FACULTY OF **MATHEMATICS**

Non-Commutative Algebra

Syllabus

Course code:	1606
Number of ECTS credits:	6
Semester:	2nd (February-June)
Prerequisites:	The student should have passed 60 ECTS of basic courses and other 60 credits in compulsory courses
Recommended components:	You should be familiar with the basic language of ab- stract algebra: groups, rings, fields, etc.
Language of instruction:	Spanish, unless all the students agree to have instruc- tion in English (students are allowed to ask questions and write homeworks and exams in English)

Course description

Non-Commutative Algebra deals with non-commutative algebraic objects, mostly non-commutative rings, and with their applications on other areas of mathematics, as for example Group Theory, Geometry and Topology.

Learning outcomes and competences

After completion of this course you will:

- 1. know the basic theorems of ring and module theory.
- 2. be able to understand some proofs of non-commutative algebra.
- 3. be able to solve some problems of ring and module theory.

Course contents

- 1. **Rings**. Examples of non-commutative rings. Subrings and ideals. Quotient rings. Homomorphisms of rings.
- 2. **Modules**. Modules and submodules. Operations with modules and submodules. Homomorphism of modules. Free and projective modules.
- 3. Semisimples rings and semisimples modules. Simple modules. Semisimple modules. Wedderburn-Artin Theorem. Maschke Theorem.
- 4. **Decomposition of modules on direct sum**. Indecomposable modules. Krull-Schmitz Theorem.

- 5. Chain conditions on rings and modules. Noetherian, artinian and of finite length rings and modules. Jordan-Hölder Theorem. Hopkins-Levitzky Theorem.
- 6. **Representation of groups**. Linear representations of groups. Characters. Applications to Group Theory.

References

- 1. F.W. Anderson y K.R. Fuller, Rings and categories of modules, Springer-Verlag, 1992.
- 2. P.M. Cohn, An Introduction to Ring Theory, Springer 2000
- 3. I.M. Isaacs, Character theory of finite groups, Academic Press, 1976
- 4. T.Y. Lam, A first course in noncommutative rings, Springer, 2001
- 5. R.S. Pierce, Associative Algebras, Springer-Verlag, 1982
- 6. L.H. Rowen, Ring Theory, Academic Press, 1988