymargin (anova.cca), 10
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approx, 177
arrows, 27, 91, 96, 126, 133
as.factor, 17
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as.hclust, 162
as.mlm, 36, 39
as.mlm (as.mlm.cca), 13
as.mlm.cca, 13
as.preston (fisherfit), 58
as.rad (radfit), 136

BCI, 1
BCI.env, 2
beals, 14, 156
betadisper, 16, 20, 21, 122, 123
betadiver, 17–19, 20, 46, 175
bgdispersal, 22
bioenv, 24, 73
biplot, 3
biplot.CCorA (CCorA), 2
biplot.default, 3
biplot.rda, 26, 26
boxplot, 9, 18, 19, 154
boxplot.betadisper (betadisper),

16
boxplot.specaccum (specaccum), 152
bstick (screeplot.cca), 146

ca, 35, 42, 145
calibrate.cca, 38
calibrate.cca (predict.cca), 129
call, 168
cancor, 126
capabilities, 105
capscale, 5, 10–14, 27, 36, 37, 48, 56, 61,

63, 94, 96, 100, 124, 126, 129–131
cascadeKM, 30
cca, 5, 10–14, 28–30, 33, 36–38, 42, 47, 48,

56, 57, 61, 63, 82, 83, 91, 94, 96,
100–102, 124–126, 129–131, 145,
148, 178

cca.object, 14, 35, 36, 37, 82, 83, 128, 171
CCorA, 2
centroids.cca (vegan-internal),

170
chisq.test, 87
chull, 91
cIndexKM (cascadeKM), 30
cloud, 107, 108

clustIndex, 31, 33
cmdscale, 28–30, 44, 68, 69, 76, 179, 180
coef, 66, 138
coef.cca, 14, 38, 39
coef.cca (predict.cca), 129
coef.radfit (radfit), 136
coef.rda, 38
coef.rda (predict.cca), 129
commsimulator, 116, 117
commsimulator (oecosimu), 86
confint.fisherfit (fisherfit), 58
confint.glm, 59, 67
confint.profile.glm, 66
contr.treatment, 128
contrasts, 7, 34
cooks.distance, 13
cophenetic, 162
cophenetic.spantree, 159
cophenetic.spantree (spantree),

149
cor, 24, 25, 72, 73, 140
cor.test, 73, 140
coverscale (vegemite), 175
cut, 177

daisy, 140, 162, 174, 175
data.frame, 56
decorana, 35, 39, 56, 61, 63, 91, 94, 96,

101, 102, 125, 129, 131, 145, 148
decostand, 16, 35, 43, 78, 138, 167, 169,

172, 174
dendrogram, 175, 176
density, 60
designdist, 20, 21, 45, 172, 175
deviance, 48, 66, 138
deviance.capscale (deviance.cca),

47
deviance.cca, 5, 12, 36, 39, 47
deviance.rda, 5
deviance.rda (deviance.cca), 47
dist, 9, 10, 17, 24, 25, 28, 30, 46, 49, 50, 73,

150, 151, 157–160, 174, 175
distconnected, 49, 69, 150, 158, 159
diversity, 51, 60, 144, 156, 161, 164
downweight (decorana), 39
drop.scope, 12
drop1, 5
drop1.cca, 12, 48
drop1.cca (add1.cca), 4
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drop1.default, 5
dsvdis, 175
dune, 53, 54
dune.taxon, 54

eigengrad (wascores), 177
ellipse, 91
ellipse.glm, 66
ellipsoidhull, 91
envfit, 35, 55, 62, 96, 97, 102, 107
estimateR (specpool), 154
eval.parent, 171
extractAIC, 48, 66, 138
extractAIC.cca, 5
extractAIC.cca (deviance.cca), 47

factor, 34, 56, 125, 162
factorfit (envfit), 55
family, 65, 67, 137, 138
fisher.alpha, 59, 60, 173
fisher.alpha (diversity), 51
fisherfit, 51, 58, 67, 139, 173
fitdistr, 59, 60
fitted, 66, 138
fitted.cca, 100
fitted.cca (predict.cca), 129
fitted.procrustes (procrustes),

132
fitted.radfit (radfit), 136
fitted.rda (predict.cca), 129
formula, 24, 28, 34, 37, 55, 56

gam, 101, 102
Gamma, 67, 138
getNumObs (permCheck), 109
glm, 66, 67, 137, 138
goodness (goodness.cca), 61
goodness.cca, 36, 61, 131
goodness.metaMDS, 63

hatvalues, 13
hclust, 91, 151, 162, 176
head.summary.cca (plot.cca), 124
humpfit, 65

identify, 94, 95
identify.ordiplot, 18, 27, 93, 96, 97,

126, 133, 137
identify.ordiplot (ordiplot), 93

inertcomp, 169
inertcomp (goodness.cca), 61
influence.measures, 13, 14
inherits, 37
initMDS, 134
initMDS (metaMDS), 74
intersetcor, 14
intersetcor (goodness.cca), 61
isomap, 68, 159
isomapdist (isomap), 68
isoMDS, 9, 25, 35, 42, 64, 74–78, 134, 140,

145, 178, 180

kmeans, 31, 33

Lattice, 100, 101, 108, 137, 139
lda, 126
legend, 127
lines, 90, 91
lines.humpfit (humpfit), 65
lines.prestonfit (fisherfit), 58
lines.procrustes (procrustes), 132
lines.radline (radfit), 136
lines.spantree (spantree), 149
linestack, 70, 128
lm, 13, 14, 39
lset, 139

Machine, 140
make.cepnames, 71
make.names, 72, 142
make.unique, 71
mantel, 8, 10, 20, 21, 25, 72, 81, 82, 134,

140
mantel.partial, 25
matlines, 154
matplot, 128
mcnemar.test, 23
metaMDS, 28, 29, 42, 64, 69, 74
metaMDSdist, 28
metaMDSdist (metaMDS), 74
metaMDSiter (metaMDS), 74
metaMDSredist, 64
metaMDSredist (metaMDS), 74
mite, 78
model.frame, 171
model.matrix, 171
mrpp, 8, 10, 73, 79
mso, 82
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msoplot (mso), 82

na.action, 38
nestedchecker, 87
nestedchecker (nestedtemp), 84
nesteddisc, 87
nesteddisc (nestedtemp), 84
nestedn0, 87
nestedn0 (nestedtemp), 84
nestedtemp, 84, 87, 89
nlm, 51, 52, 59, 60, 67, 138
no.shared, 139, 140, 158, 159
no.shared (distconnected), 49
numPerms (permCheck), 109

oecosimu, 85, 86, 86, 162
optim, 99
options, 171
ordered, 162
orderingKM (cascadeKM), 30
ordiArgAbsorber (vegan-internal),

170
ordiArrowMul (vegan-internal), 170
ordiarrows (ordihull), 90
ordicloud (ordixyplot), 107
ordicluster, 151
ordicluster (ordihull), 90
ordiellipse (ordihull), 90
ordiGetData (vegan-internal), 170
ordigrid (ordihull), 90
ordihull, 90, 96, 97
ordilabel, 92
ordilattice.getEnvfit

(ordixyplot), 107
ordiParseFormula

(vegan-internal), 170
ordiplot, 18, 21, 27, 69, 78, 90, 93, 96, 97,

105, 106, 126, 137
ordiplot3d, 95, 96
ordipointlabel, 98, 104, 105
ordiresids, 100
ordirgl, 69, 105
ordirgl (ordiplot3d), 95
ordisegments, 97
ordisegments (ordihull), 90
ordispider, 62, 97
ordispider (ordihull), 90
ordisplom (ordixyplot), 107
ordisurf, 35, 57, 101

ordiTerminfo, 37
ordiTerminfo (vegan-internal), 170
orditkplot, 93, 99, 103
orditorp, 93, 105, 105
ordixyplot, 107
orglpoints (ordiplot3d), 95
orglsegments (ordiplot3d), 95
orglspider (ordiplot3d), 95
orgltext (ordiplot3d), 95

pairs.profile.glm, 66
panel.cloud, 108
panel.ordi (ordixyplot), 107
panel.ordi3d (ordixyplot), 107
panel.splom, 108
panel.xyplot, 107, 108
par, 103, 104
paste, 72
pasteCall (vegan-internal), 170
pca, 145
permat, 115
permatfull, 89
permatfull (permat), 115
permatswap, 89
permatswap (permat), 115
permCheck, 109, 120
permControl, 110–112, 120, 122, 123
permControl (permuted.index2), 118
permuplot (permCheck), 109
permute (permuted.index2), 118
permuted.index, 120
permuted.index (vegan-internal),

170
permuted.index2, 110, 112, 118, 171
permutest (anova.cca), 10
permutest.betadisper, 18, 19, 120,

122
permutest.cca, 38
persp, 143, 144, 165
persp.renyiaccum (renyi), 143
persp.tsallisaccum (tsallis), 163
phyper, 173
plot, 71, 94
plot.anosim (anosim), 8
plot.betadisper (betadisper), 16
plot.betadiver (betadiver), 20
plot.cascadeKM (cascadeKM), 30
plot.cca, 27, 29, 30, 35, 36, 38, 55, 90,

93–97, 105, 106, 124
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plot.decorana, 90, 93, 95, 106
plot.decorana (decorana), 39
plot.default, 17, 106, 147
plot.envfit (envfit), 55
plot.fisherfit (fisherfit), 58
plot.humpfit (humpfit), 65
plot.isomap (isomap), 68
plot.lm, 100, 101
plot.metaMDS, 106
plot.metaMDS (metaMDS), 74
plot.nestedtemp (nestedtemp), 84
plot.orditkplot (orditkplot), 103
plot.permat (permat), 115
plot.prc (prc), 127
plot.prestonfit (fisherfit), 58
plot.procrustes, 93–95
plot.procrustes (procrustes), 132
plot.profile.fisherfit

(fisherfit), 58
plot.profile.glm, 66
plot.rad, 93
plot.rad (radfit), 136
plot.radfit (radfit), 136
plot.radline (radfit), 136
plot.renyi (renyi), 143
plot.renyiaccum (renyi), 143
plot.spantree (spantree), 149
plot.specaccum (specaccum), 152
plot.taxondive (taxondive), 159
plot.varpart (varpart), 166
plot.varpart234 (varpart), 166
pointLabel, 99
points, 27, 90, 98, 105, 106, 125, 126
points.cca, 36
points.cca (plot.cca), 124
points.decorana (decorana), 39
points.humpfit (humpfit), 65
points.metaMDS (metaMDS), 74
points.ordiplot, 96, 97
points.ordiplot (ordiplot), 93
points.orditkplot (orditkplot),

103
points.procrustes (procrustes),

132
points.radline (radfit), 136
polygon, 90–93, 110, 154
postMDS (metaMDS), 74
prc, 127

prcomp, 145–148
predict.cca, 36–39, 129
predict.decorana, 42
predict.decorana (predict.cca),

129
predict.gam, 102
predict.humpfit (humpfit), 65
predict.rda, 38
predict.rda (predict.cca), 129
pregraphKM (cascadeKM), 30
prepanel.ordi3d (ordixyplot), 107
prestondistr (fisherfit), 58
prestonfit, 139
prestonfit (fisherfit), 58
princomp, 145–148
print, 111
print.adonis (adonis), 6
print.allPerms (permCheck), 109
print.anosim (anosim), 8
print.anova, 12
print.betadisper (betadisper), 16
print.bioenv (bioenv), 24
print.capscale (capscale), 27
print.cca (cca), 33
print.CCorA (CCorA), 2
print.decorana (decorana), 39
print.envfit (envfit), 55
print.factorfit (envfit), 55
print.fisherfit (fisherfit), 58
print.humpfit (humpfit), 65
print.isomap (isomap), 68
print.mantel (mantel), 72
print.metaMDS (metaMDS), 74
print.mrpp (mrpp), 79
print.mso (mso), 82
print.nestedchecker (nestedtemp),

84
print.nesteddisc (nestedtemp), 84
print.nestedn0 (nestedtemp), 84
print.nestedtemp (nestedtemp), 84
print.oecosimu (oecosimu), 86
print.permat (permat), 115
print.permCheck (permCheck), 109
print.permControl

(permuted.index2), 118
print.permutest.betadisper

(permutest.betadisper), 122
print.permutest.cca (anova.cca),
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10
print.prestonfit (fisherfit), 58
print.procrustes (procrustes), 132
print.protest (procrustes), 132
print.radfit (radfit), 136
print.radline (radfit), 136
print.specaccum (specaccum), 152
print.summary.allPerms

(permCheck), 109
print.summary.bioenv (bioenv), 24
print.summary.cca (plot.cca), 124
print.summary.decorana

(decorana), 39
print.summary.humpfit (humpfit),

65
print.summary.isomap (isomap), 68
print.summary.permat (permat), 115
print.summary.permCheck

(permCheck), 109
print.summary.prc (prc), 127
print.summary.procrustes

(procrustes), 132
print.summary.taxondive

(taxondive), 159
print.taxondive (taxondive), 159
print.varpart (varpart), 166
print.varpart234 (varpart), 166
print.vectorfit (envfit), 55
procrustes, 25, 76, 78, 132
profile.fisherfit (fisherfit), 58
profile.glm, 59, 67
profile.humpfit (humpfit), 65
protest, 25, 73, 140
protest (procrustes), 132
pyrifos, 135

qnorm, 100
qqmath, 100, 101
qqnorm, 139
qqplot, 60, 139
qr, 3, 38
quasipoisson, 138

r2dtable, 89, 116, 117
rad.lognormal, 59
rad.lognormal (radfit), 136
rad.null (radfit), 136
rad.preempt (radfit), 136
rad.zipf (radfit), 136

rad.zipfbrot (radfit), 136
radfit, 60, 136, 148
rank, 10, 140
rankindex, 25, 76, 78, 139
rarefy, 153, 154
rarefy (diversity), 51
rda, 5, 10–14, 26–30, 37, 38, 47, 48, 56, 61,

63, 82, 83, 91, 94, 96, 100, 124–131,
167, 169

rda (cca), 33
read.cep, 141
renyi, 143, 164, 165
renyiaccum, 154, 164, 165
renyiaccum (renyi), 143
reorder.dendrogram, 176
residuals.cca (predict.cca), 129
residuals.glm, 66, 138
residuals.procrustes

(procrustes), 132
residuals.rda (predict.cca), 129
rgl, 95–97, 144
rgl.isomap (isomap), 68
rgl.lines, 97
rgl.points, 96, 97
rgl.renyiaccum, 165
rgl.renyiaccum (renyi), 143
rgl.texts, 96, 97
rgl.viewpoint, 97
ripley.subs (bioenv), 24
ripley.subsets (bioenv), 24
rndtaxa, 89
RsquareAdj (varpart), 166
rug, 71

s.label, 93
sammon, 150, 180
sample, 117
save.image, 97
scale, 24, 25, 38
scatterplot3d, 95–97
scores, 19, 56, 69, 91–96, 101–103,

105–108, 110, 111, 132, 133, 145,
150, 171, 176

scores.betadisper (betadisper), 16
scores.betadiver (betadiver), 20
scores.cca, 36, 38, 39, 62, 132, 133, 146
scores.cca (plot.cca), 124
scores.decorana, 146
scores.decorana (decorana), 39
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scores.envfit (envfit), 55
scores.metaMDS (metaMDS), 74
scores.ordiplot (ordiplot), 93
scores.orditkplot (orditkplot),

103
scores.rda, 29, 127
scores.rda (plot.cca), 124
screeplot, 148
screeplot.cca, 146
screeplot.decorana

(screeplot.cca), 146
screeplot.prcomp (screeplot.cca),

146
screeplot.princomp

(screeplot.cca), 146
segments, 91, 133, 154
Shepard, 63, 64
showvarparts (varpart), 166
simpleRDA2 (varpart), 166
sipoo, 149
solve, 3
spantree, 50, 69, 149
specaccum, 144, 152
specnumber (diversity), 51
specpool, 16, 59, 60, 152, 153, 154, 173
specpool2vect (specpool), 154
spenvcor, 14, 39
spenvcor (goodness.cca), 61
splom, 107, 108
sqrt, 76
step, 5, 47, 48
stepacross, 15, 28, 29, 49, 50, 68, 69,

75–78, 139, 140, 151, 157
stressplot (goodness.metaMDS), 63
stripchart, 71
strsplit, 72
substring, 72
summary, 111
summary.allPerms, 110
summary.allPerms (permCheck), 109
summary.anosim (anosim), 8
summary.bioenv (bioenv), 24
summary.cca, 35, 36, 38, 39
summary.cca (plot.cca), 124
summary.decorana (decorana), 39
summary.humpfit (humpfit), 65
summary.isomap (isomap), 68
summary.mlm, 14

summary.permat (permat), 115
summary.permCheck, 110
summary.permCheck (permCheck), 109
summary.prc (prc), 127
summary.procrustes (procrustes),

132
summary.radfit.frame (radfit), 136
summary.specaccum (specaccum), 152
summary.taxondive (taxondive), 159
svd, 3, 34
swan, 159
swan (beals), 14
Sweave, 171
symbols, 57

tail.summary.cca (plot.cca), 124
taxa2dist (taxondive), 159
taxondive, 54, 159, 163
tcltk-package, 105
terms, 37
text, 27, 92, 93, 98, 105, 106, 125, 126
text.cca, 36
text.cca (plot.cca), 124
text.decorana (decorana), 39
text.metaMDS (metaMDS), 74
text.ordiplot, 96, 97
text.ordiplot (ordiplot), 93
text.orditkplot (orditkplot), 103
tkcanvas, 104
treedive, 87, 89, 162
treeheight (treedive), 162
tsallis, 163
tsallisaccum (tsallis), 163
TukeyHSD, 17–19
TukeyHSD.aov, 18
TukeyHSD.betadisper, 123
TukeyHSD.betadisper (betadisper),

16

varechem (varespec), 165
varespec, 165
varpart, 8, 166
varpart2 (varpart), 166
varpart3 (varpart), 166
varpart4 (varpart), 166
vectorfit (envfit), 55
vegan-internal, 170
vegandocs, 36, 85, 167, 168, 171
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vegdist, 6, 9, 10, 17, 20, 21, 24, 25, 28–30,
46, 49, 50, 73, 75–81, 139, 140, 150,
151, 157, 158, 172

vegemite, 175
veiledspec, 156
veiledspec (fisherfit), 58
vif, 63, 131
vif.cca, 14, 38, 39
vif.cca (goodness.cca), 61
vignette, 36, 85, 171

wascores, 74, 75, 77, 78, 176, 177, 177
wcmdscale, 179
weights.cca, 39
weights.cca (ordihull), 90
weights.decorana (ordihull), 90
weights.rda (ordihull), 90
wisconsin, 76, 78
wisconsin (decostand), 43

xdiss, 69
xfig, 104
xy.coords, 148
xyplot, 100, 101, 107, 108, 137, 139, 144
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