

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS 2023

187 – QUÍMICA

NOTA IMPORTANTE

El examen consta de 10 cuestiones, de las que se ha de contestar un **MÁXIMO DE CINCO** (2 puntos cada una). En el caso de que se responda a un número de preguntas superior, SÓLO SE CORREGIRÁN LAS CINCO QUE PRIMERO SE HAYAN RESUELTO.

<u>No firme</u> ni haga marcas en el cuadernillo de respuestas. Lo que se escriba en las dos caras marcadas con "borrador" no se corregirá. La duración del examen es de 75 minutos.

- **1.** Dada la siguiente configuración electrónica 1s² 2s² 2p6 3s² 3p6 4s² 3d¹0 4p6 5s² 4d¹0 5p⁵:
 - I) Indique el nombre y símbolo atómico del elemento al que corresponde. (0,4 puntos)
 - II) Indique la posición (grupo y periodo) del elemento en la Tabla Periódica. ¿Cómo se suele denominar a ese grupo? (0,5 puntos)
 - III) Explique brevemente si las siguientes configuraciones electrónicas pueden corresponder a algún electrón de un átomo de dicho elemento, en su estado fundamental: **(0,6 puntos)**
 - a) (4, 2, -2, +1/2)
- b) (4, -1, 0, -1/2)
- IV) Explique cuál será el estado de oxidación más importante de ese elemento. (0,5 puntos)
- **2.** a) Represente las estructuras de Lewis del H₂O y H₂S, y en base a ellas explique la geometría y polaridad de estas moléculas. **(1 punto)**
 - b) Explique por qué a temperatura ambiente el H₂O es un líquido y el H₂S es un gas. (1 punto)
- 3. Si una reacción $A + 2B + C \rightarrow D + 2E$ tiene como ecuación de velocidad $V = k \cdot [A]^2 \cdot [B]$:
 - I) Indique cuáles son los órdenes parciales de la reacción, el orden total y las unidades de k. (0,6 puntos)
 - II) Explique si hay algún reactivo que se consuma más rápidamente que los otros. (0,4 puntos)
 - III) Explique cómo variarán la velocidad de reacción (v) y la constante de velocidad (k) si:
 - a) se duplica a concentración de A. (0,5 puntos)
 - b) la concentración de C se reduce a la mitad. (0,5 puntos)
- **4.** En un recipiente a 25°C se encuentra una disolución saturada de PbF₂ en agua, en equilibrio con 1,0 g de PbF₂ (s). Sabiendo que la K_{ps} del PbF₂ a 25°C es $4 \cdot 10^{-18}$:
 - I) Calcule la concentración de iones Pb²⁺ y F⁻ en la disolución. (**0,8 puntos**)
 - II) Explique qué ocurrirá con la [Pb²⁺] (aumentará, disminuirá o permanecerá constante) si:
 - a) se extraen del recipiente 0,5 g del precipitado de PbF₂(s). (**0,4 puntos**)
 - b) se baja la temperatura (la disolución de PbF₂ en agua es un proceso endotérmico). (**0,4 puntos**)
 - c) se adiciona al recipiente 1,0 g de NaF, que se disuelve completamente. (0,4 puntos)
- 5. Se dispone de una disolución de NaOH de concentración 0,2 M.
 - I) Calcule el pH de esta disolución. (0,75 puntos)
 - II) Se utiliza esta disolución de NaOH para valorar 100 mL de una disolución de HClO₄ (un ácido fuerte), de concentración desconocida, encontrándose que se necesitan 62 mL del NaOH(aq) para llegar al punto de equivalencia. Calcule la concentración de la disolución de HClO₄ valorada. (0,75 puntos)
 - III) Si en la valoración anterior se utiliza como indicador la fenolftaleína, que es incolora en su forma ácida y rosa en su forma básica (intervalo de viraje 8,2-10), indique cómo será el color de la disolución valorada al principio y al final de la valoración. (0,5 puntos)

- **6.** I) Considere 100 mL de una disolución acuosa de ácido acético, CH₃COOH (K_a = 1,8·10⁻⁵) de concentración c = 0,2 M. Escriba el equilibrio de disociación de este ácido y calcule el pH de la disolución y el grado de disociación del ácido. **(1,5 puntos)**
 - II) Considere ahora 100 mL de una disolución 0,2 M de otro ácido orgánico, el ácido acrílico (CH₂=CH-COOH), cuya $K_a = 4,5 \cdot 10^{-5}$. Explique brevemente en cuál de las dos disoluciones el pH será mayor (no es necesario hacer cálculos). **(0,5 puntos)**
- 7. Dada la siguiente reacción de oxidación-reducción (sin ajustar):

$$NaNO_2 + NaMnO_4 + H_2SO_4 \longrightarrow NaNO_3 + MnSO_4 + Na_2SO_4 + H_2O_4$$

- I) Explique cuál es el agente oxidante y cuál el agente reductor, y qué cambios se producen en sus números de oxidación. (**0,6 puntos**)
- II) Ajuste la reacción mediante el método del ion electrón, escribiendo para ello las semirreacciones de oxidación y reducción. (**1,4 puntos**)
- 8. Considere los siguientes potenciales estándar de reducción:

$$E^{\circ}$$
 (Mg²⁺/Mg) = -2,37 V E° (Zn²⁺/Zn) = -0,76 V E° (Pb²⁺/Pb) = -0,13 V E° (Fe³⁺/ Fe²⁺) = +0,77 V E° (Fe²⁺/ Fe) = -0,44 V

- I) Explique qué metal (Pb, Fe, Mg o Zn) es el más reductor. (**0,5 puntos**)
- II) Escriba y ajuste la reacción redox que tiene lugar entre el Mg y el Zn²⁺, y calcule su E°. (**0,5 puntos**)
- III) Entre el Pb, Mg y Zn, explique cuál de ellos puede reducir Fe³⁺ a Fe²⁺, pero no Fe²⁺ a Fe. (**1 punto**)
- **9.** I) Escriba las fórmulas semidesarrolladas de los siguientes pares de compuestos e indique el tipo y subtipo de isomería que presentan entre sí: (**1 punto**)
 - a) *cis*-1,2-diclorociclobutano y *trans*-1,2-diclorociclobutano
 - b) etil metil éter y propan-2-ol
 - II) Indique el tipo y subtipo de isomería que presenta el siguiente par de compuestos: (0,2 puntos)

- III) Indique el tipo de reacción orgánica de que se trata (una sola palabra es suficiente): (0,4 puntos)
 - a) CH₃-CH₂Br + NaCN → CH₃-CH₂CN + NaBr

b) CH₃-CHI-CH₂-CH₃ + KOH
$$\stackrel{\Delta}{\longrightarrow}$$
 CH₃-CH=CH-CH₂-CH₃ + KI + H₂O

- IV) Nombre los productos orgánicos que se forman en las dos reacciones anteriores. (0,4 puntos)
- **10.** Dado el compuesto CH₃-CH₂-CH₂-CH₂OH:
 - I) Nómbrelo. (0,2 puntos)
 - II) Explique si puede presentar algún tipo de isomería espacial (geométrica y/o óptica). (0,4 puntos)
 - III) Escriba la fórmula semidesarrollada de un isómero estructural de posición, y nómbrelo. (**0,4 puntos**)
 - IV) Escriba las ecuaciones químicas para las siguientes reacciones de este compuesto: (1 punto)
 - a) Combustión con O₂.
 - b) Condensación con HCOOH.
 - c) Deshidratación.
 - d) Sustitución nucleófila por reacción con HBr.

PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS 2023

187 – QUÍMICA

UNIVERSIDAD DE MURCIA

CRITERIOS DE CALIFICACIÓN - 2023

- La prueba constará de **diez cuestiones**, cada una con una puntuación total de 2 puntos, de las que se ha de contestar un **MÁXIMO DE CINCO**. En las cuestiones que consten de varios apartados se indicará en el examen la puntuación de cada uno de ellos.
- Las cuestiones pueden contestarse en cualquier orden, indicando claramente el número de la cuestión de que se trata. En el caso de que se responda a un número de preguntas superior a cinco, SÓLO SE CORREGIRÁN LAS CINCO PRIMERAS CONTESTADAS.
- La duración del examen será de **75 minutos**.
- El examen se calificará atendiendo a los siguientes **criterios de valoración**:
 - <u>Claridad de exposición de las ideas</u>, <u>capacidad de análisis y de relación</u>. La falta de argumentación en las cuestiones, cuando el enunciado requiera una justificación de las respuestas, impedirá obtener la máxima calificación correspondiente.
 - Uso correcto de formulación, nomenclatura y lenguaje químico.
 - Las <u>reacciones químicas</u> deben estar <u>ajustadas</u>.
 - <u>Uso correcto de unidades</u>: un resultado expresado sin las unidades adecuadas no puntuará en su totalidad.
 - <u>Planteamiento y resolución de problemas</u>: un problema planteado y resuelto correctamente en términos generales, aunque con algún error que lleve a una solución numérica incorrecta (pero no absurda) será contabilizado parcialmente.
 - En la <u>resolución de problemas deben aparecer todos los cálculos y pasos seguidos</u>, aunque estos no tienen que ser explicados, a no ser que lo requiera el enunciado.
 - Las faltas de ortografía y de expresión podrán ser tenidas en cuenta.
 - * Consultar examen resuelto en la web de la materia : https://www.um.es/web/estudios/acceso/pruebas-acceso-mayores-25-y-45/materias-coordinadores/quimica/