
UNIVERSIDAD DE MURCIA

ESCUELA INTERNACIONAL DE DOCTORADO

Contribuciones a la teorı́a y a las aplicaciones de
los algoritmos de proyección

Contributions to the theory and applications of
projection algorithms

D. Rubén Campoy Garcı́a
2018

Doctoral Thesis

CONTRIBUTIONS TO THE THEORY AND

APPLICATIONS OF PROJECTION ALGORITHMS

Author

Rubén Campoy Garćıa

Supervisor

Dr. Francisco J. Aragón Artacho

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy (Mathematics) in the

Escuela Internacional de Doctorado

Universidad de Murcia

Murcia, 2018

Los resultados de esta tesis se enmarcan dentro del proyecto de investigación MTM2014-

59179-C2-1-P (Fundamentos, métodos y aplicaciones de la optimización continua) del Mi-

nisterio de Economı́a y Competitividad de España (MINECO), cofinanciado por el Fondo

Europeo de Desarrollo Regional (FEDER) de la Unión Europea (UE). Dicho proyecto

se ha desarrollado en el Departamento de Matemáticas de la Universidad de Alicante.

Durante este periodo, el autor ha disfrutado de la ayuda predoctoral BES-2015-073360,

dentro del programa “Ayudas para contratos predoctorales para la formación de doctores

2015” del MINECO, confinanciada por el Fondo Social Europeo (FSE) de la UE.

This dissertation was partially supported by the research project MTM2014-59179-C2-

1-P (Fundamentals, methods and applications of continuous optimization) by the Ministry

of Economy and Competitiveness of Spain (MINECO) and the European Regional Deve-

lopment Fund (ERDF) of the European Union (EU). This project was carried out in the

Department of Mathematics at the University of Alicante. The author was additionally

supported by MINECO of Spain and the European Social Fund (ESF) of EU (grant BES-

2015-073360), under the program “Ayudas para contratos predoctorales para la formación

de doctores 2015”.

v

Agradecimientos

Acknowledgements

Este trabajo no habŕıa sido posible sin la constante ayuda de mi director, Francisco J.

Aragón Artacho. Recuerdo cuando, aún siendo estudiante de la licenciatura, asist́ı a una

charla impartida por Fran. Entre otras cosas, nos contó su experiencia académica, desde

sus comienzos en la licenciatura hasta su postdoc en Newcastle, pasando por innumerables

estancias, viajes y anécdotas. Esa charla me hizo plantearme que ese era el camino que

queŕıa seguir. ¿Quién me iba a decir que, unos años más tarde, seŕıa mi director de tesis?

Muchas gracias, Fran, por todo el tiempo que me has dedicado, por trasmitirme tu pasión

por la investigación, y por todo lo que he me has enseñado. Gracias por la confianza que

has tenido en mı́, por animarme a aprovechar cualquier oportunidad que se presentara, y

por haber sabido valorar mi esfuerzo.

Quiero expresar mi agradecimiento a los profesores Miguel Ángel Goberna y Marco

Antonio López por sus valiosos consejos, por toda la ayuda prestada, y por haber confiado

en mı́ animándome a iniciar una carrera investigadora. Extiendo el agradecimiento a

todos los compañeros del Departamento de Matemáticas de la Universidad de Alicante

por su ayuda en temas docentes y administrativos, y por haberme tratado como a uno

más de la plantilla. En particular, al resto de miembros del grupo de optimización,

Margarita Rodŕıguez y Mariló Fajardo, por sus consejos y por todos los buenos momentos

compartidos durante los viajes a congresos. Agradecer también a José Vidal y Miguel

Ángel Navarro, quienes, no solo han sido compañeros de despacho, sino que han soportado

mis agobios y quejas, y me han ayudado en muchas ocasiones. Los meses que estuve solo

fueron mucho más aburridos.

Me gustaŕıa agradecer a mi tutor en la Universidad de Murcia, Antonio Pallarés, su

interés y su disponibilidad siempre que lo he necesitado.

I would like to express my gratitude to Russell Luke for his kind hospitality during my

stay in Göttingen. Many thanks to him and all the members of his research group, for

our joint lunch times and those beers after work that I really enjoyed. I want to especially

thank Matt Tam, for all his suggestions to make my stay more enjoyable.

vii

I am really thankful to Guoyin Li and Vera Roshchina for having invited me to visit

them in Sydney. That was an incredible experience and a great opportunity to meet many

colleagues around Australia.

Me siento muy afortunado de contar con grandes personas que me han acompañado a

lo largo de esta etapa. Gracias a mis amigas, Lorena y Carolina, por formar parte de mi d́ıa

a d́ıa y por todos los momentos en los que me han ayudado a evadirme del estrés producido

por esta tesis. A David, por su fe ciega en mı́ y sus llamadas constantes para animarme y

comprobar que todo va bien. A Pablo, por nuestro café rutinario para empezar la tarde

con enerǵıa. A Juan Carlos y Andrea, por ser tan especiales y conseguir que cada instante

compartido se convierta en un momento inolvidable. A la otra doctoranda (ya doctora)

del grupo, Ana, por estar siempre dispuesta a echarme una mano. Y por supuesto, a

mis compañeros de fatigas predoctorales, Alba, Elisa, Maŕıa Jesús y Mañas, por nuestras

victorias conjuntas contra LaTeX y esa tradicional inauguración de las vacaciones en

Benidorm (siento mucho haberlo estropeado este año; prometo compensaros).

Por último y más importante, quiero dar las gracias a mi familia. A mis padres,

que, aunque probablemente aún no entiendan qué he estado haciendo exactamente es-

tos últimos tres años, siempre han apoyado mis decisiones. A mi hermana Iris, que

podŕıa considerarse coautora de esta tesis. Gracias por aguantar mis infinitas preguntas,

a veces absurdas, sobre gramática inglesa (es lo que tiene contar con una filóloga en casa).

También por alimentarme y librarme de preocupaciones durante las últimas semanas que

estuve escribiendo esta tesis. Pero sobre todo, gracias por estar siempre a mi lado y ser

un pilar fundamental de mi vida. Me gustaŕıa extender este agradecimiento al resto de

mi familia por todo su apoyo. Sin duda, lo que más he echado de menos cuando he estado

fuera han sido nuestras comidas familiares.

Rubén Campoy Garćıa

Alicante, 2018

viii

Contents

Resumen (Spanish) xi

Abstract xvii

1 Preliminaries 1

1.1 Convex analysis and monotone operator theory 1

1.1.1 Projection and normal cone mappings 3

1.1.2 Nonexpansive mappings . 6

1.1.3 Monotone operators . 10

1.2 Matrix analysis and linear algebra . 15

1.2.1 The geometry of two subspaces . 16

1.2.2 Convergence of power of matrices 18

1.2.3 Complementary sequences and discrete Fourier transform 19

1.3 Closed-form expressions for some selected projectors 22

2 Classical projection methods 25

2.1 Feasibility and best approximation problems 26

2.1.1 Product-space reformulation . 27

2.2 Fundamental algorithms . 28

2.2.1 The method of Alternating Projections 28

2.2.2 The Douglas–Rachford algorithm 36

2.3 Projection algorithms for best approximation problems 47

2.3.1 Dykstra’s algorithm . 47

2.3.2 Haugazeau-like algorithms . 49

2.3.3 Halpern’s algorithm . 50

2.3.4 Combettes’ method . 51

ix

3 The averaged alternating modified reflections method 55

3.1 A new best approximation algorithm . 56

3.1.1 The averaged alternating modified reflections operator 57

3.1.2 Iterative scheme for finding the closest point in the intersection . . 68

3.1.3 Finitely many sets . 75

3.1.4 Numerical experiments . 79

3.2 Optimal rates of linear convergence for two subspaces 87

3.2.1 Convergence rate analysis . 87

3.2.2 Comparison with other projection methods 100

3.2.3 Computational experiments . 104

3.3 Extension to monotone operator theory . 107

3.3.1 AAMR splitting algorithm for maximally monotone operators . . . 108

3.3.2 Parallel AAMR splitting for the resolvent of a finite sum 113

4 Solving combinatorial problems with the Douglas–Rachford algorithm 119

4.1 Graph coloring problems . 120

4.1.1 Introduction . 120

4.1.2 A feasibility model based on a binary linear program 131

4.1.3 A feasibility model based on a low-rank constrained matrix 148

4.2 Combinatorial designs of circulant type . 167

4.2.1 Introduction . 167

4.2.2 Modelling Framework . 167

4.2.3 Computational Results . 176

Conclusions and future research 183

Bibliography 187

List of Figures 201

List of Tables 207

Notation and Symbols 209

Index of Topics 213

x

Resumen

Esta tesis contribuye a la familia de los llamados algoritmos de proyección. Estos al-

goritmos son herramientas útiles y de fácil implementación para resolver problemas de

factibilidad. Dado un espacio de Hilbert H y dados dos conjuntos A,B ⊆ H, el problema

de factibilidad consiste en obtener un punto en la intersección de estos conjuntos, es decir,

Encontrar x ∈ A ∩B.

Cualquier problema de factibilidad definido por más de dos conjuntos se puede reducir al

caso anterior gracias a una reformulación en el espacio producto propuesta por Pierra [152].

Muchos problemas reales se pueden modelizar como problemas de factibilidad, aun-

que obtener una formulación apropiada puede requerir cierta creatividad. En muchas

situaciones prácticas, abordar esta intersección en śı misma resulta una tarea complicada,

mientras que la proyección sobre cada uno de los conjuntos se puede calcular de forma efi-

ciente. El operador proyección o proyector sobre un conjunto C ⊆ H es la correspondencia

PC : H⇒ C definida por

PC(x) :=

{
p ∈ C : ‖x− p‖ = dC(x) := inf

c∈C
‖c− x‖

}
, para todo x ∈ H;

es decir, el proyector es una aplicación que asigna a cada punto del espacio los puntos del

conjunto que están más próximos a éste. Los algoritmos de proyección utilizan estas pro-

yecciones de forma iterativa, definiendo una sucesión que converge a un punto que permite

resolver el problema. Desde el punto de vista teórico, estos algoritmos son iteraciones de

punto fijo generadas por un operador definido en términos de los proyectores sobre los

conjuntos. Cuando los conjuntos son cerrados y convexos, el operador proyección es univa-

luado y satisface ciertas propiedades de no expansividad (este y otros conceptos, aśı como

todos los resultados preliminares que se utilizan a lo largo de la tesis vienen recogidos en

el Caṕıtulo 1). Gracias a este hecho, la convergencia de los algoritmos de proyección está

garantizada cuando abordamos problemas descritos por conjuntos cerrados y convexos.

xi

xii

El Caṕıtulo 2 proporciona una visión general del tema, recorriendo los diversos algo-

ritmos de proyección existentes en la literatura. Probablemente, el algoritmo de proyec-

ción más conocido es el método de proyecciones alternadas. Éste debe su origen a John

von Neumann [174], quien lo propuso inicialmente para abordar problemas definidos por

dos subespacios lineales. Posteriormente, Halperin [113] generalizó el resultado para un

número arbitrario de subespacios, y fue finalmente Bregman [62] quien extendió el algo-

ritmo para resolver problemas de factibilidad definidos por conjuntos cerrados y convexos

arbitrarios. Es el método más simple e intuitivo ya que, como su propio nombre indica,

cada iteración consiste en proyectar de forma alternada sobre los conjuntos que describen

el problema. Espećıficamente, dado cualquier punto inicial x0 ∈ H, la sucesión se genera

mediante la recurrencia

xk+1 = PBPA(xk), para k = 0, 1, 2, . . .

Cuando los conjuntos que definen el problema son cerrados y convexos, la sucesión gene-

rada converge débilmente a un punto en la intersección.

Otro método de proyección diferente para resolver problemas de factibilidad es común-

mente conocido como el algoritmo de Douglas–Rachford, ya que fue originalmente pro-

puesto por J. Douglas y H.H. Rachford [89] para resolver un sistema de ecuaciones lineales

que surge en problemas de trasmisión de calor. Sin embargo, fueron realmente Lions y

Mercier [140] quienes extendieron el algoritmo para resolver problemas de factibilidad con

conjuntos cerrados y convexos arbitrarios. La iteración del algoritmo se define recursiva-

mente mediante

xk+1 =
1

2
xk +

1

2
(2PB − Id)(2PA − Id)(xk), para k = 0, 1, 2, . . . ,

donde Id representa el operador identidad. Dado un conjunto C ⊆ H, el operador 2PC−Id

se conoce como el operador reflexión sobre C. El nuevo término en la sucesión generada

por el algoritmo de Douglas–Rachford es, por tanto, el punto medio entre la iteración ac-

tual y dos reflexiones consecutivas, una sobre cada conjunto. Debido a esta interpretación

geométrica, el método es también conocido como el algoritmo de reflexiones alternadas

ponderadas. De nuevo, si los conjuntos son cerrados y convexos, la sucesión generada

por el algoritmo converge débilmente a un punto que permite resolver el problema de

factibilidad.

Puede ocurrir que estemos interesados en encontrar, no solo un punto cualquiera en la

intersección de los conjuntos, sino el más cercano a un punto dado z ∈ H. Esta variante

xiii

del problema se conoce como el problema de mejor aproximación y se define formalmente

como

Encontrar w ∈ A ∩B, tal que ‖w − z‖ = inf {‖x− z‖ : x ∈ A ∩B} .

En el caso particular de que los conjuntos que definen el problema sean subespacios afines

cerrados, los dos métodos descritos anteriormente no solo encuentran un punto cualquiera

en la intersección, sino que dicho punto es, de hecho, el más cercano al punto inicial. De

esta forma, permiten resolver problemas de mejor aproximación en este contexto. Sin

embargo, esto no ocurre cuando consideramos conjuntos cerrados y convexos arbitrarios.

Existen otros métodos de proyección espećıficos para resolver este problema con conjun-

tos más generales. Uno de ellos es el algoritmo de Dykstra [90, 61], que surge como una

modificación apropiada del método de proyecciones alternadas, cuya sucesión generada

converge fuertemente a la proyección del punto inicial sobre la intersección. Otras po-

sibilidades son los algoritmos de tipo Haugazeau [115], el algoritmo de Halpern [114], o

el algoritmo de Combettes [77]. En la Sección 2.3 resumimos todos estos algoritmos de

mejor aproximación.

En el Caṕıtulo 3 proponemos una modificación del método de Douglas–Rachford, obte-

niendo un nuevo algoritmo de proyección que permite resolver problemas de mejor aproxi-

mación, en lugar de simplemente problemas de factibilidad. Nuestro enfoque consiste en

modificar las reflexiones sobre los conjuntos. Concretamente, cada operador reflexión en

el método de Douglas–Rachford se remplaza por lo que denominamos operador reflexión

modificado, el cual se define para un conjunto C ⊆ H como

2βPC − Id, con β ∈]0, 1[.

Por eso, llamamos al nuevo algoritmo el método de reflexiones modificadas alternadas pon-

deradas (abreviado AAMR, del inglés averaged alternating modified reflections method).

Dado un punto z ∈ H, fijados dos parámetros α ∈]0, 1] y β ∈]0, 1[, y dado cualquier

punto inicial x0 ∈ H, el nuevo método AAMR se define iterativamente mediante la recu-

rrencia

xk+1 := (1− α)xk + α(2βPB−z − Id)(2βPA−z − Id)(xk), para k = 0, 1, 2,

Si A y B son conjuntos cerrados y convexos tal que A ∩ B 6= ∅, bajo la cualificación de

restricciones

z − PA∩B(z) ∈ (NA +NB)(PA∩B(z)),

xiv

donde NA y NB denotan los conos normales a los conjuntos A y B, respectivamente,

probamos que la sucesión generada por el algoritmo cuando α < 1, (xk)
∞
k=0, converge

débilmente a un punto x? tal que

PA(z + x?) = PA∩B(z).

Además, la sucesión (PA(z + xk))
∞
k=0 converge fuertemente a PA∩B(z), incluso cuando

α = 1, resolviendo aśı el problema de mejor aproximación. Una condición suficiente para

garantizar la cualificación de restricciones en el punto de interés es la propiedad conocida

como strong CHIP (del inglés strong conical hull intersection property), que establece que

NA +NB = NA∩B.

De hecho, esta propiedad caracteriza la convergencia del método para todo punto en el

espacio.

Comparamos el nuevo AAMR con otros métodos de proyección en problemas de mejor

aproximación definidos por subespacios lineales de dimensión finita. Esta comparación se

lleva a cabo primero de forma numérica, mediante varios experimentos computacionales

en la Sección 3.1.4, y luego anaĺıticamente en la Sección 3.2, estudiando la tasa de con-

vergencia lineal del método en este contexto. Este análisis teórico de la tasa se realiza

mediante el estudio de la serie de potencias de matrices definida por el algoritmo, gracias

a la representación matricial de los proyectores sobre subespacios lineales de dimensión

finita. La tasa de convergencia lineal del método depende del ángulo de Friedrichs que

forman los subespacios, aśı como de los parámetros que definen el esquema. Cuando estos

parámetros son elegidos de forma óptima, la tasa obtenida resulta ser la mejor entre las

tasas conocidas de otros algoritmos de proyección clásicos. Incluimos, además, nuevos

experimentos numéricos que ilustran los resultados teóricos obtenidos.

El nuevo algoritmo AAMR se presenta como una modificación del método de Douglas–

Rachford. Este último puede aplicarse de forma más general para encontrar un cero en la

suma de dos operadores monótonos maximales. Dicha extensión se obtiene remplazando

proyectores sobre conjuntos cerrados y convexos por resolventes de operadores monótonos

maximales. De la misma forma, también extendemos el algoritmo AAMR a este contexto

más general en la Sección 3.3. Esto da lugar a un nuevo método de descomposición, que

permite calcular el resolvente de la suma de dos operadores monótonos maximales, utili-

zando evaluaciones individuales de los resolventes de cada operador. Gracias al enfoque

con el que se desarrolla esta extensión, junto con la reformulación en el espacio producto,

xv

podemos derivar dos versiones diferentes del algoritmo paralelizado para calcular el resol-

vente de una suma finita de operadores monótonos maximales.

En los últimos años el algoritmo de Douglas–Rachford ha despertado un gran interés,

debido en parte a su buen comportamiento en escenarios no convexos. A pesar de la es-

casez de resultados teóricos que lo justifiquen, el algoritmo ha sido empleado con éxito en

una amplia lista de problemas combinatorios. Algunas de estas aplicaciones incluyen pro-

blemas de completación de matrices [8], reconstrucción de la estructura de protéınas [58],

recuperación de fase (phase retrieval) [39, 93], ecuaciones diferenciales [133], Sudokus [10]

o problemas de satisfacibilidad [94], entre otros. Sin embargo, la teoŕıa es mucho más

limitada: existen muy pocos resultados que expliquen por qué el algoritmo funciona en

problemas no convexos, y aún menos, justificando su buen comportamiento global. Por

ejemplo, la convergencia global del método está garantizada para el caso de una esfera y

un subespacio [54], o para el caso de un semiespacio y un conjunto cerrado no convexo

verificando cierta propiedad [9]. Otros resultados existentes establecen convergencia de

tipo local [49, 116, 151].

En el Caṕıtulo 4 presentamos dos nuevos problemas combinatorios que pueden ser

abordados de forma satisfactoria con el algoritmo de Douglas–Rachford: el problema de

coloreado de grafos y la construcción de diseños combinatorios de tipo circular. El objetivo

de este caṕıtulo es doble. Por una parte, mostramos que el algoritmo de Douglas–Rachford

puede utilizarse como un heuŕıstico eficaz para resolver los problemas considerados, algo

que puede ser de interés por śı mismo. Por otra parte, adquirimos un mejor conocimiento

del comportamiento del algoritmo en ciertos escenarios no convexos. Esto puede pro-

porcionar nuevas perspectivas y jugar un papel fundamental en el desarrollo de nuevos

resultados de convergencia.

Consideramos primero, en la Sección 4.1, el problema de coloreado de grafos. Un grafo

consiste en un conjunto de vértices o nodos, que están conectados por ciertos enlaces.

Dado un grafo y un conjunto de colores, el problema consiste en asignar un color a

cada vértice, de forma que cualquier par de vértices conectados no compartan el mismo

color. El coloreado de grafos tiene aplicaciones en la planificación de horarios [135], el

reparto de frecuencias de radio [112], la asignación de registros en computación [70] o

en pruebas de placas de circuitos impresos [106], entre otros campos. Se sabe que se

trata de un problema NP-completo [127], por lo que seŕıa razonable pensar que no existe

un algoritmo exacto que resuelva el problema en tiempo polinómico. Por este motivo, se

han desarrollado una gran variedad de heuŕısticos y algoritmos aproximados para abordar

el problema. En esta tesis, mostramos que el algoritmo de Douglas–Rachford se puede

xvi

utilizar satisfactoriamente de forma heuŕıstica para colorear grafos, cuando reformulamos

el problema como un problema de factibilidad. De hecho, presentamos dos modelos de

naturaleza distinta que reformulan el problema. El primero de ellos, introducido en la

Sección 4.1.2, se basa en la representación del problema mediante programación entera,

haciendo uso de variables binarias. Posteriormente, en la Sección 4.1.3, presentamos un

enfoque alternativo basado en programación semidefinida, cuyo problema de factibilidad

derivado consiste en reconstruir una matriz simétrica, semidefinida positiva y con rango

acotado. Mediante varios experimentos numéricos, mostramos el buen funcionamiento del

algoritmo y analizamos las diferencias cuando se aplica a cada una de estas formulaciones.

Por último, en la Sección 4.2, estudiamos la construcción de diseños combinatorios

de tipo circular. Diseños de este tipo pueden describirse mediante matrices circulares,

con entradas en un conjunto finito, cuyas filas o columnas verifican ciertas propiedades en

términos de correlación. Entre otros campos, los diseños combinatorios tienen aplicaciones

a la teoŕıa de códigos [19, 158], a la computación cuántica [101, 172], y a la comunicación

sin cables, criptograf́ıa y radares [109]. Para construir de forma expĺıcita diseños com-

binatorios de gran orden es necesario explotar la estructura subyacente de los mismos.

Algunas posibilidades para ello son el estudio de estructuras de grupo, o una represen-

tación eficiente del problema donde los algoritmos de búsqueda, como los metaheuŕısticos,

puedan ser implementados. En esta tesis, proponemos una formulación genérica mediante

un problema de factibilidad que permite modelar diferentes clases de estos diseños. La

caracteŕıstica fundamental del problema, que permite una implementación eficaz del al-

goritmo de Douglas–Rachford, es que la función autocorrelación da lugar a un operador

proyección que puede calcularse de forma expĺıcita y eficiente. La aplicabilidad de esta

formulación se ilustra con la construcción de matrices circulares de ponderación, matrices

D-óptimas y matrices de Hadamard con dos núcleos circulares. Asimismo, construimos de

forma expĺıcita dos matrices circulares de ponderación cuya existencia estaba previamente

indicada como un problema abierto.

Abstract

This thesis focuses on the family of the so-called projection algorithms. These algorithms

are employed for solving feasibility problems, whose goal is to find a point in the inter-

section of a collection of sets in a Hilbert space. Often, the intersection set is hard to

deal with, while the projection mappings onto the individual sets are readily computable.

Projection algorithms iterate by making use of these projections, to generate a convergent

sequence whose limit solves the problem.

Two of the most well-known algorithms within this class are the method of alternating

projections and the Douglas–Rachford algorithm. The weak convergence of these algo-

rithms to a point in the intersection is guaranteed, provided that the involved sets are

convex. In the special case where these sets are closed affine subspaces, the aforementio-

ned methods not only find a point in the intersection, but they converge to the closest one

to the initial point. However, this is not the case for arbitrary convex sets. The problem

of finding the closest point in the intersection to any given point in the space is known

as the best approximation problem. There are specific projection methods for solving this

type of problems. For instance, Dykstra’s algorithm is an appropriate modification of the

method of alternating projections that forces the strong convergence to the projection of

the initial point onto the intersection.

In this dissertation, we propose a modification of the Douglas–Rachford method that

allow us to solve best approximation problems, rather than just feasibility ones. Due

to the geometry of the iteration, the Douglas–Rachford algorithm is also referred to as

the averaged alternating reflections (AAR) method. Our approach consists in altering the

reflection steps at each iterate. For this reason, the new iterative projection method is

termed AAMR for averaged alternating modified reflections method. Under a constraint

qualification at the point of interest, we show strong convergence of the method. We com-

pare the performance of AAMR against other projection methods for finding the closest

point in the intersection of pairs of finite dimensional subspaces, first numerically, and

then analytically by studying the rate of linear convergence of the algorithm within this

context. When the parameters defining the scheme are optimally selected, the obtained

rate becomes the best among all known rates of other projection algorithms. We also

xvii

xviii Abstract

extend the algorithm so that it can deal with operators instead of sets. This gives rise to

a new splitting algorithm for computing the resolvent of the sum of maximally monotone

operators.

In the last years, the Douglas–Rachford algorithm has received much attention, due

in part to the good performance of the method in nonconvex scenarios. Despite a lack of

convergence results, the algorithm has been successfully employed in a wide list of combi-

natorial problems. In this thesis we extend that list of applications, by incorporating the

graph coloring problem and the construction of combinatorial designs of circulant type.

For the former, we present two feasibility problems of different nature which model the

problem. The good performance of the algorithm when it is applied to these formulations

is demonstrated through various computational experiments. For the case of combina-

torial designs, we propose a general feasibility problem which models different classes of

them. We illustrate the applicability of the formulation to the construction of circulant

weighing matrices, D-optimal matrices, and Hadamard matrices with two circulant cores.

Furthermore, we derive explicit constructions of two circulant weighing matrices whose

existence was previously marked as an open question.

The structure of this dissertation is as follows. In Chapter 1 we provide basic defini-

tions and preliminary results that are needed. Chapter 2 contains an overview of various

classical projection algorithms existing in the literature. We develop the new AAMR

algorithm in Chapter 3. Finally, in Chapter 4, we present some combinatorial problems

which can be successfully tackled with the Douglas–Rachford algorihtm.

Chapter 1

Preliminaries

The aim of this introductory chapter is to fix the notation and provide some basic notions

and preliminary results that shall be needed throughout this thesis. Most of them are ta-

ken from the specialized literature in their mathematical areas. The chapter is structured

as follows. In Section 1.1 we introduce the essentials of convex analysis and monotone

operator theory. The content in that section is mainly based on the fundamental book by

Bauschke and Combettes [35]. Then, in Section 1.2, a concise overview on linear algebra

and matrix analysis is given. That section is written in a more direct way in order to

provide just those results, collected from different resources, that shall be used in our

subsequent developments. For further information, the reader is encouraged to check

classical references in matrix analysis as [119, 144]. Finally, in Section 1.3 we present

various examples of projectors onto different convex and nonconvex sets.

1.1 Convex analysis and monotone operator theory

Unless otherwise is stated, throughout this thesis

H is a real Hilbert space,

equipped with the inner product 〈·, ·〉 and the induced norm ‖ · ‖. We abbreviate norm

convergence of sequences in H with→ and we use ⇀ for weak convergence. We denote by

B(x, ρ) the open ball with radius ρ centered at x, i.e, B(x, ρ) := {x ∈ X | ‖x− y‖ < ρ} .
For a subset C ⊆ H, we denote by intC and C the interior and the closure of C,

respectively. We recall that a set C is said to be convex if for any x, y ∈ C,

(1− λ)x+ λy ∈ C, ∀λ ∈ [0, 1];

1

2 Chapter 1. Preliminaries

and we say C is a cone if for all x ∈ C,

λx ∈ C, ∀λ ≥ 0.

The span of C, the affine hull of C, the convex hull of C and the cone generated by C

are denoted, respectively, by spanC, aff C, convC and coneC; i.e.,

spanC := {λx+ µy | x, y ∈ C, λ, µ ∈ R} ,

aff C := {(1− λ)x+ λy | x, y ∈ C, λ ∈ R} ,

convC := {(1− λ)x+ λy | x, y ∈ C, λ ∈ [0, 1]} ,

coneC := {λx | x ∈ C, λ ≥ 0} .

The orthogonal complement of C, denoted by C⊥, is the set

C⊥ := {x ∈ H | 〈c, x〉 = 0,∀c ∈ C}.

For a convex set C ⊆ H, we denote by riC, sriC and coreC, the relative interior, the

strong relative interior and the algebraic interior of C, respectively; i.e.,

riC := {x ∈ C | cone(C − x) = span(C − x)} ,

sriC := {x ∈ C | cone(C − x) = span(C − x)} ,

coreC := {x ∈ C | cone(C − x) = H} .

Given a non-empty set D ⊆ H, we denote by T : D ⇒ H a set-valued operator that

maps any point from D to a subset of H, i.e., T (x) ⊆ H for all x ∈ D. In the case when T

always maps to singletons, i.e., T (x) = {u}, for all x ∈ D, T is said to be a single-valued

mapping and it is denoted by T : D → H. In an abuse of notation, we may write T (x) = u

when T (x) = {u}. The domain, the range, the graph, the set of fixed points and the set

of zeros of T , are denoted, respectively, by domT , ranT , graT , FixT and zerT ; i.e.,

domT := {x ∈ H | T (x) 6= ∅} , ranT := {u ∈ H | ∃x ∈ H : u ∈ T (x)} ,

graT := {(x, u) ∈ H ×H | u ∈ T (x)} , FixT := {x ∈ H | x ∈ T (x)} ,

and zerT := {x ∈ H | 0 ∈ T (x)} .

The identity operator is the mapping Id : H → H that maps every point to itself. The

inverse operator of T , denoted by T−1, is defined through x ∈ T−1(u)⇔ u ∈ T (x).

1.1. Convex analysis and monotone operator theory 3

Given an extended real-valued function f : H → R ∪ {±∞}, the domain and the

epigraph of f are denoted, respectively, by dom f and epi f ; i.e.,

dom f := {x ∈ H | f(x) < +∞} and epi f := {(x, ξ) ∈ H × R | f(x) ≤ ξ}.

A function f is proper if dom f 6= ∅ and f(x) 6= −∞ for all x ∈ H. We say that f is

convex if its epigraph is a convex set, or equivalently, when

f ((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y), ∀x, y ∈ dom f, ∀λ ∈ [0, 1].

A function f is said to be lower semicontiuous (lsc) at x̄ ∈ H if

f(x̄) ≤ lim inf
x→x̄

f(x),

and we just say f is lower semicontiuous if it is so at every point in H. The subdifferential

of a proper function f : H →]∞,+∞] is the operator ∂f : H⇒ H defined by

∂f(x) := {u ∈ H | 〈y − x, u〉+ f(x) ≤ f(y), ∀y ∈ H} , for all x ∈ H.

The proximity operator of f is the mapping proxf : H → H given by

proxf (x) := argmin
u∈H

(
f(u) +

1

2
‖x− u‖2

)
, for all x ∈ H.

Given a nonempty subset C of H, the distance function to C, the support function of C

and the indicator function of C, denoted by dC , σC and ιC , respectively, are the extended

real-valued functions defined at each x ∈ H by

dC(x) := inf
c∈C
‖c− x‖, σC(x) := sup

c∈C
〈c, x〉 and ιC(x) :=

{
0, if x ∈ C;

+∞, if x 6∈ C.

1.1.1 Projection and normal cone mappings

In this section we introduce the concept of best approximation to a set, which leads to

define the projection mapping. We also discuss some results regarding existence, unique-

ness and characterizations of the projection when dealing with closed and convex sets, as

well as its relation with the concept of normal cone to a set. For a basic reference on best

approximation see [81].

4 Chapter 1. Preliminaries

Definition 1.1 (Projection mapping). Given a nonempty subset C ⊆ H, the pro-

jection mapping (or projector) onto C is the possibly set-valued operator, PC : H ⇒ C,

defined at each x ∈ H by

PC(x) :=

{
p ∈ C : ‖x− p‖ = dC(x) := inf

c∈C
‖c− x‖

}
.

Any point p ∈ PC(x) is said to be a best approximation to x from C (or a projection of

x onto C). If a best approximation in C exists for every point in H, then C is proximinal.

If every point x ∈ H has exactly one best approximation from C, then C is Chebyshev.

In this case, the projector PC is a single-valued mapping that maps every x ∈ H to its

unique projection onto C, that is PC(x) = p. The projector is also referred to as projection

operator, metric projection, nearest point mapping or best approximation operator, among

other names. The reflector with respect to C is the operator RC : H → H given by

RC := 2PC − Id,

where each element r ∈ RC(x) is called a reflection of x with respect to C. It is clear

that the reflector is single-valued if and only if the projector is so (see Figure 1.1). The

following proposition characterizes the projection mapping onto closed and convex sets,

as well as presents some geometric properties.

Proposition 1.2. Let C ⊆ H be nonempty, closed and convex. Then the following hold.

(i) C is Chebyshev.

(ii) For every x ∈ H,

p = PC(x) ⇔ p ∈ C and 〈c− p, x− p〉 ≤ 0 for all c ∈ C.

(iii) For every x ∈ H and λ ≥ 0,

PC (PC(x) + λ (x− PC(x))) = PC(x).

(iv) For every y ∈ H, Py+C(x) = y + PC(x− y).

(v) For every λ ∈ R, PλC(λx) = λPC(x).

Proof. See, e.g., [35, Theorem 3.16 and Propositions 3.19 and 3.21] and [82, page 2.7].

1.1. Convex analysis and monotone operator theory 5

Any nonempty, closed and convex set is Chebyshev by Proposition 1.2(i). The question

about whether the converse implication is true is known as the Chebyshev problem. The

answer is affirmative in finite-dimensional spaces, while it still remains open in general.

Nevertheless, it is proved that any nonempty weakly closed set is Chebyshev if and only

if it is convex (see, e.g., [7, Theorem 14]).

C

x

PC(x)

RC(x)

(a) A closed and convex set C (Chebyshev).
The projection and reflection of the point x are
unique

C

x

p1

p2

r1

r2

(b) A closed but nonconvex set C. The pro-
jector and reflector are multi-valued at x,
with PC(x) = {p1, p2} and RC(x) = {r1, r2}

Figure 1.1: Examples of projectors and reflectors onto convex and nonconvex sets.

We define next the normal cone to a convex set, which arises in convex analysis as a

tool to study the local geometry of the set.

Definition 1.3 (Normal cone). Let C ⊆ H be a nonempty convex set and let x ∈ H.

The normal cone mapping to C is the operator NC : H⇒ H given by

NC(x) :=

{
{u ∈ H | 〈u, c− x〉 ≤ 0, ∀c ∈ C}, if x ∈ C;

∅, otherwise.

The projection onto closed and convex sets can be characterized by the normal cone.

Proposition 1.4. Let C ⊆ H be a nonempty closed and convex set, and let x, p ∈ H.

Then,

p = PC(x) ⇔ x− p ∈ NC(p).

Proof. See, e.g., [35, Proposition 6.47].

Given two convex sets A,B ⊆ H, it always holds that NA +NB ⊆ NA∩B. The reverse

inclusion, which leads to the equality, has been widely studied in the literature [72, 73,

84, 81]. We use the following name coined by Chui, Deutsch and Ward in [72].

6 Chapter 1. Preliminaries

Definition 1.5 (Strong CHIP). Let C and D be two closed and convex subsets of H.

The pair of sets {C,D} is said to have the strong conical hull intersection property (or

the strong CHIP) at x ∈ C ∩D if

NC∩D(x) = NC(x) +ND(x).

We say {C,D} has the strong CHIP if it has the strong CHIP at each x ∈ C ∩D.

For relationships between strong CHIP and the so-called bounded linear regularity

property in Euclidean spaces, which plays an important role in the rate of convergence of

projection algorithms, see [31, 132].

The next result collects some sufficient conditions for the strong CHIP to hold.

Proposition 1.6. Let C and D be two closed and convex subsets of H. Then {C,D} has

the strong CHIP if one of the following conditions holds.

(i) The set epiσC + epiσD is weakly closed (which holds, e.g., if (intD) ∩ C 6= ∅,
0 ∈ core(C −D) or cone(C −D) is a closed subspace).

(ii) H is finite dimensional and (riC) ∩ (riD) 6= ∅.

Proof. (i) See [65, Theorem 3.1 and Proposition 3.1]. (ii) See [157, Corollary 23.8.1].

1.1.2 Nonexpansive mappings

Many problems in applied mathematics can be reduced to finding a fixed point of a given

operator. A natural approach to addressing it consists in iteratively applying the mapping,

and expect the generated sequence to reach such a fixed point in the limit. Specifically,

given a mapping T : H → H and any x0 ∈ H, we refer to the scheme generated by

xk+1 = T (xk), for k = 0, 1, 2, . . . , (1.1)

as the fixed point iteration or Banach–Picard iteration defined by T . In this section we

present several notions of nonexpasiveness for single-valued operators. They represent a

key feature to provide sufficient conditions for the convergence of fixed point iterations.

Definition 1.7 (Notions of nonexpansiveness). Let D be a nonempty subset of H
and let T : D → H. The operator T is said to be

1.1. Convex analysis and monotone operator theory 7

(i) nonexpansive if

‖T (x)− T (y)‖ ≤ ‖x− y‖, ∀x, y ∈ D;

(ii) firmly nonexpansive if

‖T (x)− T (y)‖2 + ‖(Id−T)(x)− (Id−T)(y)‖2 ≤ ‖x− y‖2, ∀x, y ∈ D,

or, equivalently,

〈x− y, T (x)− T (y)〉 ≥ ‖T (x)− T (y)‖2, ∀x, y ∈ D;

(iii) µ-cocoercive for µ > 0 if µT is firmly nonexpansive, i.e.,

〈x− y, T (x)− T (y)〉 ≥ µ‖T (x)− T (y)‖2, ∀x, y ∈ D;

(iv) contractive if there exists some constant 0 ≤ κ < 1 such that

‖T (x)− T (y)‖ ≤ κ‖x− y‖, ∀x, y ∈ D;

(v) quasi-nonexpansive if

‖T (x)− y‖ ≤ ‖x− y‖, ∀x ∈ D, ∀y ∈ FixT ;

(vi) strictly quasi-nonexpansive if

‖T (x)− y‖ < ‖x− y‖, ∀x ∈ D\FixT, ∀y ∈ FixT ;

(vii) α-averaged for α ∈]0, 1[, if there exists a nonexpansive operator R : D → H such that

T = (1− α) Id +αR.

Firm nonexpansiveness implies nonexpansiveness, which itself implies quasi-nonexpan-

siveness. The converses are not true. Other additional implications are shown in the

following proposition. For more, see [35, Chapter 4].

Proposition 1.8. Let D ⊆ H be nonempty and let T : D → H. The following hold:

(i) T is firmly nonexpansive ⇔ 2T − Id is nonexpansive.

8 Chapter 1. Preliminaries

(ii) If T is α-averaged, then T is nonexpansive and strictly quasi-nonexpansive. In

addition, if α ∈
]
0, 1

2

]
then T is firmly nonexpansive.

Proof. See, e.g., [35, Proposition 4.2, Remark 4.34, Remark 4.36 and Remark 4.37].

Nonexpansive operators can be easily turned into averaged ones by considering their

relaxation, a concept which is generally defined as follows.

Definition 1.9 (Relaxation). Given a mapping T : D → H and λ ∈ [0, 2], the operator

Tλ : D → H defined by

Tλ := (1− λ) Id +λT, (1.2)

is called a λ-relaxation or, shortly, relaxation of the operator T . We call λ a relaxation

parameter. A relaxation is said to be strict if λ ∈]0, 2[. More specifically, Tλ is called

(i) an under-relaxation of T if λ ∈]0, 1[;

(ii) an over-relaxation of T if λ ∈]1, 2[.

If λ = 2 then Tλ is called the reflection of T .

Remark 1.10. Note that the set of fixed points is not affected by relaxations, i.e.,

FixTλ = FixT, for all λ ∈]0, 2].

If T is nonexpansive and λ ∈]0, 1[, it directly follows from the definition that Tλ is

λ-averaged. Furthermore, observe that (1.2) can be expressed as

Tλ = (1− λ) Id +λT =

(
1− λ

2

)
Id +

λ

2
(2T − Id).

Hence, according to the previous equality together with Proposition 1.8(i), if λ ∈]0, 2[we

get that Tλ is λ
2
-averaged, for every firmly-nonexpansive operator T .

The following fundamental result is responsible for the well behavior of projection

algorithms in the convex setting.

Proposition 1.11. Let C ⊆ H be nonempty, closed and convex. Then the projector

operator PC is firmly nonexpansive. Moreover, if C is a closed subspace, then PC is a

linear mapping.

Proof. See, e.g., [35, Proposition 4.16] and [81, Theorem 5.13].

1.1. Convex analysis and monotone operator theory 9

As a direct consequence of Propositions 1.8 and 1.11(i), if C is a nonempty, closed and

convex subset of H, the reflector RC is a nonexpansive mapping. Moreover observe that

FixRC = C, and hence FixRC is a closed and convex set. As shown in the next proposi-

tion, the latter assertion can be generalized to the set of fixed points of any nonexpansive

mapping defined over a closed and convex domain.

Proposition 1.12. Let D ⊆ H be nonempty, closed and convex, and let T : D → H be

nonexpansive. Then FixT is a closed and convex set.

Proof. See, e.g., [35, Corollary 4.24].

Even when the operator T defining (1.1) is nonexpansive, the Banach–Picard iteration

may fail to converge. For a simple example, consider T = − Id and any x0 6= 0. Therefore,

stronger conditions must be required. Indeed, the so-called asymptotic regularity property,

which imposes that

T (xk)− xk → 0,

becomes critical for guaranteeing such desirable convergence (see, e.g., [35, Theorem 5.14]).

In the following result we show how this property can be achieved by taking relaxations

of the mapping, and thus the convergence is obtained.

Theorem 1.13 (Krasnosel’skĭı–Mann iteration). Let D be a nonempty, closed and

convex subset of H, let T : D → D be a nonexpansive operator such that FixT 6= ∅ and

let (λk)
∞
k=0 be a sequence in [0, 1] such that

∑∞
k=0 λk(1− λk) = +∞. Given x0 ∈ D, set

xk+1 = (1− λk)xk + λkT (xk), for k = 0, 1, 2

Then the following hold.

(i) (T (xk)− xk)∞k=0 converges strongly to 0.

(ii) (xk)
∞
k=0 converges weakly to a point in FixT .

Proof. See, e.g., [35, Theorem 5.15].

Particularly, Theorem 1.13 asserts that the Banach–Picard iteration in (1.1) will con-

verge weakly to a fixed point if we require T to be averaged. The next proposition shows

how this result can be sharpened if T is additionally a linear operator, since in that case

we obtain strong convergence to the closest fixed point.

10 Chapter 1. Preliminaries

Proposition 1.14. Let T : H → H be a nonexpansive linear operator and let x0 ∈ H.

Set xk+1 = T (xk), for k = 0, 1, 2, Then

xk → PFixT (x0) ⇔ xk − xk+1 → 0.

Proof. See, e.g., [35, Proposition 5.28].

Clearly, a Banach–Picard iteration (1.1) can only converge whenever the operator

T has at least one fixed point. When FixT = ∅, there exist some results provided by

Pazy [149] in 1971, and by Baillon, Bruck and Reich [24] in 1978, regarding the asymptotic

behavior of the iteration for an average mapping. These are summarized in the following

theorem.

Theorem 1.15 (Asymptotic behavior of averaged iterations). Given α ∈]0, 1[, let

T : H → H be an α-averaged operator. For any x ∈ H, the following hold:

(i) (T k(x) − T k+1(x))∞k=0 converges in norm to the unique element of minimum norm

in ran(Id−T);

(ii) FixT = ∅ ⇔ ‖T k(x)‖ → ∞.

Proof. (i) See [24, Corollary 2.3], [149, Corollary 2]. (ii) See [24, Corollary 2.2].

1.1.3 Monotone operators

In this section we give an overview of the fundamentals of the theory of monotone opera-

tors. A problem of great interest is finding zeros of a given set-valued operator A : H⇒ H;

that is, solving the inclusion

0 ∈ A(x). (1.3)

Many problems in optimization and variational analysis can be modeled as (1.3). For

instance: convex minimization, systems of nonlinear equations, complementarity problems

and variational inequalities, among others. The problem has been widely studied assuming

certain monotonicity properties of the operator, which are defined next.

Definition 1.16 (Notions of monotonicity). An operator A : H⇒ H is said to be

(i) monotone if

〈x− y, u− v〉 ≥ 0, ∀(x, u), (y, v) ∈ graA;

1.1. Convex analysis and monotone operator theory 11

(ii) maximally monotone if it is monotone and there exists no other monotone operator

B : H⇒ H such that graB properly contains graA; i.e., for every (x, u) ∈ H×H,

(x, u) ∈ graA ⇔ 〈x− y, u− v〉 ≥ 0, ∀(y, v) ∈ graA;

(iii) µ-strongly monotone for µ > 0, if A− µ Id is monotone; i.e.,

〈x− y, u− v〉 ≥ µ‖x− y‖2, ∀(x, u), (y, v) ∈ graA.

Remark 1.17. Given any monotone operator A : H⇒ H there always exists a maximally

monotone extension, i.e., a maximally monotone operator Ã : H⇒ H with graA ⊂ gra Ã

(see, e.g., [35, Theorem 20.21]).

Two well-known examples of maximally monotone operators are given next.

Example 1.18 (The subdifferential and the normal cone operators).

(i) Let f : H →]−∞,+∞] be a proper lsc convex function. The subdifferential of f ,

∂f , is a maximally monotone operator (see, e.g., [35, Theorem 20.48]).

(ii) Let C be a nonempty closed and convex subset of H. The normal cone to C, NC, is

a maximally monotone operator (see, e.g., [35, Example 20.26]).

The following lemma shows the preservation of (maximal) monotonicity under affine

transformations.

Lemma 1.19. Let A : H ⇒ H be a (maximally) monotone operator, let w, z ∈ H and

let γ, λ ∈ R such that γλ > 0. Then the operator Ã : H⇒ H defined for any x ∈ H by

Ã(x) := w + γA(λx+ z),

is (maximally) monotone.

Proof. Let (x, u), (y, v) be two any arbitrary pairs in gra Ã. Then(
λx+ z,

u− w
γ

)
,

(
λy + z,

v − w
γ

)
∈ graA.

Assuming that A is monotone we obtain that〈
(λx+ z)− (λy + z),

u− w
γ
− v − w

γ

〉
≥ 0,

12 Chapter 1. Preliminaries

and equivalently,
λ

γ
〈x− y, u− v〉 ≥ 0.

Since γ
λ
> 0, it can be removed from the last inequality to deduce that Ã is monotone.

The case of maximal monotonicity can be analogously reasoned so we decide to omit the

proof.

A very useful characterization of maximal monotonicity is provided by the following

fundamental result established by Minty [145] in 1967.

Theorem 1.20 (Minty). Let A : H⇒ H be monotone. Then

A is maximally monotone ⇔ ran(Id +A) = H.

Proof. See, e.g., [35, Theorem 21.1].

Next we recall the definition of the resolvent of an operator, which is an important

tool in the theory of monotone operators.

Definition 1.21 (Resolvent). Given an operator A : H⇒ H, the resolvent of A is the

operator defined by

JA := (Id +A)−1.

The reflected resolvent of A is defined by RA := 2JA − Id.

Clearly, dom JA = ran(Id +A), and thus Minty’s theorem (Theorem 1.20) guarantees

that the resolvent has full domain precisely when A is maximally monotone. In the next

result we collect some additional properties regarding the single-valuedness and nonexpa-

siveness of the resolvent and the reflected resolvent of maximally monotone operators.

Proposition 1.22. Let A : H⇒ H be a maximally monotone operator. Then

(i) JA : H → H is firmly nonexpansive;

(ii) RA : H → H is nonexpansive.

Proof. See, e.g., [35, Corollary 23.11].

The previous proposition establishes that the resolvents of maximally monotone ope-

rators are firmly nonexpansive. In fact, this turns out to be a characterization of the firm

nonexpansiveness of any given mapping.

1.1. Convex analysis and monotone operator theory 13

Proposition 1.23. Let T : H → H. Then T is firmly nonexpansive if and only if it is

the resolvent of a maximally monotone operator A : H⇒ H.

Proof. See, e.g., [35, Corrollary 23.9].

Furthermore, the strong monotonicity of an operator is related with the cocoercivity

of its resolvent.

Proposition 1.24. Let A : H ⇒ H be monotone and let µ > 0. Then A is µ-strongly

monotone if and only if JA is (µ+ 1)-cocoercive.

Proof. See, e.g., [35, Proposition 23.13].

The resolvents of the maximally monotone operators considered in Example 1.18 are

also some well-known mappings.

Example 1.25 (The proximity and the projection operators). According to Pro-

position 1.22, the resolvents of the operators considered in Example 1.18 are single-valued

and firmly nonexpansive with full domain.

(i) ([35, Example 23.3]) Let f : H →]−∞,+∞] be a proper lower semicontiuous con-

vex function. The resolvent of its subdifferential is the proximity operator of f , i.e.,

J∂f = proxf .

(ii) ([35, Example 23.4]) Let C ⊆ H be a nonempty, closed and convex set. Then the

resolvent of the normal cone to C is the projection mapping onto C, i.e.,

JNC = PC .

We recall next the concept of perturbation of an operator, which is denoted as in [48].

Definition 1.26 (Inner perturbation). Let A : H ⇒ H and let w ∈ H. The corre-

sponding inner w-perturbation of A is the operator Aw : H⇒ H defined by

Aw(x) := A(x− w), for all x ∈ H.

Lemma 1.27. Let A : H⇒ H and let w ∈ H. Then

JAw = (JA)w + w.

14 Chapter 1. Preliminaries

Proof. Observe that, for any x ∈ H,

p ∈ JAw(x)⇔ x ∈ p+ A(p− w)⇔ x− w ∈ p− w + A(p− w)⇔ p− w ∈ JA(x− w),

which proves the result.

We now turn our attention to the set of zeros of monotone operators.

Proposition 1.28. Let A,B : H⇒ H be two monotone operators and let γ > 0. Then,

(i) zerA = Fix JγA;

(ii) zer(A+B) = JγA(FixRγBRγA).

Proof. (i) See, e.g., [35, Proposition 23.38]. (ii) See, e.g., [35, Proposition 26.1(iii)(c)].

Proposition 1.29. Let A : H ⇒ H be strongly monotone. Then zerA is at most a

singleton. If in addition, A is also maximally monotone then zerA is exactly a singleton.

Proof. See, e.g., [35, Proposition 23.35 and Corollary 23.37].

Some of the previous results give us some insight into the role of resolvents for sol-

ving (1.3). Specifically, Propositions 1.22(i) and 1.28(i) can be combined with Theo-

rem 1.13 to construct a fixed point iteration which will be weakly convergent to a zero

of a maximally monotone operator. Closely related to this idea, a finer algorithm was

proposed in 1976 by Rockafellar [156].

Theorem 1.30 (Rockafellar’s proximal-point algorithm). Let A : H ⇒ H be a

maximally monotone operator such that zerA 6= ∅, and let (γk)
∞
k=0 be a sequence in]0,+∞[

verifying that
∑∞

k=0 γk = +∞. Given x0 ∈ H, set

xk+1 = JγkA(xk), for k = 0, 1, 2

Then the following hold.

(i) (xk)
∞
k=0 converges weakly to a point in zerA.

(ii) Suppose that A is strongly monotone. Then (xk)
∞
k=0 converges strongly to the unique

point in zerA.

Proof. See, e.g., [35, Theorem 23.41].

1.2. Matrix analysis and linear algebra 15

1.2 Matrix analysis and linear algebra

Consider Cn×m (Rn×m), the vector space of n ×m complex (real) matrices. We denote

by In, 0n and 0n×m, the n × n identity matrix, the n × n zero matrix, and the n × m

zero matrix, respectively. For simplicity, we shall omit the subindices when the size can

be deduced. The transpose of a matrix A ∈ Cn×m is denoted by AT , while the conjugate

transpose is denoted by A∗. The kernel, the range, the rank and the set of fixed points of

A are denoted, respectively, by kerA, ranA, rankA and FixA; i.e.,

kerA := {x ∈ Cn | Ax = 0n} , ranA := {y ∈ Cn | ∃x ∈ Cm : Ax = y} ,

rankA := dim (ranA) , and FixA := ker(A− I);

where dimU denotes the dimension of a linear subspace U ⊆ H. Observe that some of

the previous concepts are inherited from the operator theory since we can identify any

matrix A ∈ Cn×m with the linear mapping A : Cm → Cn, defined for any x ∈ Cm by

A(x) := Ax. Thus, operator properties can also be defined among matrices. For instance,

we say that A is nonexpansive if

‖Ax− Ay‖ ≤ ‖x− y‖, for all x, y ∈ Cm.

The trace of a matrix A ∈ Cn×m is denoted by trA. The determinant and the

inverse of a square matrix A ∈ Cn×n are denoted by detA and A−1, respectively. Given

a ∈ Cn, we denote by diag(a) and circ(a), respectively, the diagonal n× n matrix whose

diagonal entries are the elements of a and the square circulant matrix whose rows are cyclic

permutations of a (offset by their row index). A square matrix A ∈ Cn×n (A ∈ Rn×n)

is said to be a Hermitian (symmetric) matrix if A∗ = A, and it is said to be unitary

(orthogonal) if A∗A = In. Further, a real symmetric matrix A ∈ Rn×n is said to be

positive semidefinite if

xTAx ≥ 0, for all x ∈ Rn.

We denote by Sn the subspace of symmetric matrices in Rn×n, while Sn+ stands for the

cone of positive semidefinite matrices.

Given v1, v2, . . . , vr ∈ Rn, the associated Gram matrix G ∈ Sr is constructed compo-

nentwise as G = [〈vi, vj〉]. The Gram matrix G verifies (see, e.g. [119, Theorem 7.2.10]):

G ∈ Sr+ and rankG = dim span{v1, v2, . . . , vr}. (1.4)

16 Chapter 1. Preliminaries

For any matrix A ∈ Cn×n, the set of all its eigenvalues is called the spectrum of A,

and is denoted by σ(A). An eigenvalue λ ∈ σ(A) is said to be semisimple if its algebraic

multiplicity coincides with its geometric multiplicity (cf. [144, p. 510]), or, equivalently,

if ker(A−λI) = ker ((A− λI)2) (see [26, Fact 2.3]). The spectral radius of A is defined as

ρ(A) := max{|λ| : λ ∈ σ(A)}.

An eigenvalue λ ∈ σ(A) is said to be subdominant if |λ| = γ(A), where

γ(A) := max {|λ| : λ ∈ {0} ∪ σ(A), |λ| < ρ(A)} .

The vector space of matrices Cn×m (or Rn×m) can be endowed with different norms.

For instance, we can always derive an induced norm, which is inherited from a norm in

Cm (Rm) by the expression

‖A‖ := max
‖x‖≤1

‖Ax‖.

The norm induced by the euclidean vector norm becomes the matrix 2-norm given by

‖A‖2 :=
√
λmax, (1.5)

where λmax denotes the largest eigenvalue of A∗A. Trivially, induced matrix norms verify

the useful inequality ‖Ax‖ ≤ ‖A‖‖x‖, for all x ∈ Cm (Rm). However, if we need the space

Cn×m (Rn×m) to be a Hilbert space, then we have to turn to the Frobenius norm, defined

for any matrix A = [aij] by

‖A‖F :=

√√√√ m∑
i=1

n∑
j=1

|aij|2, (1.6)

which is induced by the inner product 〈A,B〉 := tr(ATB) (see, e.g., [35, Example 2.4]).

1.2.1 The geometry of two subspaces

The notion of angle between two subspaces permits to analyze the geometry described

by them. For one-dimensonal subspaces (lines), it is defined as the angle formed by their

direction vectors. However, the generalization of the concept to higher dimensions is not

straightforward. In fact, different notions of angles have been defined for general pairs of

subspaces. We shall employ the one proposed by Friedrichs [104] in 1937.

1.2. Matrix analysis and linear algebra 17

Definition 1.31 (Friedrichs angle). Let U and V be two closed subspaces in H. The

Friedrichs angle between U and V is the angle in [0, π
2
] whose cosine is

cF (U, V) := sup
{
|〈u, v〉| : u ∈ U ∩ (U ∩ V)⊥, v ∈ V ∩ (U ∩ V)⊥, ‖u‖ ≤ 1, ‖v‖ ≤ 1

}
.

The fulfillment of the strong CHIP for two closed subspaces can be identified by the

Friedrichs angle between them. To proceed, we first provide a characterization of the

normal cone to a closed subspace.

Proposition 1.32. Let U, V ⊆ H be closed subspaces. Then the following hold.

(i) For all x ∈ U , one has NU(x) = U⊥.

(ii) (U ∩ V)⊥ = U⊥ + V ⊥.

Proof. See, e.g., [81, Theorem 4.5 and Theorem 4.6].

Proposition 1.33. Let U, V be two closed subspaces in H. Then {U, V } has the strong

CHIP if and only if any of the following equivalent statements hold:

(i) U + V is closed;

(ii) U⊥ + V ⊥ is closed;

(iii) cF (U, V) < 1.

In particular, the latter holds if U or V has finite dimension or finite codimension.

Proof. See, e.g., [81, Therorem 9.35 and Corollary 9.37] and Proposition 1.32.

For the remainder of the section we shall assume that the underlying Hilbert space is

finite-dimensional.

Definition 1.34 (Principal angles). Let U and V be two subspaces of a Euclidean

space and consider p := min{dimU, dimV }. The principal angles between U and V are

the angles 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θp ≤ π
2

whose cosines are recursively defined by

cos θi :=〈ui, vi〉 = max

{
〈u, v〉 :

u ∈ U, v ∈ V, ‖u‖ = ‖v‖ = 1,

〈u, uj〉 = 〈v, vj〉 = 0 for j = 1, . . . , i− 1

}
,

with u0 = v0 := 0.

18 Chapter 1. Preliminaries

The Friedrichs angle and the principal angles are related in the following sense.

Proposition 1.35. Let θ1, θ2, . . . , θp be the principal angles between U and V , and let

s := dim(U ∩ V). Then we have

θi = 0, for all i = 1, . . . , s.

Furthermore, if s < p then

θs+1 = θF > 0,

where θF denotes the Friedrichs angle between U and V .

Proof. See [26, Proposition 3.3].

The projection operator onto subspaces is known to be a linear mapping. The following

result provides a matrix representation of the projectors onto a pair of subspaces in terms

of their principal angles.

Proposition 1.36. Let U and V be two subspaces of Rn with p := dimU and q := dimV .

If p < q and p+ q < n, we may find an orthogonal matrix D ∈ Rn×n such that

PU = D

Ip 0 0 0

0 0p 0 0

0 0 0q−p 0

0 0 0 0n−p−q

D∗ and PV = D

C2 CS 0 0

CS S2 0 0

0 0 Iq−p 0

0 0 0 0n−p−q

D∗, (1.7)

where C and S are two p× p diagonal matrices defined by

C := diag(cos θ1, . . . , cos θp) and S := diag(sin θ1, . . . , sin θp),

with θ1, . . . , θp being the principal angles between U and V .

Proof. See [26, Proposition 3.4].

1.2.2 Convergence of power of matrices

Throughout this section the vector space of square complex matrices Cn×n is equipped

with the induced matrix 2-norm (1.5).

1.2. Matrix analysis and linear algebra 19

Definition 1.37 (Convergent matrix). A matrix A ∈ Cn×n is said to be convergent

to A∞ ∈ Cn×n if and only if

lim
k→∞
‖Ak − A∞‖ = 0.

We say A is linearly convergent to A∞ with rate µ ∈ [0, 1[if there exist a positive integer

k0 and some M > 0 such that

‖Ak − A∞‖ ≤Mµk, for all k ≥ k0.

In this case, µ is called a linear convergence rate of A. When the infimum of all the

convergence rates is also a convergence rate, we say this minimum is the optimal linear

convergence rate.

The convergence of any matrix is fully determined by its spectrum as follows.

Proposition 1.38. A ∈ Cn×n is convergent if and only if one of the following holds:

(i) ρ(A) < 1;

(ii) ρ(A) = 1 and λ = 1 is semisimple and is the only eigenvalue on the unit circle.

When this happens, A is linearly convergent with any rate µ ∈]γ(A), 1[, and if A is

linearly convergent with rate µ ∈ [0, 1[, then µ ∈ [γ(A), 1[. Further, γ(A) is the optimal

linear convergence rate of A if and only if all the subdominant eigenvalues are semisimple.

Moreover, if A is convergent and nonexpansive, then limk→∞A
k = PFixA.

Proof. See [144, pp. 617–618 and 630] and [26, Theorem 2.12, Theorem 2.15 and Corol-

lary 2.7(ii)].

1.2.3 Complementary sequences and discrete Fourier transform

In this section we provide the definitions of the periodic correlation operator and comple-

mentary sequences, as well as one result concerning the properties of the discrete Fourier

transform. Before this, we start by recalling the Jacobi–Trudi identity.

Consider a vector of n variables denoted by x = (x1, x2, . . . , xn). A polynomial is

symmetric if it is invariant under every permutation of its variables. The k-th elementary

symmetric polynomial of x, denoted σk, is defined by

σk(x) :=
∑

1≤j1<j2<···<jk≤n

(
k∏
l=1

xjl

)
.

20 Chapter 1. Preliminaries

Every symmetric polynomial can be uniquely written as a polynomial in the elementary

symmetric polynomials (see [166, Theorem 1.1.1]). The k-th power polynomial of x,

denoted pk, is defined by

pk(x) :=
n∑
j=1

xkj . (1.8)

The relationship between the latter two objects is provided by the Jacobi-Trudi identity

presented in the following result.

Theorem 1.39 (Jacobi–Trudi identity). For each k = 1, 2, . . . , n, it holds that

σk =
1

k!
det

p1 1 0 . . . 0

p2 p1 2 . . . 0
...

...
.

...

pk−1 pk−2 . . . p1 k − 1

pk pk−1 p1

.

Proof. See, e.g., [166, p. 7].

The most important case of this identity for our purposes arises when k = 2, in which

case it yields

2σ2 = det

(
p1 1

p2 p1

)
= p2

1 − p2.

In fact, the case k = 2 has an elementary proof, since

σ2(x) =
∑

1≤j1<j2≤n

xj1xj2 =
1

2

(
n∑
j=1

xj

)2

− 1

2

n∑
j=1

x2
j .

Let ? : Rn × Rn → Rn denote the periodic correlation operator whose s-th entry is

defined according to

(a ? b)s :=
n−1∑
l=0

albl+s, s = 0, 1, . . . , n− 1; (1.9)

where a = (a0, a1, . . . , an−1) ∈ Rn and b = (b0, b1, . . . , bn−1) ∈ Rn are n-dimensional real

vectors, and the indices in (1.9) are understood modulo n.

1.2. Matrix analysis and linear algebra 21

Definition 1.40 ((Real) complementary sequences). Let a0, a1, . . . , am−1 ∈ Rn. We

say that the collection of sequences {aj}m−1
j=0 is (real) complementary if there exist some

constants ν0 and ν1 such that

m−1∑
j=0

aj ? aj = (ν0, ν1, . . . , ν1).

We note that the previous definition appears in [85, Definition 2] for sequences which

are potentially complex-valued.

Using the Jacobi–Trudi identity, we are able to deduce the following necessary condi-

tion for complementary sequences.

Proposition 1.41. Suppose that the collection of sequences {aj}m−1
j=0 ⊂ Rn is comple-

mentary with constants ν0 and ν1, i.e.,

m−1∑
j=0

aj ? aj = (ν0, ν1, . . . , ν1),

Then {p1(aj)}m−1
j=0 ⊂ R satisfy the equation

m−1∑
j=0

p2
1(aj) = ν1(n− 1) + ν0,

where p1 is given by (1.8).

Proof. Applying the Jacobi–Trudi identity (Theorem 1.39), we deduce that

n−1∑
s=1

(aj ? aj)s = 2σ2(aj) = det

(
p1(aj) 1

p2(aj) p1(aj)

)
= p2

1(aj)− p2(aj),

for all j ∈ {0, 1, . . . ,m− 1}. Consequently,

ν1(n− 1) =
n−1∑
s=1

m−1∑
j=0

(aj ? aj)s =
m−1∑
j=0

n−1∑
s=1

(aj ? aj)s

=
m−1∑
j=0

p2
1(aj)−

m−1∑
j=0

p2(aj) =
m−1∑
j=0

p2
1(aj)− ν0.

The claimed result follows by a routine rearrangement, thus completing the proof.

22 Chapter 1. Preliminaries

Let F denote the (unitary) discrete Fourier transform (DFT), that is, the linear map-

ping F : Cn → Cn defined for any a ∈ Cn by

F(a) :=
1√
n

1 1 · · · 1

1 ω1·1 · · · ω1·(n−1)

...
...

. . .
...

1 ω(n−1)·1 · · · ω(n−1)·(n−1)

 a, (1.10)

where ω := e2πi/n is a primitive n-th root of unity. In the following result, both | · | and

(·)2 are understood in the pointwise sense, and (·)∗ denotes the (complex) conjugate of a

complex number.

Proposition 1.42 (Properties of the DFT). Let a = (a0, a1, . . . , an−1) ∈ Cn.

(i) (Conjugate symmetry) a ∈ Rn if and only if F(a) is conjugate symmetric, that is,

F(a)0 ∈ R and F(a)s = (F(a)n−s)
∗ , ∀s = 1, 2, . . . , n− 1.

(ii) (Correlation theorem) F(a ? a) = |F(a)|2.

(iii) F is a linear isometry on Cn.

Proof. (i) See, e.g., [64, pp. 76–77]. (ii) See, e.g., [64, p. 83]. (iii) This follows from the

fact that F is unitary.

1.3 Closed-form expressions for some selected projectors

This section contains a variety of results that characterize the projector onto certain sets.

We begin with two simple and well-known sets in any arbitrary Hilbert space.

Proposition 1.43 (Projector onto a hyperplane). Given u ∈ H \ {0} and ν ∈ R,

consider the hyperplane

H := {x ∈ H : 〈x, u〉 = ν}.

The projection of any x ∈ H onto H can be computed as

PH(x) = x+
ν − 〈x, u〉
‖u‖2

u.

Proof. See, e.g., [35, Example 3.23].

1.3. Closed-form expressions for some selected projectors 23

Proposition 1.44 (Projector onto a sphere). Let S be the unit sphere in H, i.e.,

S := {x ∈ H : ‖x‖ = 1}.

The projector onto S at any x ∈ H is given by

PS(x) =

{
S, if x = 0;{

x
‖x‖

}
, otherwise.

Proof. See, e.g., [81, pp. 39 Exercise 6].

The following two projectors become very useful in combinatorial problems in Rn.

Proposition 1.45 (Projector onto the standard basis). Let e1, . . . , en denote the

unit vectors of the standard basis of Rn, and consider

C := {e1, . . . , en}.

Then, for any x = (x1, . . . , xn) ∈ Rn,

PC(x) = {ei : xi = max {x1, . . . , xn}} .

Proof. See, e.g., [10, Remark 5.1].

Proposition 1.46 (Projector onto the set of nonzero binary vectors). Consider

the set of vectors in Rn

C :=

{
z ∈ {0, 1}n :

n∑
i=1

zi ≥ 1

}
.

Then, for any x = (x1, . . . , xn) ∈ Rn, the projector onto C is described by

PC(x) =

{
P{0,1}n(x) \ {0n}, if P{0,1}n(x) 6= {0n},
{ei : xi = max {x1, . . . , xn}} , otherwise;

where e1, . . . , en denote the unit vectors of the standard basis of Rn.

Proof. First note that C = {0, 1}n \ {0n}. If P{0,1}n(x) 6= {0n}, we trivially have that

PC(x) = P{0,1}n(x) \ {0n}. Otherwise, if P{0,1}n(x) = {0n} then it necessarily holds that

xi < 0.5 for all i = 1, . . . , n. Then, any projection in PC(x) will contain exactly one

nonzero value, and the result follows from Proposition 1.45.

24 Chapter 1. Preliminaries

In the following two last results the underlying Hilbert spaces are the vector space of

real matrices Rn×m and the one of the real square matrices Rn×n, respectively, endowed

with the Frobenius norm (1.6).

Proposition 1.47 (Projector onto the null space). Let A ∈ Rl×n be a full row rank

matrix and consider

C :=
{
Z ∈ Rn×m : AZ = 0

}
.

Then, for any X ∈ Rn×m, one has

PC(X) =
(
In − AT

(
AAT

)−1
A
)
X.

Proof. See, e.g., [35, Proposition 3.30(iii)] combined with [35, Example 3.29].

Remark 1.48. Observe that Proposition 1.47 with l = m = 1 covers the setting of Pro-

position 1.43 with H = Rn as a particular case.

Proposition 1.49 (Projector onto the set of low-rank nonnegative matrices).

Let 0 ≤ k ≤ n be a non-negative integer and let C be the set of positive semidefinite

matrices in Rn×n whose rank is bounded by k, i.e.,

C :=
{
X ∈ Sn+ : rank(X) ≤ k

}
.

Given any X ∈ Sn, consider the set

Σ(X) :=

{
(Λ, Q) ∈ (Rn×n)2 :

X = QΛQT is a spectral decomposition of X with

Λ = diag(λ1, . . . , λn) and λ1 ≥ λ2 ≥ · · · ≥ λn

}
,

and for a given Λ = diag(λ1, . . . , λn), define

Λ+
k = diag (max{0, λ1}, . . . ,max{0, λk}, 0, . . . , 0) .

Then, the projector onto C at X is given by

PC(X) =
⋃

(Λ,Q)∈Σ(X)

{
QΛ+

kQ
T
}
.

Proof. See, e.g., [168, Proposition 3.11].

Chapter 2

Classical projection methods

The family of the so-called projection methods is a wide class of algorithms which are

successfully used for finding common points of a collection of sets. Projection methods

iterate by finding best approximations to the sets at each step, under the philosophy

that these projections onto the individual sets can be efficiently computed, rather than

dealing with the intersection itself. They have received a great attention for the last few

decades due to their easy implementation and their broad applicability in many areas of

mathematics, engineering and physical sciences.

From a theoretical perspective, projection algorithms rely on Banach–Picard iterati-

ons defined by an operator whose fixed points solve the problem of interest. Thus, their

convergence is well understood when the involved sets are convex by making use of the

nonexpansiveness properties of the projection mapping. In the nonconvex setting, the

analysis is more delicate, and the results available are either local or only apply to spe-

cific types of nonconvex sets. Despite a lack of a general theoretical foundation, some

projection algorithms have been successfully employed in many applications involving

nonconvex sets.

In order to place the contributions of this thesis in context, this chapter is intended

to be a condensed survey of the several projection methods that have been developed

in the literature. Further general reviews on projection algorithms can be found in [35,

66, 68, 69, 81]. The structure of the chapter is the following. We start by introducing

in Section 2.1 the concepts of feasibility problem and best approximation problem in a

Hilbert space. In Section 2.2 we focus on the probably two most well-known projection

methods for solving feasibility problems, namely, the method of alternating projections and

the Douglas–Rachford method. We finally discuss some other projection algorithms for

tackling best approximation problems in Section 2.3. Those include Dykstra’s algorithm,

Haugazeau’s algorithm, Halpern’s algorithm and Combettes’ algorithm.

25

26 Chapter 2. Classical projection methods

2.1 Feasibility and best approximation problems

We begin by stating the concept of feasibility problem, which basically consists in finding

a common point of a collection of sets.

Definition 2.1 (Feasibility problem). Given a finite family of sets C1, C2, . . . , Cr ⊆ H,

the corresponding feasibility problem becomes

Find x ∈
r⋂
i=1

Ci. (2.1)

Many problems can be modeled as feasibility problems. However, devising an appro-

priate formulation may not be a trivial task, and some creativity is required. In many

practical situations, the projector onto each of these sets can be easily computed, while

directly finding a point in the intersection of the sets might be intricate. As commented

before, this is in fact the spirit of projection methods, so they are employed to solve (2.1)

in such cases.

A feasibility problem is said to be consistent when it has solution, that is, if ∩ri=1Ci 6= ∅.
Otherwise we refer to it as an incosistent feasibility problem. In the inconsistent case, we

may look for an alternative or generalized solution. For instance, when dealing with two

disjoint sets C1, C2 ⊆ H, it might be desirable to find a best approximation pair, which is

a pair of points (c1, c2) ∈ C1 × C2 such that

‖c1 − c2‖ = d(C1, C2) := inf {‖x− y‖ : (x, y) ∈ C1 × C2} .

It may occur that we are interested in finding, not only a point in the intersection of

the sets, but the closest one to any given point in the space. This problem is known as

the best approximation problem, and is formally stated as follows.

Definition 2.2 (Best approximation problem). Given C1, C2, . . . , Cr ⊆ H and given

z ∈ H, the corresponding best approximation problem is defined as

Find w ∈
r⋂
i=1

Ci, such that ‖w − z‖ = inf {‖x− z‖ : x ∈ ∩ri=1Ci} . (2.2)

In other words, the task is to find the closest point to z in the intersection set ∩ri=1Ci.

A projection algorithm for solving (2.2) shall exploit the individual projectors onto the

constraints to generate a projection onto the intersection.

2.1. Feasibility and best approximation problems 27

2.1.1 Product-space reformulation

When tackling a feasibility problem or a best approximation problem as in (2.1)–(2.2)

via projection methods, we need an algorithm which is able to handle with an arbitrary

number of constraints. However, some projection algorithms are usually designed to deal

with only two sets. Thus, in order to address a general many sets problem, one needs to

find an appropriate extension of the algorithm, or alternatively, to reduce the problem to

the two-set case. The latter can always be achieved thanks to the following well-known

product-space reformulation originally stated by Pierra [152] in 1984. Consider the Hilbert

product space

H := Hr = H×
(r)
· · · ×H, (2.3)

endowed with the inner product

〈x,y〉 :=
r∑
i=1

〈xi, yi〉, for all x = (xi)
r
i=1,y = (yi)

r
i=1 ∈H;

and define the sets

C := C1 × C2 × · · · × Cr and D := {(x, x, . . . , x) ∈H : x ∈ H}. (2.4)

While the setD, sometimes called the diagonal, is always a closed subspace, the properties

of C are largely inherited. For instance, C is nonempty, closed and convex whenever the

sets C1, . . . , Cr are so. We denote by j : H →D the canonical embedding that maps any

x ∈ H to j(x) = (x, x, . . . , x) ∈ D. The reformulation of (2.1) as a two-set problem in

the product space relies on the equivalence

x ∈
r⋂
i=1

Ci ⊆ H ⇔ j(x) ∈ C ∩D ⊆H; (2.5)

and the same applies to the best approximation problem (2.2), since

w ∈ P∩ri=1Ci
(z) ⇔ j(w) ∈ PC∩D(j(z)). (2.6)

In order to employ any projection method with the reformulated problems, it is necessary

that the projectors onto the sets C and D are effectively computable. As we summarize

in the following proposition, this is indeed the case whenever the projectors onto the

underlying constraint sets in the original problem, C1, . . . , Cr, can be efficiently computed.

28 Chapter 2. Classical projection methods

Proposition 2.3 (Product-space projectors). Let x = (x1, . . . , xr) ∈ H. The pro-

jectors onto the sets C and D in (2.4) at x are given by

PC(x) = PC1(x1)× PC2(x2)× · · · × PCr(xr) and PD(x) = j

(
1

r

r∑
i=1

xi

)
.

Proof. See [152, Lemma 1.1].

2.2 Fundamental algorithms

The method of alternating projections and the Douglas–Rachford method are essential

schemes in the family of projection algorithms. Each of them can be seen, not only as a

plain method, but as an entire subfamily of methods due to the numerous generalizations,

variants and extensions that have been developed. In this section we give an overview of

both of them.

2.2.1 The method of Alternating Projections

The method of alternating projections (AP) is undoubtedly the most intuitive and well-

known projection method. It dates back to 1933, when John von Neumann [174] originally

introduced the algorithm for solving the best approximation problem for two closed linear

subspaces. For this reason, the method is sometimes called the von Neumann’s alternating

projections algorithm. He proved the following fundamental result, which sparked off the

development of the method.

Theorem 2.4 (von Neumann). Let U, V ⊆ H be closed subspaces. Then

lim
k→∞

(PV PU)k(x) = PU∩V (x), for each x ∈ H.

Proof. See, e.g. [98, Theorem 3.3]

The von Neumann’s theorem was generalized in 1962 by Halperin [113] for an arbi-

trary number of closed subspaces, and it was Bregman [62] who extended the method in

1965 for solving feasibility problems with arbitrary closed and convex sets. The alterna-

ting projections method has been widely studied and generalized by many authors; see,

e.g., [29, 55, 82, 113, 129, 138, 137]. Specific references will be provided throughtout the

section. For a basic monograph on the alternating projetions method, we recomend [98].

2.2. Fundamental algorithms 29

2.2.1.1 Alternating projections for two closed and convex sets

Given two nonempty, closed and convex subsets A,B ⊆ H, the alternating projections

algorithm iterates by successively projecting onto each of the sets. That is, given any

initial point x0 ∈ H, the sequence is generated by the recurrence

xk+1 = PBPA(xk). (2.7)

Note that (2.7) is nothing more than the Banach–Picard iteration defined by the ope-

rator T = PBPA. Taking advantage of the firm nonexpansiveness of the projectors and

the suitable geometry of the set of fixed points, the scheme permits to successfully ad-

dress any convex feasibility problem. The following result reviews the main behavior of

the algorithm.

Theorem 2.5 (Alternating projections method). Let A,B ⊆ H be nonempty, closed

and convex sets and let v := PB−A(0). Given any x0 ∈ H, consider the alternating

projections iteration generated by

xk+1 = PBPA(xk), for k = 0, 1, 2,

Then xk − PA(xk)→ v and exactly one of the following holds:

(i) v ∈ B − A and (xk)
∞
k=0 converges weakly to some point x? ∈ (A+ v) ∩B;

(ii) v 6∈ B − A and ‖xk‖ → +∞.

Proof. See, e.g., [29, Theorem 4.8].

Remark 2.6. The vector v := PB−A(0) defined in Theorem 2.5 is known as the displace-

ment vector. One can easily check that v measures the gap between the sets, since

‖v‖ = d(A,B).

Furthermore, v ∈ B − A if and only if the distance d(A,B) is attained, which means

that there exists a best approximation pair. If this happens, such a pair is given by

(PA(x?), x?), being x? the weak limit point in Theorem 2.5(i). In addition, if the pro-

blem is consistent, we trivially have that v = 0 ∈ B − A, and thus x? ∈ A ∩ B is a

solution to the feasibility problem. Otherwise, when d(A,B) is not attained, the genera-

ted sequence will be unbounded according to Theorem 2.5(ii). These three scenarios are

illustrated in Figure 2.1.

30 Chapter 2. Classical projection methods

A

B

x0

x1x2x?· · ·

(a) A ∩B 6= ∅

A

B

x0

x1x2x?· · ·

(b) A∩B = ∅ and v ∈ ran(B−A)

A

B

x0

x1 x2 · · ·

(c) A∩B = ∅ and v 6∈ ran(B−A)

Figure 2.1: Behavior of the alternating projections method in three possible scenarios.

The von Neumman’s theorem (Theorem 2.4) ensures strong convergence of AP to the

solution of the best approximation problem for the case of closed subspaces. It reamains

true for closed affine subspaces. Note, however, that weaker assertions are claimed in The-

orem 2.5 for more general sets. On the one hand, the convergence of the method is only

established to be weak. The question about whether strong convergence could still hold

for arbitrary closed and convex sets, remained open for a long time. It was Hundal who

discovered in 2004 the first known counter-example of an alternating projections iteration

which does not converge in norm [120] (see also [143]). On the other hand, the method

provides a point which is a solution to the feasibility problem, when consistent. Nonethe-

less, this point will not solve the best approximation problem in general (see Figure 2.2).

A

B

x0

x1x2x?

PA∩B(x0)

· · ·

(a) Both sets A and B are closed subspaces.
The method converges to x? = PA∩B(x0)

A

B

x0

x1 = x?PA∩B(x0)

(b) B is closed subspaces but A is a half-space.
The method converges to some point in A ∩B

Figure 2.2: Failure of the method of alternating projections for solving the best approximation
problem for arbitrary convex sets.

2.2. Fundamental algorithms 31

2.2.1.2 Some extensions for finitely many sets

There are different possible generalizations of the method of alternating projection for

dealing with more than two sets. Suppose that C1, C2, . . . , Cr ⊆ H are nonempty closed

and convex sets.

Cyclic alternating projections The most evident approach is the iteration defined by

xk+1 = PCrPCr−1 · · ·PC1(xk). (2.8)

The algorithm generated by (2.8) is known as the cyclic projections method and it is proved

to converge weakly to a common point of the sets (see, e.g. [35, Corollary 5.26]). In fact,

this cyclic scheme for finitely many sets is the one originally proposed by Bregman [62].

Halperin [113] had previously proved that, as it happens in the two-set case, when we

consider closed affine subspaces the method converges strongly to the closest point in the

intersection (see, e.g., [35, Corollary 5.30]). An exhaustive analysis of the method in the

inconsistent case can be found in [30]. It is worth mentioning that the cyclic projections

method was independently introduced by Kaczmarz [125] in 1937, for solving a consistent

system of linear equations in a Euclidean space.

Averaged alternating projections A different scheme, which is commonly known as

the averaged projections method, is given by

xk+1 =
1

r

r∑
i=1

PCi(xk). (2.9)

Note that (2.9) is just the result of implementing the classical alternating projections

in the product space, as explained in Section 2.1.1. Therefore, the convergence of the

algorithm can be straightforwardly derived from Theorem 2.5 (or Theorem 2.4 for closed

subspaces). Unlike in the cyclic version, the projections onto the sets in (2.9) can be si-

multaneously computed at each iteration, which makes the method highly parallelizable.

For this reason the algorithm is also known as the method of simultaneous projections

(SP), see e.g. [134, 153]. The algorithm is usually accredited to Cimmino [74] due to the

similarity with the so-called Cimmino’s method that he proposed in 1938.

In Figure 2.3 we depict the iterations generated by the two previous methods.

32 Chapter 2. Classical projection methods

C1

C2

C3

x0
PC1

x0

PC2PC1x0 x1 = PC3
PC2

PC1
x0

(a) Cyclic alternating projections method

C1

C2

C3

x0 PC1
x0

PC2x0

PC3
x0x1

(b) Averaged alternating projections method

Figure 2.3: Ilustration of two possible generalization of AP for finitely many sets.

2.2.1.3 Relaxed versions

The classical method of alternating projections often presents a very slow convergence.

For this reason, some extrapolated versions have been developed. Such variants are typi-

cally constructed by relaxing some of the involved operators, so that consequently, some

parameters are incorporated into the scheme. Depending on the geometry of the pro-

blem, these parameters can be optimally tuned, and thus an acceleration of the algorithm

is achieved. This shall be further discussed in Section 2.2.1.4. The first relaxation of AP

traces back to the method of Agmon [4] and Motzking and Schoenberg [146], proposed in

1954, where relaxed projections were considered in a cyclic alternating projections method

for a system of linear inequalities. The method was later extended for arbitrary closed

and convex sets by Gubin, Polyak and Raik [110] in 1967. We present here three different

relaxed versions of the method of alternating projections for two sets. We would like to

emphasize that the terminology among them is not deep-rooted in the literature, so each

name might refer to a different variant depending on the consulted reference.

Relaxed alternating projections The first natural approach is known as the relaxed

alternating projections method (RAP), and consist in a strict relaxation of the classical

alternating projections. The iterative scheme is then given by

xk+1 = (1− α)xk + αPBPA(xk), with α ∈]0, 2[. (2.10)

2.2. Fundamental algorithms 33

Partial relaxed alternating projections When only the first projection is relaxed

we obtain the partial relaxed alternating projections method (PRAP), whose iteration

becomes

xk+1 = PB ((1− α)xk + αPA(xk)) , with α ∈]0, 2[. (2.11)

Generalized alternating projections The most complete relaxed version of AP is the

generalized alternating projections method (GAP). It relaxes both individual projectors,

as well as the whole operator. Thus the iterative scheme is defined by

xk+1 = (1− α)xk + α ((1− α2) Id +α2PB) ((1− α1) Id +α1PA) (xk), (2.12)

for α ∈]0, 1] and α1, α2 ∈]0, 2[.

The iterations of the RAP, PRAP and GAP methods are illustrated in Figure 2.4.

A

B

xk

PAxk

PBPAxk
xk+1

(a) RAP with α = 1.3

A

B

xk

PAxk

xk+1

(b) PRAP with α = 1.5

A

B

xk

PAxk

PBPA,α1
xk

xk+1

(c) GAP with α1 = 1.4, α2 = 0.8
and α = 0.6

Figure 2.4: One iteration of RAP, PRAP and GAP methods.

As it happens with the classical alternating projections algorithm, if the involved

sets in the feasibility problem are closed subspaces, RAP, PRAP and GAP also converge

strongly to the closest point in the intersection.

Note that the relaxation parameters in the methods described above have been assu-

med to be fixed. Notwithstanding, we may let them to vary along the iterations, building

up a sequence {αk}∞k=0. Under some conditions on these sequences, the algorithms can

be still proved to converge. Furthermore, some geometrical information of the problem

can be used when updating the relaxation parameter at each step, which leads to the

development of the so-called acceleration techniques (see, e.g., [36, 42, 67, 80, 99, 108]).

34 Chapter 2. Classical projection methods

2.2.1.4 Rate of convergence for subspaces

The rate of convergence of the method of alternating projections has been widely studied

in the context of closed subspaces. As shown in the following result, the rate for two

subspaces turns out to depend on the Friedrichs angle between them.

Theorem 2.7 (Rate of convergence of AP for two closed subspaces). Let U and

V be two closed subspaces of H and let cF := cF (U, V) be the cosine of the Friedrichs

angle between them. Then, for any x0 ∈ H,

‖(PUPV)k(x0)− PU∩V (x0)‖ ≤ c2k−1
F ‖x0 − PU∩V (x0)‖, for all k = 0, 1, 2, (2.13)

Proof. See, e.g., [66, Theorem 5.1.7].

According to Theorem 2.7, the alternating projections method is linear convergent with

rate the squared cosine of the Friedrichs angle between the two subspaces. The upper

bound in terms of c2k−1
F given in (2.13) was first estimated by Aronszajn [23] in 1950.

Different bounds were later obtained, independently, by Smith, Solmon and Wagner [163]

in 1977, by Deutsch [90] in 1983, and by Franchetti and Light [103] in 1986. However

these were not as tight as (2.13). In fact, Kayalar and Weinert [128] proved in 1988 that

∥∥(PUPV)k − PU∩V
∥∥ = c2k−1

F , for all k = 1, 2, . . . ;

that is, Aronszajn’s bound is the sharpest possible.

For the case of more than two subspaces, upper bounds for the rate of convergence

of the cyclic projections method have been provided in [83, 128, 163]. The rate of linear

convergence of the method of simultaneous projections has been recently obtained in [155].

For the case of two subspaces it becomes 1
2

+ 1
2
cF , so in this framework, the classical

alternating projections would always be faster than its parallelized version.

Clearly, small angles between the subspaces will entail a slow convergence of the alter-

nating projections method. As pointed out in Section 2.2.1.3, the method can be sped up

if we rather consider relaxed variants. Thanks to the linearity of the projection operator

onto subspaces, when these lay in a finite-dimensional (Euclidean) space, projection met-

hods reduce to matrix iterations. Taking advantage of this fact, optimal convergence rates

for RAP (2.10) and PRAP (2.11) have been obtained in [26]. By following an analogous

matrix analysis, the rate of convergence with optimal parameters for GAP (2.12) has been

recently given in [100]. The results for the three methods are gathered next.

2.2. Fundamental algorithms 35

Theorem 2.8 (Optimal parameters and rates for RAP, PRAP and GAP). Let

U and V be two linear subspaces in the Euclidean space Rn and let θF and θp be the

Friedrichs angle and the largest principal angle between U and V , respectively. Consider

the relaxed, the partial relaxed, and the generalized alternating projections methods (2.10),

(2.11) and (2.12), respectively, applied to U and V . Then the following hold.

(i) The RAP method attains its smallest optimal rate of linear convergence

γ?(RAP) =
1− sin2 θF
1 + sin2 θF

, at α? =
2

1 + sin2 θF
.

(ii) The PRAP method attains its smallest optimal rate of linear convergence

γ?(PRAP) =
sin2 θp − sin2 θF
sin2 θF + sin2 θp

, at α? =
2

sin2 θF + sin2 θp
.

(iii) The infimum of the linear convergence rates of the GAP method attains its smallest

value

γ?(GAP) =
1− sin θF
1 + sin θF

, at α? = 1 and α?1 = α?2 =
2

1 + sin θF
.

Proof. (i) See [26, Theorem 3.6]. (ii) See [26, Theorem 3.7]. (iii) See [100, Theorem 2].

2.2.1.5 Alternating projections in the nonconvex setting

The method of alternating projections is also popular in nonconvex settings. Local linear

convergence of the method is usually analyzed by assuming some regularity property of

the individual sets (prox-regularity, super-regularity or Clarke-regularity, among others)

and of their intersection (transversality or subtransversality). See [132] for a unifying

discussion on different notions of regularity of sets and collection of sets.

The first results achieving local linear convergence of alternating projections for non-

convex sets appeared in [137, 138]. This analysis has been later extended by requiring

weaker or different regularity properties (see, e.g., [45, 46, 51, 116, 147]). Specific applica-

tions include, for instance, inverse problems such as image recovery [136] and systems of

linear equations with sparsity constraints [44, 117]. For further applications of alternating

projections method for convex and nonconvex problems we refer the reader to [98] and

the references therein.

36 Chapter 2. Classical projection methods

2.2.2 The Douglas–Rachford algorithm

We now turn our attention to a different projection method. It is commonly known as the

Douglas–Rachford (DR) algorithm, since it was originally proposed in 1956 by J. Douglas

and H.H. Rachford [89] for solving a system of linear equations arising in heat conduction

problems. However, Lions and Mercier [140] were the ones who successfully extended the

algorithm for solving feasibility problems with arbitrary closed and convex sets in 1979.

Actually, such an extension provided an splitting algorithm for finding a zero of the sum of

two maximally monotone operators, a more general framework that covers the convergence

of the scheme in the convex feasibility setting. We recommend [47, Appendix] to the reader

interested in the connection between the original algorithm and the extension of Lions and

Mercier. The method was more generally studied in 1992 by Eckstein and Bertsekas [91].

Further significant contributions are due to Bauschke, Combettes and Luke [38] in 2004,

who deeply investigated the convex feasibility framework, to Svaiter [167] in 2011, who

stablished the convergence of the sequence of interest, and to Bauschke and Moursi [48],

who have recently provided in 2017 an exhaustive analysis of the inconsistent case.

2.2.2.1 The Douglas–Rachford algorithm for two closed and convex sets

Given two nonempty, closed and convex sets A,B ⊆ H, the DR algorithm is the fixed

point iteration generated by the Douglas–Rachford operator defined by

TA,B :=
Id +RBRA

2
. (2.14)

The algorithm iterates by computing an average between the current point and two con-

secutive reflections (see Figure 2.5). For this reason, the DR algorithm is also known as

the averaged alternating reflections (AAR) method.

A

B
xk

RAxk

RBRAxk

xk+1

Figure 2.5: Geometric interpretation of the Douglas–Rachford iteration.

2.2. Fundamental algorithms 37

Since reflectors with respect to convex sets are nonexpansive, the Douglas–Rachford

operator is 1
2
-averaged (in fact, firmly nonexpansive according to Proposition 1.8(ii)).

Therefore, the convergence of the algorithm only depends on the nonemptiness of the set

of fixed points of the operator. Furthermore, when they exist, these fixed points need

to be useful for solving the feasibility problem. Let us show that this is indeed the case.

Observe that

A ∩B ⊆ Fix(RBRA) = FixTA,B.

Moreover, x ∈ Fix(RBRA) if and only if

x = (2PB − Id)(2PA − Id)(x) = 2PB(2PA(x)− x)− 2PA(x) + x;

that is,

x ∈ FixTA,B ⇔ PB(2βPA(x)− x) = PA(x).

Consequently, we have PA(FixTA,B) = A ∩ B and thus the algorithm will be convergent

provided that A ∩ B 6= ∅. The set of fixed points was completely characterized in [38].

Thanks to the results in that work, together with the ones in [48, 167], the behavior of the

algorithm is fully determined in the convex feasibility setting. The next theorem collects

the main results regarding the behavior of the algorithm.

Theorem 2.9 (Douglas–Rachford method). Let A,B ⊆ H be nonempty, closed and

convex sets and let v := PA−B(0). Given any x0 ∈ H, consider the Douglas–Rachford

iteration generated by

xk+1 =
xk +RBRA(xk)

2
, for k = 0, 1, 2, (2.15)

Then the following hold.

(i) If A ∩B 6= ∅, then (xk)
∞
n=0 is weakly convergent to a point x? ∈ Fix(RBRA) and

(PA(xk))
∞
k=0 ⇀ PA(x?) ∈ A ∩B.

(ii) If A ∩B = ∅, then ‖xk‖ → +∞. Further, if v ∈ A−B then

(PA(xk))
∞
k=0 ⇀ a? ∈ A ∩ (v +B).

Proof. (i) See [38, Theorem 3.13 and Corollary 3.9] and [167, Theorem 1]. (ii) See [24,

Corollary 2.2] and [48, Theorem 4.5].

38 Chapter 2. Classical projection methods

Remark 2.10. The fixed point given in Theorem 2.9(i) may already be laying in the in-

tersection, i.e., x? ∈ A ∩B, which would solve the problem (see Figure 2.6(a)). However,

this will not be the case in general, and we shall need to compute PA(x?) to generate a so-

lution (see Figure 2.6(b)). Hence, the sequence of interest is not (xk)
∞
k=0, but (PA(xk))

∞
k=0,

which is known as the shadow sequence.

Although the DR sequence is unbounded when the sets do not intersect, according

to Theorem 2.9(ii) the shadow sequence remains convergent to a point a? if the distance

between the sets d(A,B) is attained. In this case, (a?, PB(a?)) would be a best approxi-

mation pair (see Figure 2.6(c)).

B

A

x0

PAx0

x1

PAx1

x2···

PAx
?· · ·

x?

(a) A ∩B 6= ∅ and x? ∈ A ∩B

B

A

x0

PAx0

x1

PAx1

···

PAx
?· · ·

x?

(b) A ∩B 6= ∅ but x? 6∈ A ∩B

B

A

x0

PAx0

x1

PAx1

x2

··
·

a?· · ·

(c) A ∩B = ∅

Figure 2.6: Behavior of the Douglas–Rachford algorithm in three possible scenarios.

The DR algorithm also provides a solution to the best approximation problem when

it is applied to closed (affine) subspaces (see, e.g., [27, Corollaries 4.4 and 4.5]). However

this is not the case for arbitrary convex sets (see Figure 2.7).

A

B

x0

x1

x2···

x?

(a) Both sets A and B are closed subspaces.
The method converges to x? = PA∩B(x0)

A

B

x0

x1

PA∩B(x0) x2 = x?

(b) B is closed subspaces but A is a half-space.
The method converges to some point in A ∩B

Figure 2.7: Failure of the Douglas–Rachford method for solving the best approximation pro-
blem for arbitrary convex sets.

2.2. Fundamental algorithms 39

2.2.2.2 Extensions for finitely many sets

We discuss now the range of possibilities for the Douglas–Rachford scheme to be applied

to more than two sets. Let us consider first the case of three sets A,B,C ⊆ H. An

obvious approach would be considering the fixed point iteration generated by

TA,B,C :=
Id +RCRBRA

2
. (2.16)

This scheme will remain convergent since the operator in (2.16) is still firmly nonexpansive

and has nonempty set of fixed points provided that the three sets intersect. However, the

reached fixed point may fail to produce a point in the intersection (see Figure 2.8).

A

B

C
x0 = RCRBRAx0

RAx0 RBRAx0

Figure 2.8: Failure of the 3-sets Douglas–Rachford iteration.

Therefore, alternative approaches must be addressed, some of which are presented

next. Assume that C1, C2, . . . , Cr ⊆ H are closed an convex sets.

Douglas–Rachford in the product space As pointed out in Section 2.1.1, we can

always turn to the product space reformulation. In this context, given r arbitrary starting

points x1,0, x2,0, . . . , xr,0 ∈ H, the iterative scheme can be expressed as

for k = 0, 1, 2, . . . :
pk = 1

r

∑r
i=1 xi,k,

for i = 1, 2, . . . , r :⌊
xi,k+1 = 1

2
xi,k + 1

2
RCi(2pk − xi,k).

(2.17)

Hence Theorem 2.9 guarantees the convergence of (2.17). We chose here to compute first

the reflection with respect to the diagonal D, so that the shadow sequence, (PD(xk))
∞
k=0,

can be identified with (pk)
∞
k=0. Thus, the latter sequence will converge weakly to a common

40 Chapter 2. Classical projection methods

point of the sets, whenever it exists (see Figure 2.9(a)). Observe that the projections onto

the sets can be parallelized and simultaneously computed. However, as many points as

number of sets need to be stored at each step to compute the next iteration. This makes

the algorithm intractable when the number of constraints is large.

Cyclic Douglas–Rachford Instead of the operator in (2.16), Borwein and Tam [57]

introduced the cyclic Douglas–Rachford operator defined as

T[C1,C2,...,Cr] := TCr,C1TCr−1,Cr · · ·TC1,C2 . (2.18)

The fixex point iteration generated by this operator, known as the cyclic Douglas–Rachford

method, does allow to address a convex feasibility problem defined by an arbitrary number

of sets, without having to turn to the product space reformulation (see [57, Theorem 3.2]).

The algorithm iterates by cyclically applying the classical Douglas–Rachford method to

pairs of sets (see Figure 2.9(b)). The analysis of the method in the inconsistent case was

developed in [59], and a further extension of the algorithm has recently been proposed

in [17]. Observe that

T[A,B] := TB,ATA,B 6= TA,B,

that is, (2.18) does not coincide with the classical DR operator for r = 2. Alternatively,

Bauschke, Noll and Phan [50] proposed the cyclically anchored Douglas–Rachford method,

which does turn into the original DR when dealing with two sets.

C1

C2

C3

p0

x1,0

x1,1

x2,0 x2,1
x3,0

x3,1

p1

(a) Douglas–Rachford in the product space

C1

C2

C3

x0

T1,2x0

T2,3T1,2x0
x1 = T3,1T2,3T1,2x0

(b) Cyclic Douglas–Rachford method

Figure 2.9: Ilustration of two versions of DR for finitely many sets.

2.2. Fundamental algorithms 41

2.2.2.3 Some modified and relaxed versions

Some relaxations or modifications can be considered in the classical Douglas–Rachford

algorithm, leading to different variants of the method. Three of them are presented next,

whose iterations are illustrated in Figure 2.10.

Generalized Douglas–Rachford The generalized Douglas–Rachford (GDR) method

is the most evident generalization, which is in fact the method studied by Eckstein and

Bertsekas in [91]. The algorithm relies on iteratively applying a general α-averaged version

of the DR operator, rather than a 1
2
-averaged; i.e.,

xk+1 = TA,B,α(xk) := (1− α)xk + αRBRA(xk), with α ∈]0, 1[. (2.19)

Note that for α = 1
2

it becomes the classical Douglas–Rachford.

Relaxed Averaged Alternating Reflections Luke proposed in [142] the relaxed

averaged alternating reflections (RAAR) method, whose iteration is defined as an average

between the classical DR and the projection onto the first set; i.e.,

xk+1 = (1− β)PA(xk) + βTA,B(xk), with β ∈]0, 1[.

This scheme is proved to converge even for inconsistent feasibility problems, without

turning to the shadow squence, as long as the distance between the sets is attained. In

that case, the method provides a best approximation pair. It is worth to mention that a

more general relaxed version of DR has been recently proposed by Thao [171].

Circumcentered Douglas–Rachford Motivated by the “spiraling dynamics” shown

by DR when applied to subspaces (see Figure 2.7(a)), Behling, Bello Cruz and Santos

considered an accelerated version of the algorithm in [52]. It is called the circumcentered

Douglas–Rachford (CDR) method, since the new point at each step is computed as the

circumcenter of the triangle implicitly generated by the classical DR iteration; that is,

xk+1 = CT [xk, RA(xk), RBRA(xk)], (2.20)

where CT [a, b, c] denotes the circumcenter of the triangle of vertices a, b and c. The

method requires the sets to be closed subspaces, otherwise the circumcenter may not be

defined. For one-dimensional subspaces the algorithm always converges in one iteration.

42 Chapter 2. Classical projection methods

A

B

xk

RAxk

RBRAxk

TA,Bxk

xk+1

(a) GDR with α = 0.8

A

B

xk

RAxk

RBRAxk

TA,Bxk

xk+1

PAxk

(b) RAAR with β = 0.4

A

B

xk

RAxk

RBRAxk

xk+1

(c) CDR

Figure 2.10: One iteration of GDR, RAAR and CDR methods.

2.2.2.4 Rate of convergence for subspaces

The rate of convergence of the Douglas–Rachford method when applied to two closed

subspaces in a Hilbert space was analyzed in [27]. In that setting, the method converges

strongly to the projection of the starting point onto the intersection. Further, the rate of

convergence turns out to be the cosine of the Friedrichs angle between the subspaces.

Theorem 2.11 (Rate of convergence of DR for two closed subspaces). Let U

and V be two closed subspaces of H and let cF := cF (U, V) be the cosine of the Friedrichs

angle between them. Then, for any x0 ∈ H,

∥∥PUT kU,V (x0)− PU∩V (x0)
∥∥ ≤ ckF‖x0‖, for all k = 0, 1, 2, (2.21)

Proof. See, e.g., [27, Theorem 4.3].

The rate cF in (2.21) is in fact the tightest possible since, as shown in [27, Theo-

rem 4.3(i)], it holds that

∥∥PUT kU,V − PU∩V ∥∥ = ckF , for all k = 1, 2,

Remark 2.12 (Comparison with AP). Taking into account Theorems 2.7 and 2.11, the

DR method proves to be twice slower than AP, when applied to a pair of closed subspaces.

In practice, however, the shadow sequence of DR presents an oscillatory behavior with

non-monotone progress (see [27, Figure 1]). This causes some unexpected situations

where, at a certain iteration k0, it might hold that

∥∥PUT k0U,V x0 − PU∩V x0

∥∥ < ∥∥(PUPV)k0x0 − PU∩V x0

∥∥ .

2.2. Fundamental algorithms 43

One may think that an appropriate tuning of the relaxation parameter involved in the

generalized Douglas–Rachford algorithm (2.19) could speed up the method. However, the

following result, wich summarizes the analysis of the rate of convergence of GDR in finite-

dimensonal spaces given in [26], proves that the classical Douglas–Rachford algorithm is

always faster.

Theorem 2.13 (Optimal parameters and rates for GDR). Let U and V be two

linear subspaces in the Euclidean space Rn and let θF be the Friedrichs angle between

them. Then the optimal rate of linear convergence of the generalized Douglas–Rachford

method (2.19) applied to U and V is

γα(GDR) =
√
α(2− α) cos2 θF + (1− α2).

Hence, the method attains its smallest optimal rate of convergence

γ?(GDR) = cos θF , at α? =
1

2
.

Proof. See [26, Theorem 3.10].

The cosine of the Friedrichs angle is also a rate of linear convergence for the Cir-

cumcentered Douglas–Rachford method (2.20) (see [52, Theorem 1]). Then CDR will

converge at least as fast as the classical Douglas–Rachford algorithm does. However it is

not known how sharp this rate is. The numerical experiments in [52] suggest that CDR

has a better performance than DR.

2.2.2.5 Generalization for monotone operators

The Douglas–Rachford scheme can be more generally applied to monotone operators [140].

In this context, the DR algorithm can be used to solve problems of the form

Find x ∈ zer(A+B) = {x ∈ H | 0 ∈ Ax+Bx}, (2.22)

where A,B : H ⇒ H are maximally monotone operators. The general structure of the

iteration is the same as in the feasibility context, but replacing the projectors onto the

sets with the resolvents JA and JB of the operators, i.e.,

xk+1 :=
1

2
xk +

1

2
(2JB − Id)(2JA − Id)(xk). (2.23)

44 Chapter 2. Classical projection methods

In fact, a convex feasibility problem of the form

Find x ∈ C1 ∩ C2,

can be written in the form (2.22) by taking A = NC1 and B = NC2 . Indeed, we have that

x ∈ C1 ∩ C2 ⇔ 0 ∈ NC1(x) ∩NC2(x) ⇔ 0 ∈ NC1(x) +NC2(x). (2.24)

Moreover, as shown in Example 1.25(ii), the resolvent of a normal cone to a convex

set coincides with the projector onto the set, and thus (2.23) becomes the classical DR

iteration for solving feasibility problems (2.15).

Observe that in the case when the operator A + B is also maximally monotone, pro-

blem (2.22) could be addressed with the proximal-point algorithm given in Theorem 1.30.

However, this approach would only be viable when the resolvent of the sum JA+B was

readily computable, something rather unusual. By contrast, the Douglas–Rachford split-

ting algorithm exploits Proposition 1.28(i) and permits to find a zero of the sum of two

maximally monotone operators, with no further assumptions on the operators and only

involving individual evaluations of their resolvents. Some of the main convergence pro-

perties of the algorithm, stated in its most general form, are collected in the following

result.

Theorem 2.14 (Douglas–Rachford splitting algorithm). Let A,B : H ⇒ H be

maximally monotone operators such that zer(A + B) 6= ∅, let γ > 0 and let (λk)
∞
k=0 be a

sequence in [0, 1] such that
∑∞

k=0 λk(1− λk) = +∞. Given any x0 ∈ H, set

xk+1 = (1− λk)xk + λkRγBRγA(xk), for k = 0, 1, 2,

Then there exists x? ∈ Fix (RγBRγA) such that following assertions hold.

(i) (xk+1 − xk)∞k=0 converges strongly to 0.

(ii) (xk)
∞
k=0 converges weakly to x?, and JγA(x?) ∈ zer(A+B).

(iii) (JγA(xk))
∞
k=0 converges weakly to JγA(x?).

(iv) Suppose that either A or B is µ-strongly monotone for some constant µ > 0. Then

(JγA(xk))
∞
k=0 converges strongly to the unique point in zer(A+B).

Proof. See, e.g., [35, Theorem 26.11].

2.2. Fundamental algorithms 45

The assertion in Theorem 2.14(iv) can be still guaranteed even when λk = 1, for each

k = 0, 1, In fact, this limiting case corresponds to the well known Peaceman–Rachford

algorithm [150].

Theorem 2.15 (Peaceman–Rachford splitting algorithm). Let A,B : H ⇒ H be

maximally monotone operators such that zer(A+B) 6= ∅ with A being µ-strongly monotone

for some constant µ > 0, and let γ > 0. Given any x0 ∈ H, set

xk+1 = RγBRγA(xk), for k = 0, 1, 2,

Then (JγA(xk))
∞
k=0 converges strongly to the unique point in zer(A+B).

Proof. See, e.g., [35, Proposition 26.13].

The problem of finding a zero in a finite sum of maximally monotone operators can be

tackled again by an appropriate extension of the Pierra’s product space formulation exhi-

bited in Section 2.1.1. The following result collects the fundamentals of the reformulation

within this context.

Proposition 2.16 (Product space reformulation for operators). Given a finite

family of operators Ai : H ⇒ H, i = 1, 2, . . . , r, consider the product Hilbert space H as

in (2.3) and the diagonal set D as in (2.4). Define the operator A : H⇒H by

A(x) := A1(x1)× A2(x2)× · · · × Ar(xr), ∀x = (x1, x2, . . . , xr) ∈H. (2.25)

The following hold.

(i) The resolvent of A can be computed as

JA(x) = JA1(x1)× JA2(x2)× · · · × JAr(xr), ∀x = (x1, x2, . . . , xr) ∈H.

Further, the operator A is (maximally) monotone whenever A1, A2, . . . , Ar are so.

(ii) The normal cone to D is a maximally monotone operator described by

ND(x) =

{
{u = (u1, u2, . . . , ur) ∈H |

∑r
i=1 ui = 0}, if x ∈D,

∅, otherwise.

(iii) zer (A+ND) = j (zer (
∑r

i=1 Ai)).

Proof. See, e.g., [35, Proposition 26.4].

46 Chapter 2. Classical projection methods

2.2.2.6 The Douglas–Rachford algorithm in nonconvex settings

The Douglas–Rachford algorithm has recently gained much popularity, in part thanks

to its good behavior in nonconvex settings. In this framework, observe that the DR

operator may be multivalued due to the fact that the projection onto nonconvex sets is

not necessarily unique. Therefore, the equality in (2.15) must be replaced by an inclusion,

and the iteration takes the form

xk+1 ∈ TA,B(xk) := {xk + bk − ak ∈ H : ak ∈ PA(xk), bk ∈ PB(2ak − xk)} . (2.26)

Despite that the convergence of the algorithm is only guaranteed for convex sets, the

method has been successfully employed for solving many different nonconvex optimization

problems, specially those of combinatorial nature. Some of these applications include,

among others, matrix completion [8], protein conformation determination [58], phase

and bit retrieval [39, 93, 95], differential equations [133], and a wide variety of NP-hard

problems such as Sudoku, 3-Satisfiability and graph coloring [10, 94].

However, the theory is much more limited. There are very few results explaining why

the algorithm works in nonconvex settings, and even less justifying its good global per-

formance. The first nonconvex scenario was considered by Borwein and Sims [60]. They

proved local convergence of the Douglas–Rachford iteration near each of the intersection

points of a line and a sphere in a Euclidean space. Specific regions of convergence were

later provided by Aragón Artacho and Borwein [6]. It was finally Benoist [54] who, via

the construction of a Lyapunov function, established the convergence of the algorithm for

every starting point not lying on the hyperplane of symmetry. Lyapunov functions are

powerfool tools in difference inclusions whose existence guarantees the convergence of the

iteration. By using this approach, Dao and Tam [79] proved global convergence of the

Douglas–Rachford algorithm for finding a zero of a function, with applications to several

nonconvex feasibility problems.

From a different perspective, Aragón Artacho, Borwein and Tam [9] proved global con-

vergence for the case of a halfspace and a potentially nonconvex set (possibly finite). We

make use of this scenario to illustrate in Figure 2.11 the difference between the behavior of

Douglas–Rachford and alternating projections when addressing combinatorial problems.

While AP usually gets stuck in those points which are close to be solutions (as it finds a

local best approximation pair), DR is satisfactorily capable to escape from them (thanks

to Theorem 2.9(ii)). Even so, the Douglas–Rachford algorithm does not break free from

getting caught by cycles in other nonconvex settings. Althought this is something that

2.3. Projection algorithms for best approximation problems 47

does not seem to happen very often, it may be hard to detect. It is worth to mention

that the cycling of the algorithm for a simple inconsistent nonconvex feasibility problem,

specifically, a hyperplane and a doubleton, has been recently analyzed in [41].

A

B

x0

x1

x2 = x?

(a) Alternating projections

A

B

x0

x1···

x?

(b) Douglas–Rachford

Figure 2.11: AP and DR algorithms applied to a finite set and a halfspace.

Local convergence of the algorithm in nonconvex settings has been established, for

instance, for the case of a line and an ellipse or a p-sphere [56], and for union of convex

sets [49]. Other results regarding local convergence are usually obtained by requiring

regularity properties of the sets and/or of their intersection, see e.g. [40, 116, 117, 151].

2.3 Projection algorithms for best approximation problems

The two methods described in the previous section solve best approximation problems

when the involved sets are closed affine subspaces. However, they only solve feasibility

problems for more general sets. There are other approaches based on individual pro-

jections onto the sets to solve best approximation problems. These are sometimes called

best approximation methods. A good variety of them has been recently collected in [43,

Section 4.2], see also [35, Chapter 30]. In this section we shall focus on Dykstra’s algo-

rithm, Haugazeau’s algorithm, Halpern’s algorithm and Combettes’ algorithm.

2.3.1 Dykstra’s algorithm

Dykstra’s algorithm is probably the most well-known best approximation algorithm. It

arose as a suitable modification of the method of alternating projections that forces strong

convergence to the solution of the best approximation problem. The method was first

48 Chapter 2. Classical projection methods

proposed by Dykstra [90] in 1983 for closed and convex cones in Euclidean spaces, and

then extended by Boyle and Dykstra [61] in 1986 for arbitrary closed and convex sets in

a Hilbert space. An in-depth discussion on the algorithm can be found in [28].

Theorem 2.17 (Dykstra’s algorithm). Let A,B ⊆ H be nonempty, closed and convex

sets and let v := PB−A(0). Given any x0 ∈ H, define p0 := q0 := 0 and set

for k = 0, 1, 2, . . . :⌊
ak+1 = PA(xk + pk), pk+1 = xk + pk − ak+1,

xk+1 = PB(ak+1 + qk), qk+1 = ak+1 + qk − xk+1.

(2.27)

Then xk − ak → v and exactly one of the following holds:

(i) v ∈ B − A and (xk)
∞
k=0 converges strongly to P(A+v)∩B(x0);

(ii) v 6∈ B − A and ‖xk‖ → +∞.

Proof. See, e.g., [28, Theorem 3.8].

Remark 2.18. Dykstra’s iteration (2.27) can be seen as a modified version of AP (2.7)

perturbed by the sequences of increments (pk)
∞
k=0 and (qk)

∞
k=0 (see Figure 2.12). Thank

to this, the convergence of the algorithm becomes strong and the limit point is not only

a point in the intersection but the closest to the starting point. It can be proved that the

sequences of increments have no effect when the method is applied to affine subspaces, so

in this context, Dykstra’s algorithm coincides with AP (see, e.g., [81, pp. 215–216]).

A

B

x0

a1

p1

x1

q1

x1 + p1

a2p2

a2 + q1

x2

q2
q3

x2 + p2

PA∩Bx0

Figure 2.12: Illustration of Dykstra’s algorithm.

2.3. Projection algorithms for best approximation problems 49

Remark 2.19. Theorem 2.17 states a complete characterization of Dykstra’s iteration

for non-necessarily consistent problems. Note that the algorithm behaves similarly to AP

in the three possible scenarios considered in Figure 2.1, but Dykstra’s algorithm always

provides the nearest best approximation pair to the initial point, if it exists (particularly,

the closest point in the intersection when the problem is consistent).

Although we have presented the algorithm to deal with two sets, Boyle and Dykstra [61]

directly provided a version for finitely many sets, which is usually known as the cyclic

Dykstra’s algorithm (see, e.g., [35, Theorem 30.7]). A parallelized version can be con-

structed by turning to the product space reformulation. It is worth to mention that such

a variant of the algorithm was originally introduced by Gaffke and Mathar [105] in 1989.

2.3.2 Haugazeau-like algorithms

The Haugazeau-like algorithms introduce a projector onto the intersection of two half-

spaces, which can be explicitly computed, combined in a suitable manner with another

projection algorithm. This combination ensures the strong convergence of the algorithm

to the closest point in the set of fixed points. In the following result we show Haugazeau’s

algorithm on its basic form, which was first proposed by Y. Haugazeau [115] in 1968.

Theorem 2.20 (Haugazeau’s algorithm). Let A,B ⊆ H be nonempty, closed and

convex sets such that A ∩B 6= ∅. Consider the operator Q : H×H×H → H defined by

Q(x, y, z) :=

z, if ρ = 0 and χ ≥ 0,

x+
(
1 + χ

ν

)
(z − y), if ρ > 0 and χν ≥ ρ,

y + ν
ρ

(χ(x− y) + µ(z − y)) , if ρ > 0 and χν < ρ;

where

χ = 〈x− y, y − z〉, µ = ‖x− y‖2, ν = ‖y − z‖2 and ρ = µν − χ2.

Given any x0 ∈ H, set

for k = 0, 1, 2, . . . :⌊
yk = Q(x0, xk, PA(xk)),

xk+1 = Q(x0, yk, PB(yk)).

(2.28)

Then (xk)
∞
k=0 converges strongly to PA∩B(x0).

Proof. See, e.g., [35, Corollary 30.15].

50 Chapter 2. Classical projection methods

We illustrate the iteration of Haugazeau’s algorithm in Figure 2.13.

A

B

x0

PAx0 = y0

PBy0

Q

PA∩Bx0 = x1

Figure 2.13: Illustration of Haugazeau’s algorithm.

Thanks to the weak-to-strong convergence principle given in [34], different modificati-

ons of the method have been obtained. For instance, a Haugazeau-like averaged alternating

reflections (HAAR) method was constructed in [37].

2.3.3 Halpern’s algorithm

Another scheme is the one originally proposed by Halpern [114] in 1967. This method

can be seen as a modified version of the Krasnosel’skĭı–Mann iteration given in Theo-

rem 1.13, whose strong convergence to the closest fixed point has been proved by different

authors, under different conditions for the parameters. The main contributions are due to

Lions [141] in 1977, Wittmann [175] in 1992, and Bauschke [25] in 1996. As a result, this

algorithm is sometimes called the Halpern–Lions–Wittmann–Bauschke (HLWB) method.

The scheme in the context of best approximation is presented in the following theorem.

Theorem 2.21 (Halpern’s algorithm). Let A,B ⊆ H be nonempty, closed and convex

sets such that A ∩B 6= ∅, let z ∈ H and let (λk)
∞
k=0 be a sequence in]0, 1[verifying

λk → 0,
∞∑
k=0

λk = +∞ and
∞∑
k=0

|λk+1 − λk| < +∞. (2.29)

Given any x0 ∈ H, set

xk+1 = λkz + (1− λk)PBPA(xk), for k = 0, 1, 2, (2.30)

2.3. Projection algorithms for best approximation problems 51

Then (xk)
∞
k=0 converges strongly to PA∩B(z).

Proof. See, e.g., [35, Theorem 30.1].

Remark 2.22. Observe that, unlike in previously mentioned fixed point iterations, the

sequence of parameters (λk)
∞
k=0 involved in Theorem 2.21 is not allowed to be constant.

The simplest choice for that sequence is then

λk :=
1

2 + k
, for k = 0, 1, 2, (2.31)

One can easily check that this sequence verifies the assumptions in (2.29).

The iteration generated by Halpern’s algorithm using the sequence in (2.31) is shown

in Figure 2.14.

A

B

x0

z

PAx0

PBPAx0

x1

PA∩Bz

Figure 2.14: Illustration of Halpern’s algorithm.

2.3.4 Combettes’ method

It is also worth to mention the work of Combettes [77], where a Douglas–Rachford-like

strongly convergent algorithm is proposed to compute the resolvent of the sum of max-

imally monotone operators. Particularly, under the strong CHIP property, the scheme

can be applied for solving best approximation problems. The algorithm was originally

introduced for dealing with finitely many operators by relying in the product space. The

corresponding version for solving best approximation problems is stated in the next result.

52 Chapter 2. Classical projection methods

Theorem 2.23 (Combettes’ algorithm). Let C1, C2, . . . , Cr ⊆ H be nonempty closed

and convex sets such that ∩ri=1Ci 6= ∅ and N∩ri=1Ci
= NC1 + NC2 + · · ·NCr . Let z ∈ H,

let γ > 0 and let (λk)
∞
k=0 be a sequence in]0, 2] such that infk≥0 λk > 0. Given r arbitrary

initial points w1,0, w2,0, . . . , wr,0 ∈ H, set

for k = 0, 1, 2, . . . :

pk = 1
r

∑r
i=1wi,k,

for i = 1, 2, . . . , r :⌊
yi,k = PCi

(
wi,k+γz

γ+1

)
;

xk = 1
r

∑r
i=1 yi,k,

for i = 1, 2, . . . , r :⌊
wi,k+1 = wi,k + λk(2xk − pk − yi,k).

(2.32)

Then (xk)
∞
k=0 converges strongly to P∩ri=1Ci

(z).

Proof. See [77, Theorem 2.8].

In Figure 2.15 we illustrate the iterative scheme of Combettes’ method with parameters

γ = 0.5 and λk = 0.5, for projecting the point z = 0 onto the intersection of three sets.

C1

C2

C3

p0

w1,0

y1,0

w2,0

y2,0

w3,0

y3,0

x0
w1,1

w2,1

w3,1

PC1∩C2∩C3
z

z = 0

Figure 2.15: Illustration of Combettes’ algorithm.

2.3. Projection algorithms for best approximation problems 53

Remark 2.24 (Splitting algorithms for computing the resolvent of the sum). Best ap-

proximation problems can be seen as particular instances of the problem consisting in

computing the resolvent of a sum of maximally monotone operators (under the strong

CHIP). Given a point z in the domain of J∑r
i=1 Ai

(i.e., in the range of Id +
∑r

i=1Ai), the

generalized version of the best approximation problem (2.2) can be stated as,

Find w = J∑r
i=1 Ai

(z), (2.33)

for some maximally monotone operators A1, A2, . . . , Ar : H ⇒ H. This is indeed a

generalization of the best approximation problem (2.2). Note that, if the sets defining the

problem have the strong CHIP, by Example 1.25(ii), we have that

P⋂r
i=1 Ci

(z) = JN⋂r
i=1

Ci
(z) = JNC1

+NC2
+...+NCr

(z),

and thus (2.33) becomes (2.2).

(i) Combettes’ method was, in fact, originally proposed in [77] within this context, as

follows. Given A1, A2, . . . , Ar : H ⇒ H maximally monotone operators, and given

(ωi)
r
i=1 ⊂]0, 1[such that

∑r
i=1 ωi = 1, consider the operator A : H⇒ H defined by

A := ω1A1 + ω2A2 + · · ·+ ωrAr.

If we consider the iteration in (2.32) but replacing, for each i = 1, 2, . . . , r, the

projector PCi by the resolvent J γ
γ+1

Ai , then

xk → JA(z).

(ii) Another iterative approach can be found in [33], where Dykstra’s algorithm was

extended to monotone operators.

(iii) In [78], or the more recent work [3], the particular case of proximity mappings

(see Example 1.25(i)) is tackled.

Chapter 3

The averaged alternating modified

reflections method

In this chapter we present a new iterative projection method for finding the closest point

in the intersection of convex sets to any arbitrary point in a Hilbert space. This method

can be viewed as an adequate modification of the Douglas–Rachford algorithm. Precisely,

each reflector in the DR operator (2.14) is replaced by what we call a modified reflector,

which is defined for a given set C ⊆ H as

2βPC − Id, with β ∈]0, 1[.

For this reason, the new algorithm is termed the averaged alternating modified reflections

(AAMR) method. Surprisingly, the slight modification in the reflector operators comple-

tely changes the dynamics of the sequence generated by the scheme. It permits to find,

not only a point in the intersection of convex sets, but the closest point in the intersection

to any arbitrary point in the space. Moreover, it forces the strong convergence of the

shadow sequence, which, like in the DR scheme, is the sequence of interest as it is the

one that converges to the solution of the problem. The convergence of the method is

conditioned to a constraint qualification to be held at the point of interest. In fact, it is

the strong CHIP property what fully characterizes the convergence of the AAMR method

for every point in the space.

We report some promising numerical experiments where we compare the performance

of AAMR against other projection methods for finding the closest point in the intersection

of pairs of finite-dimensional subspaces. Motivated by this, we obtain the rate of linear

convergence of the AAMR method in terms of the Friedrichs angle between the subspaces

and the parameters defining the scheme, by studying the linear convergence rates of

the powers of matrices. We further optimize the value of these parameters in order

55

56 Chapter 3. The averaged alternating modified reflections method

to get the minimal convergence rate, which turns out to be better than the one of other

projection methods. We also provide some others numerical experiments that demonstrate

the theoretical results.

The averaged alternating modified reflections algorithm belongs to the class of best

approximation methods introduced in Section 2.3. Recall that some of them have been

successfully extended to the monotone operator context (see Remark 2.24). This is also

the case for the AAMR: the scheme can be generalized so that it can be used to compute

the resolvent of the sum of two maximally monotone operators. This gives rise to a new

splitting method, and the standard product space reformulation permits to apply it for

computing the resolvent of a finite sum of maximally monotone operators. Based on this,

we propose two variants of such parallel splitting method.

The remainder of the chapter is structured as follows. In Section 3.1 we introduce the

AAMR operator and analize its main properties, as well as we establish some convergence

results for the new projection scheme. The rate of linear convergence of the method for the

case of two subspaces in a finite-dimensional space is addressed in Section 3.2. Finally,

in Section 3.3, we extend the algorithm so that it can deal with maximally monotone

operators to compute the resolvent of their sum.

3.1 A new best approximation algorithm

Given two nonempty closed and convex subsets A, B of a Hilbert space H and any point

z ∈ H, we are interested in solving the best approximation problem of finding the closest

point to z in A ∩B; i.e.,

Find w ∈ A ∩B such that ‖w − z‖ = inf
x∈A∩B

‖x− z‖. (3.1)

For any pair of parameters α ∈]0, 1] and β ∈]0, 1[, we introduce the averaged alternating

modified reflections operator (AAMR operator), which is the operator TA,B,α,β : H 7→ H
given by

TA,B,α,β := (1− α) Id +α(2βPB − Id)(2βPA − Id). (3.2)

Given any initial point x0 ∈ H, we define a new projection method termed averaged

alternating modified reflections (AAMR) method, which is iteratively defined by

xk+1 := TA−z,B−z,α,β(xk), for k = 0, 1, 2 (3.3)

3.1. A new best approximation algorithm 57

If A ∩B 6= ∅, under the constraint qualification

z − PA∩B(z) ∈ (NA +NB)(PA∩B(z)), (3.4)

we shall show (Theorem 3.17) that if α < 1, the sequence generated by (3.3) weakly

converges to a point x? such that

PA(z + x?) = PA∩B(z),

and the shadow sequence (PA(z + xk))
∞
k=0 is strongly convergent to PA∩B(z) (even when

α = 1), and thus solves problem (3.1). Although we show that the strong CHIP of {A,B}
at the point PA∩B(z) is sufficient but not necessary for the convergence of AAMR (see Ex-

ample 3.21), the strong CHIP turns out to be the precise condition to be required for the

convergence of the method for every point z ∈ H (see Theorem 3.17 and Proposition 3.22).

The Douglas–Rachford algorithm or, more precisely, its generalized version GDR (2.19),

can be seen as a limiting case of AAMR when β = 1 and z = 0 in (3.3). Nonetheless, the

behavior is remarkably different since, in general, GDR would only provide a point in the

intersection of the sets whereas AAMR would find the closest one to z.

Observe that some of the methods discussed in Section 2.3, and also AP and DR for

affine subspaces, produce an iterative sequence that converges to the projection of the

initial point onto the intersection of the sets. As it happens to Halpern’s algorithm and

Combettes’ method, the initial point of AAMR can be arbitrarily chosen in the space.

Furthermore, it is important to point out that, in general, the set of fixed points of the

operator TA,B,α,β is not equal to the intersection of the sets of fixed points of the operators

2βPB − Id and 2βPA − Id. Therefore, the operator TA,B,α,β does not belong to the broad

family of operators studied in [154], see Remark 3.7(ii) for additional details.

3.1.1 The averaged alternating modified reflections operator

We begin this section with the following simple result that motivates the definition of

what we call a modified reflection.

Proposition 3.1. Let D be a nonempty subset of H and let T : D 7→ H. If T is firmly

nonexpansive, then 2βT − Id is nonexpansive for any β ∈]0, 1].

Proof. Since T is firmly nonexpansive, the operator βT is firmly nonexpansive for any

β ∈]0, 1]. The result follows from Proposition 1.8(i).

58 Chapter 3. The averaged alternating modified reflections method

Definition 3.2 (Modified reflector). Let C ⊆ H be a nonempty closed and convex set.

Given any β ∈]0, 1], the operator 2βPC − Id is called a modified reflector operator.

Remark 3.3. Observe that for the case β = 1 it coincides with the classical reflector RC .

In general, for any β ∈]0, 1] and any x ∈ H, one has

(2βPC − Id)(x) = βRC(x) + βx− x = βRC(x) + (1− β)(−x);

that is, (2βPC − Id)(x) is a convex combination of RC(x) and −x (see Figure 3.1).

C

x

−x

RC(x)

2βPC(x)− x

Figure 3.1: Geometric interpretation of the modified reflector.

The next result shows that the modified reflector operators have a unique fixed point.

Proposition 3.4. Let C ⊆ H be nonempty, closed and convex, and let β ∈]0, 1[. Then

Fix(2βPC − Id) = {βPC(0)} .

Proof. First, notice that y ∈ Fix(2βPC − Id) if and only if βPC(y) = y; that is,

Fix(2βPC − Id) = Fix(βPC).

Since βPC(0) = PC(0)+(1−β)(0−PC(0)), with 1−β > 0, according to Proposition 1.2(iii)

we deduce that PC(βPC(0)) = PC(0); and thus

βPC(0) ∈ Fix(2βPC − Id).

The uniqueness directly follows from the fact that βPC is a contraction, since PC is firmly

nonexpansive (particularly nonexpansive) by Proposition 1.11.

3.1. A new best approximation algorithm 59

Definition 3.5 (AAMR operator). Let A,B ⊆ H be nonempty, closed and convex sets.

Given α ∈]0, 1] and β ∈]0, 1[, we define the averaged alternating modified reflections

(AAMR) operator TA,B,α,β : H 7→ H as

TA,B,α,β := (1− α) Id +α(2βPB − Id)(2βPA − Id). (3.5)

Where there is no ambiguity, we will abbreviate the notation TA,B,α,β by Tα,β.

Proposition 3.6. If A,B ⊆ H are nonempty, closed and convex sets, then the AAMR

operator Tα,β is nonexpansive for all α ∈]0, 1] and β ∈]0, 1[. Moreover, if α ∈]0, 1[, then

Tα,β is α-averaged, and thus strictly quasi-nonexpansive.

Proof. It is straightforward, in view of Proposition 3.1 and Proposition 1.8(ii).

A geometric interpretation of the AAMR operator TA,B,α,β is shown in Figure 3.2.

A

B

x

−x

RAx

2βPAx− x

−2βPAx+ x

RB(2βPAx− x)

(2βPB − Id)(2βPA − Id)(x)
Tα,βx

Figure 3.2: Geometric interpretation of the AAMR operator.

It is important to emphasize that we require β < 1 in the definition of the AAMR

operator. The case β = 1 in (3.5) corresponds with the (generalized) Douglas–Rachford

operator DRA,B,α given in (2.19), whose behavior is significantly different. In particular,

one has PA(FixDRA,B,α) = A ∩ B, while PA(FixTα,β) (A ∩ B, as we show in the next

remark.

60 Chapter 3. The averaged alternating modified reflections method

Remark 3.7 (On the set of fixed points of the AAMR operator).

(i) Observe that FixTα,β = Fix((2βPB − Id)(2βPA − Id)) for all α ∈]0, 1] . In fact,

x ∈ FixTα,β if and only if

x = Tα,β(x) = (1− α)x+ α(2βPB − Id)(2βPA(x)− x)

= (1− α)x+ 2αβPB(2βPA(x)− x)− α(2βPA(x)− x)

= x+ 2αβPB(2βPA(x)− x)− 2αβPA(x);

that is,

x ∈ FixTα,β ⇔ PB(2βPA(x)− x) = PA(x). (3.6)

As a consequence, we have PA(FixTα,β) ⊂ A ∩B. In general, though,

PA(FixTα,β) 6= A ∩B.

For a simple example, choose any β ∈]0, 1[and consider the sets

A := R2 and B := {(x1, x2) ∈ R2 | x1 = 1}.

Then, it can be easily checked using (3.6) that FixTα,β = {(1, 0)} and

PA(FixTα,β) = PA({(1, 0)}) = {(1, 0)} 6= A ∩B = B.

(ii) As a consequence of Proposition 3.4, Fix(2βPA− Id)∩Fix(2βPB− Id) = ∅ whenever

PA(0) 6= PB(0). Hence, in general,

FixTα,β = Fix ((2βPB − Id)(2βPA − Id)) 6= Fix(2βPA − Id) ∩ Fix(2βPB − Id).

For instance, consider the same example as in (i). By Proposition 3.4, we have

Fix(2βPA− Id) = {(0, 0)} and Fix(2βPB − Id) = {(β, 0)}, while FixTα,β = {(1, 0)}.

Therefore, the operator TA,B,α,β does not belong to the broad family of operators

studied by Reich and Zalas in [154], which covers many projection algorithms, be-

cause they consider the general problem of finding x ∈
⋂n
i=1 FixUi 6= ∅ for some

quasi-nonexpansive operators Ui : H → H.

The following result shows that, in fact, the fixed points of the AAMR operator Tα,β

are very special.

3.1. A new best approximation algorithm 61

Proposition 3.8. Let A and B be two nonempty, closed and convex subsets of H, and

let α ∈]0, 1] and β ∈]0, 1[. If x ∈ FixTα,β, then A ∩B 6= ∅ and

PA(x) = PA∩B(0).

Proof. If x ∈ FixTα,β, we know by (3.6) that

PA(x) = PB(2βPA(x)− x),

which implies PA(x) ∈ A ∩ B. Using twice the characterization of the projections given

in Proposition 1.2(ii), we obtain

〈y − PA(x), x− PA(x)〉 ≤ 0, ∀y ∈ A, (3.7)

and

〈y − PA(x), 2βPA(x)− x− PA(x)〉 ≤ 0, ∀y ∈ B. (3.8)

Inequalities (3.7) and (3.8) hold simultaneously for any y ∈ A∩B. Then, by adding them,

we deduce

〈y − PA(x),−2(1− β)PA(x)〉 ≤ 0, ∀y ∈ A ∩B.

As β < 1, the factor 2(1− β) is strictly positive and can be removed. Therefore,

〈y − PA(x),−PA(x)〉 ≤ 0, ∀y ∈ A ∩B.

By Proposition 1.2(ii), we conclude that PA(x) = PA∩B(0).

In the next theorem we present a constraint qualification that characterizes the no-

nemptiness of the set of fixed points of the AAMR operator.

Theorem 3.9. Let A,B ⊆ H be nonempty closed and convex sets, and let α ∈]0, 1] and

β ∈]0, 1[. Then,

FixTα,β 6= ∅ ⇔ A ∩B 6= ∅ and − PA∩B(0) ∈ (NA +NB) (PA∩B(0)) .

Proof. To prove the direct implication, pick any x ∈ FixTα,β. Then, by Proposition 3.8,

we have A ∩B 6= ∅ and

PA∩B(0) = PA(x) = PB(2βPA(x)− x).

62 Chapter 3. The averaged alternating modified reflections method

Thus, by Proposition 1.4, we deduce that x− PA∩B(0) ∈ NA(PA∩B(0)) and

(2β − 1)PA∩B(0)− x = 2βPA(x)− x− PA∩B(0) ∈ NB(PA∩B(0)).

By taking dA := 1
2(1−β)

(x− PA∩B(0)) and dB := 1
2(1−β)

((2β − 1)PA∩B(0)− x), we get

−PA∩B(0) = dA + dB,

with dA ∈ NA(PA∩B(0)) and dB ∈ NB(PA∩B(0)), as claimed.

To prove the converse implication, assume that A∩B 6= ∅, and let dA ∈ NA(PA∩B(0))

and dB ∈ NB(PA∩B(0)) be such that

− PA∩B(0) = dA + dB. (3.9)

Take

x := PA∩B(0) + 2(1− β)dA. (3.10)

As β < 1, we have 2(1− β)dA ∈ NA(PA∩B(0)). Then, by Proposition 1.4, we get

PA(x) = PA (PA∩B(0) + 2(1− β)dA) = PA∩B(0). (3.11)

Hence,

2βPA(x)− x = 2βPA∩B(0)− PA∩B(0)− 2(1− β)dA

= PA∩B(0) + 2(1− β)(−PA∩B(0)− dA).
(3.12)

Now, by combining (3.9) and (3.12), we have

2βPA(x)− x = PA∩B(0) + 2(1− β)dB. (3.13)

Then, we use again Proposition 1.4 in (3.13) to obtain

PB(2βPA(x)− x) = PA∩B(0). (3.14)

Finally, from (3.11) and (3.14), we deduce

PA(x) = PB(2βPA(x)− x), (3.15)

which implies x ∈ FixTα,β, by (3.6).

3.1. A new best approximation algorithm 63

The following corollary is a direct consequence of Theorem 3.9 and characterizes the

nonemptiness of the set of fixed points of the AAMR operator defining our iterative

method (3.2).

Corollary 3.10. Let A,B ⊆ H be nonempty closed and convex sets, and let α ∈]0, 1]

and β ∈]0, 1[. Then for any z ∈ H,

FixTA−z,B−z,α,β 6= ∅ ⇔ A ∩B 6= ∅ and z − PA∩B(z) ∈ (NA +NB) (PA∩B(z)) .

Proof. According to Theorem 3.9, FixTA−z,B−z,α,β 6= ∅ if and only if

(A− z) ∩ (B − z) 6= ∅ and − P(A−z)∩(B−z)(0) ∈ (NA−z +NB−z)
(
P(A−z)∩(B−z)(0)

)
.

Observe that (A− z)∩ (B − z) = (A∩B)− z. Then (A− z)∩ (B − z) 6= ∅ if and only if

A ∩B 6= ∅. Now, by Proposition 1.2(iv), we have

−P(A∩B)−z(0) = −PA∩B(z) + z,

and then

(NA−z +NB−z)
(
P(A∩B)−z(0)

)
= (NA +NB)

(
P(A∩B)−z(0) + z

)
= (NA +NB) (PA∩B(z)) ,

which completes the proof.

The next result shows that, when PA(0) = PB(0), any point in the segment with

end points PA(0) and (2β − 1)PA(0) is a fixed point of the mapping Tα,β. Thus, if

PA(0) = PB(0) 6= 0, the mapping Tα,β has multiple fixed points.

Proposition 3.11. Let A,B ⊆ H be nonempty, closed and convex, and let α ∈]0, 1] and

β ∈]0, 1[. The following hold.

(i) If PA(0) ∈ B, then (2β − 1)PA(0) ∈ FixTα,β.

(ii) If PB(0) ∈ A, then PB(0) ∈ FixTα,β.

(iii) If PA(0) = PB(0), then

(1− 2λ(1− β))PA(0) ∈ FixTα,β for all λ ∈ [0, 1].

64 Chapter 3. The averaged alternating modified reflections method

Proof. The assertion in (i) can be deduced from the second part of the proof of Theo-

rem 3.9. Indeed, if PA(0) ∈ B, then PA∩B(0) = PA(0). Since −PA(0) ∈ NA(PA(0)), we

may take dA := −PA(0) and dB := 0 and (3.9) holds. Thus, taking x as in (3.10), we have

x = PA(0)− 2(1− β)PA(0) = (2β − 1)PA(0),

which is a fixed point of Tα,β by (3.15). Item (ii) is analogous to the previous one. Finally,

to prove (iii), use (i) and (ii) together with Proposition 1.12.

Next, we show some results regarding the range of the operator Id−TA,B,α,β, which

will be useful later having in mind Theorem 1.15.

Lemma 3.12. Let A,B ⊆ H be nonempty, closed and convex sets, and let α ∈]0, 1] and

β ∈]0, 1[. The following hold:

(i) x− TA,B,α,β(x) = 2αβ (PA(x)− PB(2βPA(x)− x)) , ∀x ∈ H;

(ii) ran(Id−TA,B,α,β) = ran(Id−TA+z,B+(2β−1)z,α,β) + 4αβ(β − 1)z, ∀z ∈ H.

Proof. Assertion (i) is straightforward from the definition of TA,B,α,β. Indeed, for any

x ∈ H we have

x− TA,B,α,β(x) = x− (1− α)x− α(2βPB − Id)(2βPA − Id)(x)

= α (x− (2βPB(2βPA(x)− x) + 2βPA(x)− x)

= 2αβ (PA(x)− PB(2βPA(x)− x)) .

To prove (ii), pick any x, z ∈ H. By using the translation formula for projections given

in Proposition 1.2(iv), we obtain

PA(x)−PB(2βPA(x)− x)

= PA+z(x+ z)− z − PB(2βPA+z(x+ z)− 2βz − x)

= PA+z(x+ z)− z − PB+(2β−1)z(2βPA+z(x+ z)− x− z) + (2β − 1)z

= PA+z(x+ z)− PB+(2β−1)z (2βPA+z(x+ z)− (x+ z)) + 2(β − 1)z.

Therefore, by assertion (i), we get

(Id−TA,B,α,β) (x) =
(
Id−TA+z,B+(2β−1)z,α,β

)
(x+ z) + 4αβ(β − 1)z, ∀z ∈ H,

and we are done.

3.1. A new best approximation algorithm 65

Theorem 3.13. Let A,B ⊆ H be nonempty, closed and convex sets, and let α ∈]0, 1]

and β ∈]0, 1[. Suppose that one of the following holds:

(i) H is finite-dimensional;

(ii) intA 6= ∅ or intB 6= ∅.

Then the unique element of minimum norm in ran (Id−Tα,β) is 2αβv, where v := PA−B(0).

Proof. Let w be the unique element of minimum norm in ran(Id−Tα,β). By Lemma 3.12(i),

we have

ran(Id−Tα,β) ⊆ 2αβ(A−B),

which implies that w ∈ (2αβ)A−B.

Suppose that (i) holds. Pick any a ∈ riA, b ∈ riB and set za,b := a−b
2(β−1)

. Then,

by Lemma 3.12(ii), we have

ran (Id−TA,B,α,β) = ran
(
Id−TA+za,b,B+(2β−1)za,b,α,β

)
+ 2αβ(a− b), (3.16)

with

b+ (2β − 1)za,b = b+
2β − 1

2(β − 1)
(a− b) = b+

(
1 +

1

2(β − 1)

)
(a− b)

= a+
a− b

2(β − 1)
= a+ za,b;

i.e., we have obtained that

a+ za,b = b+ (2β − 1)za,b ∈ ri(A+ za,b) ∩ ri(B + (2β − 1)za,b).

Hence, the mapping TA+za,b,B+(2β−1)za,b,α,β has a fixed point according to Proposition 1.6(ii)

and Theorem 3.9, and therefore we deduce that 0 is the unique element of minimum norm

in ran
(

Id−TA+za,b,B+(2β−1)za,b,α,β

)
. Then, by (3.16), we get

‖w‖ = inf
{
‖u‖ : u ∈ ran

(
Id−TA+za,b,B+(2β−1)za,b,α,β

)
+ 2αβ(a− b)

}
≤ 2αβ‖a− b‖+ inf

{
‖u‖ : u ∈ ran

(
Id−TA+za,b,B+(2β−1)za,b,α,β

)}
= 2αβ‖a− b‖,

(3.17)

and this holds for every a ∈ riA and every b ∈ riB.

66 Chapter 3. The averaged alternating modified reflections method

Now, choose any a ∈ A, b ∈ B. Then, there exist a pair of sequences {ak} ⊂ riA,

{bk} ⊂ riB such that ak → a and bk → b, and by (3.17), we get

2αβ‖a− b‖ = 2αβ
∥∥∥ lim
k→∞

(ak − bk)
∥∥∥ = 2αβ lim

k→∞
‖ak − bk‖ ≥ ‖w‖.

Thus, since (2αβ)−1w ∈ A−B and

‖(2αβ)−1w‖ ≤ ‖a− b‖, for all a ∈ A, b ∈ B;

it must be that (2αβ)−1w = PA−B(0), which proves the result assuming (i).

To prove the result when (ii) holds, if intA 6= ∅ (intB 6= ∅), then take any a ∈ intA

and b ∈ B (a ∈ A and b ∈ intB) and repeat the idea of the proof of the previous case but

using Proposition 1.6(i) instead of Proposition 1.6(ii).

Next we present some translation formulas for the AAMR operator in the special case

when both sets are closed affine subspaces.

Proposition 3.14. Let U, V ⊆ H be closed affine subspaces with nonempty intersection.

Let y ∈ U ∩ V and let α ∈]0, 1] and β ∈]0, 1[. Then, for any x ∈ H,

TU,V,α,β(x) = TU−y,V−y,α,β(x) + TU,V,α,β(0), (3.18)

and

TU,V,α,β(x) = TU−y,V−y,α,β(x− x∗) + x∗, ∀x∗ ∈ FixTU,V,α,β. (3.19)

Furthermore, one has

FixTU,V,α,β = x∗ + FixTU−y,V−y,α,β, ∀x∗ ∈ FixTU,V,α,β. (3.20)

Proof. Because U − y and V − y are closed linear subspaces of H, then PU−y and PV−y

are linear mappings by Proposition 1.11. Denote the modified reflector operator onto any

set C ⊆ H by Qβ,C := 2βPC− Id. Then, the mappings Qβ,U−y and Qβ,V−y are also linear.

Further, for any x ∈ H, by Proposition 1.2(iv), we have

Qβ,U(x) = 2βPU(x)− x = 2βPU−y(x− y) + 2βy − x

= 2βPU−y(x)− x+ 2β(PU−y(−y) + y)

= Qβ,U−y(x) + 2βPU(0) = Qβ,U−y(x) +Qβ,U(0).

3.1. A new best approximation algorithm 67

Similarly, we get Qβ,V (x) = Qβ,V−y(x)+Qβ,V (0). Combining these equalities together and

using the linearity of Qβ,V−y, we obtain

Qβ,VQβ,U(x) = Qβ,V (Qβ,U−y(x) +Qβ,U(0))

= Qβ,V−yQβ,U−y(x) +Qβ,V−yQβ,U(0) +Qβ,V (0)

= Qβ,V−yQβ,U−y(x) +Qβ,VQβ,U(0),

which implies (3.18).

Now take any x∗ ∈ FixTU,V,α,β. Then, by (3.18), we have

x∗ = TU,V,α,β(x∗) = TU−y,V−y,α,β(x∗) + TU,V,α,β(0).

By replacing TU,V,α,β(0) = −TU−y,V−y,α,β(x∗) + x∗ in (3.18) and using the linearity of the

operator TU−y,V−y,α,β, we obtain (3.19).

The last assertion easily follows from (3.19). Indeed, for any x∗ ∈ FixTU,V,α,β, one has

w? ∈ FixTU,V,α,β ⇔ TU,V,α,β(w?) = w? ⇔ TU−y,V−y,α,β(w? − x?) + x? = w?

⇔ w? − x? ∈ FixTU−y,V−y,α,β,

which implies (3.20).

We conclude this section by providing the following characterization of the set of fixed

points of the AAMR operator for closed linear subspaces.

Proposition 3.15. Let U, V ⊆ H be closed subspaces and let α ∈]0, 1] and β ∈]0, 1[.

Then

FixTU,V,α,β = U⊥ ∩ V ⊥.

Proof. Observe that by (3.6) and Proposition 3.8, it holds that

x ∈ FixTU,V,α,β ⇔ PV (2βPU(x)− x) = PU(x) = PU∩V (0) = 0.

Therefore, PU(x) = PV (x) = 0, which implies x ∈ U⊥ ∩ V ⊥.

To prove the converse implication, pick any x ∈ U⊥ ∩ V ⊥. Then PU(x) = PV (x) = 0,

so we trivially have that

PV (2βPU(x)− x) = PU(x),

and thus x ∈ FixTU,V,α,β by (3.6).

68 Chapter 3. The averaged alternating modified reflections method

3.1.2 Iterative scheme for finding the closest point in the intersection

In the main result of this section we show that the iterative method defined by the

AAMR operator in (3.3) is weakly convergent to a fixed point of the operators, and the

shadow sequence (PA(z + xk))
∞
k=0 is strongly convergent to the solution of problem (3.1).

To proceed, we first provide the following lemma which contains a finer version of the

Krasnosel’skĭı–Mann algorithm in Theorem 1.13, for a Douglas–Rachford-like iteration.

Lemma 3.16. Let T1, T2 : H 7→ H be firmly nonexpansive operators and let (λk)
∞
k=0 be a

sequence in [0, 1]. Consider T := (2T2 − Id)(2T1 − Id) and suppose FixT 6= ∅. Given any

x0 ∈ H, set

xk+1 = (1− λk)xk + λkT (xk), for k = 0, 1, 2

Then the following hold.

(a) If
∑∞

k=0 λk(1− λk) = +∞, then

(i) (xk+1 − xk)∞k=0 converges strongly to 0;

(ii) (xk)
∞
k=0 converges weakly to a point x? ∈ FixT .

(b) Assume that T1 is µ-cocoercive for some µ > 1, and suppose that either

∞∑
k=0

λk(1− λk) = +∞ or λk = 1, for all k = 0, 1, 2

Then (T1(xk))
∞
k=0 converges strongly to the unique point in T1(FixT).

Proof. Since T1 and T2 are firmly nonexpansive, by Proposition 1.23, there exist two

maximally monotone operators A1, A2 : H⇒ H such that

Ti = JAi , for i = 1, 2.

By assumption and Proposition 1.28(ii), we have that

zer(A1 + A2) = JA1(Fix((2JA2 − Id)(2JA1 − Id))) = T1(FixT) 6= ∅.

Then, (a) follows from applying Theorem 2.14(i)–(ii) to A1 and A2.

Assume now that T1 is µ-cocoercive for some µ > 1. Then, by Proposition 1.24, we

know that A1 is (µ− 1)-strongly monotone. Hence, assertion (b) is a direct consequence

of Theorem 2.14(iv), when
∑∞

k=0 λk(1− λk) = +∞; or Theorem 2.15, when λk = 1.

3.1. A new best approximation algorithm 69

Theorem 3.17 (AAMR iterative scheme). Let A,B ⊆ H be nonempty closed and

convex sets. Fix any α ∈]0, 1] and any β ∈]0, 1[. Given z ∈ H, choose any x0 ∈ H and

consider the sequence defined by

xk+1 = TA−z,B−z,α,β(xk), for k = 0, 1, 2, (3.21)

If A∩B 6= ∅ and z−PA∩B(z) ∈ (NA +NB) (PA∩B(z)), then the following assertions hold.

(a) If α < 1, then

(i) (xk+1 − xk)∞k=0 is strongly convergent to 0;

(ii) (xk)
∞
k=0 is weakly convergent to a point x? ∈ FixTA−z,B−z,α,β such that

PA(z + x?) = PA∩B(z). (3.22)

(b) The shadow sequence (PA(z + xk))
∞
k=0 is strongly convergent to PA∩B(z).

Otherwise, if α < 1 then ‖xk‖ → ∞.

Proof. First note that the projector operators PA−z and PB−z are firmly nonexpansive

by Proposition 1.11. Then, as β ∈]0, 1[, the operators

T1 := βPA−z and T2 := βPB−z

are also firmly nonexpansive, and moreover 1
β
-cocoercive (with 1

β
> 1). Observe that

TA−z,B−z,α,β = (1− α) Id +α(2T2 − Id)(2T1 − Id),

and then by Corollary 3.10, we get that

Fix((2T2 − Id)(2T1 − Id)) = FixTA−z,B−z,α,β 6= ∅.

Hence, we can use Lemma 3.16(a) with λk := α to show that the operator TA−z,B−z,α,β

has a fixed point x? such that the sequence defined by (3.21) satisfies

xk ⇀ x? and xk+1 − xk → 0, provided that α < 1;

and

βPA−z(xk)→ βPA−z(x
?). (3.23)

70 Chapter 3. The averaged alternating modified reflections method

Moreover, by Proposition 3.8, we have

PA−q(x
?) = P(A−q)∩(B−q)(0) = PA∩B−z(0), (3.24)

and, according to Proposition 1.2(iv), it holds that

PA∩B−z(0) = PA∩B(z)− z and PA−z(x) = PA(x+ z)− z, ∀x ∈ H. (3.25)

Thus, in view of (3.25), we get from (3.24) that PA(z + x?) = PA∩B(z), and then (3.23)

implies that PA(z + xk)→ PA∩B(z). This concludes the proof of statements (a) and (b).

The remaining case easily follows from Theorem 1.15(ii) together with the facts that

FixTA−z,B−z,α,β = ∅, by Corollary 3.10, and that TA−z,B−z,α,β is α-averaged for α ∈]0, 1[,

according to Proposition 3.6.

In Figure 3.3 we illustrate how the AAMR iterative scheme permits to solve a best

approximation problem according to the assertion in Theorem 3.17(a)(ii).

A

B

z

x0

x1

x2···

x?

z + x?

PA(z + x?)
PA∩Bz

Figure 3.3: Illustration of the AAMR iterative scheme for two sets.

Observe that, once the limit point x? is reached, one needs to compute PA(z + x?)

in order to solve the problem. Hence, as it happens with Douglas–Rachford (see Re-

mark 2.10), the sequence of interest is the one of the shadows (PA(z + xk))
∞
k=0. In fact,

the shadow sequence for the AAMR is strongly convergent to the solution point, by Theo-

rem 3.17(b). The dynamics of the AAMR iteration in the three possible scenarios covered

by Theorem 3.17 is illustrated in Figure 3.4, where for the sake of clarity we chose z = 0.

3.1. A new best approximation algorithm 71

B

A

z

x0

PAx0

x1

PAx1

x2···

PA∩Bz

···

x?

(a) A ∩ B 6= ∅ and the constraint
qualification (3.4) holds

B

A

z

x0x1x2

···

(b) A ∩ B 6= ∅ but the constraint
qualification (3.4) does not hold

B

A

z

x0x1
x2

···

(c) A ∩B = ∅

Figure 3.4: Behavior of the AAMR algorithm in three possible scenarios.

Remark 3.18 (Finer versions of the algorithm).

(i) It is straightforward to construct a version of the AAMR algorithm where the value

of the parameter α may vary across the iterations (see Corollary 3.41). Specifi-

cally, Theorem 3.17(a)–(b) still holds if one replaces (3.21) by the iterative method

xk+1 = (1− αk)xk + αk(2βPB−z − Id)(2βPA−z − Id)(xk), k = 0, 1, 2, . . . ,

where {αk}∞n=0 ⊂ [0, 1] satisfies the appropriate conditions in Lemma 3.16.

(ii) Similarly, it is easy to include errors in the AAMR scheme, by using in the proof

of Theorem 3.17, a version of Lemma 3.16 derived from a refined Douglas–Rachford

splitting algorithm given in [77, Theorem 2.1].

Observe that, unlike for the shadow sequence, only weak convergence is asserted for

(xk)
∞
k=0 in Theorem 3.17. As we show next, it becomes strong for closed affine subspaces.

Theorem 3.19 (Strong convergence of AAMR for affine subspaces). Let U and

V be closed affine subspaces of H with nonempty intersection. Let α, β ∈]0, 1[and let

z ∈ H such that z − PU∩V (z) ∈ (U − U)⊥ + (V − V)⊥. Then, for any x0 ∈ H,

T kU−z,V−z,α,β(x0)→ PFixTU−z,V−z,α,β(x0).

Proof. Since U is a closed affine subspace, by Proposition 1.32(i), we have

NU(x) = NU−x(0) = (U − x)⊥ = (U − U)⊥, for all x ∈ U.

72 Chapter 3. The averaged alternating modified reflections method

Likewise, NV (x) = (V − V)⊥ for all x ∈ V . Therefore, we have

z − PU∩V (z) ∈ (NU +NV)(PU∩V (z)),

and this implies, according to Corollary 3.10, that FixTU−z,V−z,α,β 6= ∅. Thus, taking

any y ∈ U ∩ V and any x∗ ∈ FixTU−z,V−z,α,β, since y − z ∈ (U − z) ∩ (V − z), we can

apply Proposition 3.14 recursively to get

T kU−z,V−z,α,β(x0) = T kU−y,V−y,α,β(x0 − x∗) + x∗,

and, moreover, FixTU−y,V−y,α,β 6= ∅. Thus, using Theorem 3.17(a)(i), we obtain that

T k+1
U−y,V−y,α,β(x0 − x?)− T kU−y,V−y,α,β(x0 − x?)→ 0.

Since TU−y,V−y,α,β is linear, by Proposition 1.14, we deduce

T kU−y,V−y,α,β(x0 − x∗)→ PFixTU−y,V−y,α,β(x0 − x∗).

Consequently,

T kU−z,V−z,α,β(x0)→ PFixTU−y,V−y,α,β(x0 − x∗) + x∗ = PFixTU−z,V−z,α,β(x0),

where the last equality holds by Proposition 1.2(iv) and Proposition 3.14.

Remark 3.20 (On the constraint qualification). If any of the conditions given in Proposi-

tion 1.6 (or in Proposition 1.33 for affine subspaces) holds, then the constraint qualification

z − PA∩B(z) ∈ (NA +NB) (PA∩B(z))

holds at every point z ∈ H, according to Proposition 1.4, and thus the convergence of the

sequence defined by (3.21) is guaranteed.

In [84, Theorem 3.2] and [81, Theorem 10.13], the existence of a point x? satisfying

(3.22) for every z ∈ H is proved to be equivalent to the strong CHIP, for the particular case

where B = L−1(b), for some bounded linear operator L from H into a finite-dimensional

Hilbert space Y and b ∈ Y . In addition, Deutsch an Ward proposed in [84] a steepest

descent method with line search for finding the point x?, whose linear convergence is

proved under the additional assumption that C is polyhedral.

3.1. A new best approximation algorithm 73

If the sets A and B, with nonempty intersection, have the strong CHIP at the point

PA∩B(z), then trivially z − PA∩B(z) ∈ (NA + NB) (PA∩B(z)) and the scheme converges.

However, in the following example we show that the strong CHIP is not a necessary

condition for the AAMR method to converge for a particular point z ∈ H.

Example 3.21. Consider the Hilbert space H = R2 and define the sets

A := (1, 1) + B(0, 1) and B := (−1, 1) + B(0, 1).

The pair {A,B} does not have strong CHIP at any point, since A ∩B = {(0, 1)} and

(NA +NB)((0, 1)) = R× {0} 6= R2 = NA∩B((0, 1)).

If we take any z ∈ R× {1}, then

z − PA∩B(z) = z − (0, 1) ∈ R× {0} = (NA +NB)(PA∩B(z)),

and by Theorem 3.17, the AAMR method defined by (3.21) will generate a sequence that

converges to a point x? such that PA(x?+z) = {(0, 1)}. On the other hand, if z 6∈ R×{1},
then

z − PA∩B(z) 6∈ (NA +NB)(PA∩B(z)),

and the sequence (xk)
∞
k=0 generated by (3.21) will be unbounded, i.e., ‖xk‖ → ∞. The two

possibilities are illustrated in Figure 3.5.

A B

z

x0

x1

x2

··
·

PA∩Bz PA(x? + z) x?

(a) z ∈ R× {1}

A Bz

x0

x1

x2

···

PA∩Bz

(b) z 6∈ R× {1}

Figure 3.5: Illustration of Example 3.21.

We have seen that even when the strong CHIP does not hold, the method can converge

for a particular point z ∈ H. However, the following result establishes that if we want

the method to converge for every point in H, the strong CHIP will have to be required.

74 Chapter 3. The averaged alternating modified reflections method

Proposition 3.22. Let A,B ⊆ H be nonempty, closed and convex sets with nonempty

intersection. Then the following assertions are equivalent:

(i) {A,B} has the strong CHIP;

(ii) for all z ∈ H,

z − PA∩B(z) ∈ (NA +NB)(PA∩B(z)).

Proof. Assume (ii). Take x ∈ A ∩B and let y ∈ NA∩B(x). By Proposition 1.4,

PA∩B(x+ y) = x.

Hence, by (ii), we have

y = x+ y − PA∩B(x+ y) ∈ (NA +NB)(PA∩B(x+ y)) = (NA +NB)(x).

Therefore NA∩B(x) ⊆ (NA + NB)(x). Since x is arbitrary in A ∩ B and the reverse

inclusion always holds, then {A,B} has the strong CHIP, which proves that (ii) ⇒ (i).

The opposite implication clearly holds by Proposition 1.4.

We finish this section with the following result which, under some conditions, provides

the asymptotic behavior of the AAMR iteration for those situations where it does not

converge.

Corollary 3.23 (Asymptotic behavior of the AAMR iteration). Let A,B ⊆ H be

nonempty closed and convex, and define v := PA−B(0). Let α, β ∈]0, 1[and let z ∈ H.

For any x0 ∈ H, consider the iterated sequence defined by

xk+1 = TA−z,B−z,α,β(xk), for k = 0, 1, 2,

Suppose that one of the following holds:

(i) H is finite-dimensonal;

(ii) intA 6= ∅ or intB 6= ∅.

Then, the sequence (xk − xk+1)∞k=0 converges in norm to 2αβv.

Proof. Since TA−z,B−z,α,β is α-averaged according to Proposition 3.6, the result follows

from applying Theorem 1.15(i) together with Theorem 3.13.

3.1. A new best approximation algorithm 75

Remark 3.24. Observe that if the problem is consistent but the required constraint

qualification does not hold, i.e.,

A ∩B 6= ∅ but z − PA∩B(z) 6∈ (NA +NB)(PA∩B(z)),

then Theorem 3.17(a)–(b) cannot be applied. Nonetheless, Corollary 3.23 asserts that if

any of conditions (i)–(ii) therein is satisfied, then Theorem 3.17(a)(i) remains valid. This

can be observed in Figures 3.4(b) and 3.5(b). Furthermore, if the sets are disjoint, then

the difference sequence allows us to measure the gap between them, since

‖xk − xk+1‖ → 2αβd(A,B).

The latter scenario is illustrated in Figure 3.6, where the AAMR algorithm is applied to

two disjoint balls.

A B

z

x0

x1
x2 ···

v

2αβv

Figure 3.6: Asymptotic behavior of the AAMR iteration.

3.1.3 Finitely many sets

In this section we show how to apply the AAMR method to best approximation problems

defined by an arbitrary finite number of sets, as in (2.2). Therefore, given r nonempty,

closed and convex sets C1, . . . , Cr ⊂ H, and given any z ∈ H, we are interested in solving

the problem

Find w = P⋂r
i=1 Ci

(z).

In order to derive a version of the AAMR algorithm for finitely many sets, we turn to

the product space trick described in Section 2.1.1. To proceed, we need first to present

the following characterization, which permits to rewrite the constraint qualification (3.4)

in the product space.

76 Chapter 3. The averaged alternating modified reflections method

Lemma 3.25. Let C1, C2, . . . , Cr ⊆ H be nonempty closed and convex sets. Let H be

the product Hilbert space as in (2.3) and consider the sets C and D defined in (2.4). For

every x = j(x) ∈ C ∩D, it holds that

(NC(x) +ND(x)) ∩D = j

(
r∑
i=1

NCi(x)

)
,

where j(x) := (x, x, . . . , x) ∈D for all x ∈ H.

Proof. Let x = j(x) ∈ C ∩D. First note that, since C is the product of r sets, then

NC(x) = NC1(x)×NC2(x)× · · · ×NCr(x);

and moreover, by Proposition 2.16(ii), we know that

ND(x) = D⊥ =

{
u = (u1, . . . , ur) ∈H :

r∑
i=1

ui = 0

}
.

To prove the direct inclusion, pick any y ∈ (NC(x) +ND(x)) ∩D. Then y = j(y)

for some y ∈ H verifying

y ∈ NCi(x) + ui, for i = 1, . . . , r,

with
∑r

i=1 ui = 0. Thus, as NCi(x) are all cones, we have y ∈
∑r

i=1 NCi(x), which yields

y ∈ j

(
r∑
i=1

NCi(x)

)
.

To prove the reverse inclusion, pick y = j(y) for any y ∈
∑r

i=1NCi(x). Then, there

exists di ∈ NCi(x), for each i = 1, . . . , r, such that y =
∑r

i=1 di. Define

d := (d1, d2, . . . , dr) ∈ NC(x) and u := (u1, u2, . . . , ur) ∈H,

where ui := y − rdi, for each i = 1, . . . , r. Since

r∑
i=1

ui =
r∑
i=1

(y − rdi) = ry − r
n∑
i=1

di = 0,

we have u ∈D⊥. Hence, y = rd+ u ∈ NC(x) +ND(x), and the result is proved.

3.1. A new best approximation algorithm 77

We are now ready to prove the convergence of the AAMR method for finitely many sets.

Theorem 3.26 (AAMR scheme for finitely many sets). Let C1, C2, . . . , Cr ⊆ H be

nonempty closed and convex sets. Let z ∈ H and fix any α, β ∈]0, 1[. Given r arbitrary

starting points x1,0, x2,0, . . . , xr,0 ∈ H, set

for k = 0, 1, 2, . . . :
pk = 1

r

∑r
i=1 xi,k,

for i = 1, 2, . . . , r :⌊
xi,k+1 = (1− α)xi,k + α(2βPCi−z − Id)(2βpk − xi,k).

(3.26)

If
⋂r
i=1 Ci 6= ∅ and z − P⋂r

i=1 Ci
(z) ∈

∑r
i=1NCi

(
P⋂r

i=1 Ci
(z)
)
, then the following hold:

(i) (xi,k)
∞
k=0 is weakly convergent to a point xi

?, for each i = 1, 2, . . . , r, and

z +
1

r

r∑
i=1

x?i = P⋂r
i=1 Ci

(z);

(ii) the sequence (z + pk)
∞
k=0 is strongly convergent to P⋂r

i=1 Ci
(z).

Otherwise, at least one of the sequences (x1,k)
∞
k=0, (x2,k)

∞
k=0, . . . , (xr,k)

∞
k=0 is unbounded.

Proof. Let H be the product Hilbert space as in (2.3) and consider the sets C and D

defined in (2.4). Define z := j(z) and for each k = 0, 1, 2, . . ., set

xk := (x1,k, . . . , xr,k) and pk := j(pk).

In view of the expressions of PC and PD in Proposition 2.3, the iterative scheme in (3.26)

reduces to

xk+1 = TD,C−z,α,β(xk), k = 0, 1, 2, (3.27)

Observe that D − z = D, since D is a subspace containing z. Therefore, the operator

defining the iteration (3.27) is simply TD−z,C−z,α,β. Observe also that
⋂r
i=1 Ci 6= ∅ if and

only if C ∩ D 6= ∅ by (2.5). Moreover, j
(
P∩ri=1Ci

(z)
)

= PC∩D(z) by (2.6), and then

by Lemma 3.25, we have

z − PC∩D(z) ∈ NC +ND (PC∩D(z)) ⇔ z − P∩ri=1Ci
(z) ∈

r∑
i=1

NCi

(
P∩ri=1Ci

(z)
)
.

The result thus follows from Theorem 3.17.

78 Chapter 3. The averaged alternating modified reflections method

The iteration generated by (3.26) in Theorem 3.26 is illustrated in Figure 3.7.

C1

C2

C3

x1,0

x2,0

x3,0

p0

x1,1

x2,1

x3,1

p1

−x1,0

2p0 − x1,0

2βp0 − x1,0

x1,0 − 2βp0

RC1(2βp0 − x1,0)

(2βPC1 − Id)(2βp0 − x1,0)

PC1∩C2∩C3z

z = 0

Figure 3.7: Illustration of the AAMR iterative scheme for many sets in Theorem 3.26.

Remark 3.27. Some comments concerning Theorem 3.26 are given next.

(i) For simplicity, we have assumed that α ∈]0, 1[. Nonetheless, Theorem 3.26(ii) still

holds if we set α = 1 in (3.26), according to Theorem 3.17(b).

(ii) If the sets C1, C2, . . . , Cr are closed affine subspaces of H, then we can use The-

orem 3.19 instead of Theorem 3.17 in the proof, and therefore the convergence

in Theorem 3.26(i) becomes strong.

(iii) The order of action of the projections onto D and C in (3.27) makes the shadow

sequence PD(z + xk) to lay in the diagonal. In this way, it can be identified with

the sequence in the original space (z + pk)
∞
k=0 ⊂ H, which can be monitored.

(iv) Thanks to Lemma 3.25, it is straightforward to prove an analogous result to Pro-

position 3.22, showing that the strong CHIP of {C1, . . . , Cr} characterizes the con-

vergence of the iterative method (3.26) for every point z ∈ H.

Comparison with Combettes’ method Let us now show some similarities (and dif-

ferences) between AAMR and the method by Combettes presented in Section 2.3.4. Com-

bettes’ algorithm relies on the product space Hr and we can then express the recurrence

3.1. A new best approximation algorithm 79

in (2.32) as

wk+1 =

(
1− λk

2

)
wn +

λk
2
RD

(
2PC

(
wk + γz

γ + 1

)
−wk

)
, (3.28)

xk+1 = PDPC(wk+1), (3.29)

for γ > 0, and (λk)
∞
k=0 ∈]0, 2] such that infk≥0 λk > 0. Observe that, by the dilatation

formula in Proposition 1.2(v) and the linearity of RD given by Proposition 1.11, we have

RD

(
2PC

(
wk + γz

γ + 1

)
−wk

)
= RD

(
2

1

γ + 1

(
P(γ+1)C−γz (wk) + γz

)
−wk

)
= RD

(
2

1

γ + 1
P(γ+1)C−γz (wk)−wk

)
+RD

(
2

γ

γ + 1
z

)
= RD

(
2

1

γ + 1
P(γ+1)C−γz (wk)−wk

)
+ 2

γ

γ + 1
z.

Thus, setting β := 1
1+γ

and αk := λk
2

, the recurrence in (3.28) can be expressed as

wk+1 = (1− αk)wn + αkRD

(
2βP 1

β
C− 1−β

β
z (wk)−wk

)
+ 2αk(1− β)z; (3.30)

or equivalently, in terms of the AAMR operator (3.5),

wk+1 = T 1
β
C− 1−β

β
z,D,αk,β

(wk) + 2(1− β)αkPD

(
2βP 1

β
C− 1−β

β
z (wk)−wk + z

)
,

with β ∈]0, 1[and αk ∈]0, 1]. The latter scheme clearly differs from the AAMR iteration

in (3.27), even when z = 0 (compare also Figure 3.7 with Figure 2.15).

3.1.4 Numerical experiments

In this section we show the results of five different numerical experiments with the common

setting of

Find PU∩V (x0), where U, V ⊂ R50 are closed subspaces such that U ∩ V 6= {0}.

We compare the new AAMR method with Combettes’ method (CM) given by (3.29)–

(3.30), the method of alternating projections (AP) (2.7), the Douglas–Rachford (DR)

method (2.15) (or GDR (2.19)) and Haugazeau’s method in its basic form (2.28); as well

as we test the influence of the parameters α and β in the behavior of the AAMR method

80 Chapter 3. The averaged alternating modified reflections method

to see which values give better results. We have also tested the HLWB method (2.30)

with the sequence in (2.31), but the obtained results are only shown in Figure 3.13, as

the method was clearly outperformed by all the other algorithms in our experiments.

Recall that within this context, the rates of linear convergence of AP and DR depend

on the Friedrichs angle between the subspaces (see Theorems 2.7 and 2.11). It was then

compulsory to take this angle into consideration in our numerical experiments. In our

tests we computed Friedrichs angles from principal angles, via Proposition 1.35.

Observe that, for DR and AAMR, the sequences of interest to be monitored are,

respectively,

(
PU(DRk

U,V (x0))
)∞
k=0

and
(
PU(T kU−x0,V−x0,α,β(x0) + x0)

)∞
k=0

,

as these are the sequences that converge to the desired point PU∩V (x0); while for AP,

CM and Haugazeau’s method, the sequence (xk)
∞
k=0 given by the respective algorithm is

directly the sequence of interest. We used a stopping criterion based on the true error;

that is, we terminated the algorithms when the current iterate of the monitored sequence

(wk)
∞
k=0 satisfies

‖wk − PU∩V (x0)‖ < ε

for the first time (in real situations this information is not usually available). As in the

numerical experiments in [27], the tolerance was set to ε := 10−3.

3.1.4.1 Influence of the parameter α

The purpose of our first experiment was to find out which value of α is optimal for

AAMR when it is applied to subspaces. To this aim, we randomly generated 1000 pairs

of subspaces and run the AAMR algorithm with a random starting point for each value of

α ∈ {0.01, 0.02, . . . , 0.99, 1} and β ∈ {0.6, 0.7, 0.8, 0.9}. In Figure 3.8 we have plotted the

best value of α (the one for which AAMR was faster) against the Friedrichs angle. For a

fair comparison in the subsequent tests, we performed the same experiment with CM.

In Figure 3.9 we show prototypical examples of the number of iterations required by

AAMR (and GDR as the limit case β = 1) to find a solution for four different angles.

It can be clearly seen that the optimal value of α for GDR is 0.5, as it was expected

by Theorem 2.13. For this reason, we use the classical DR (α = 0.5) in our subsequent

experiments, and set the value of α to 0.9 for AAMR, based on the results shown in Figu-

res 3.8 and 3.9. Although it is not so clear, the same choice appears to be sensible for CM.

3.1. A new best approximation algorithm 81

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AAMR β = 0.6

AAMR β = 0.7

AAMR β = 0.8

AAMR β = 0.9

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CM β = 0.6

CM β = 0.7

CM β = 0.8

CM β = 0.9

Figure 3.8: Best value of α with respect to the Friedrichs angle for 1000 pairs of random
subspaces for AAMR (left) and CM (right). For each β, the average value of the best α is
represented by a dashed line.

GDR AAMR β = 0.7 AAMR β = 0.8 AAMR β = 0.9

0.0 0.2 0.4 0.6 0.8 1.0

α

0

1000

2000

3000

4000

5000

N
u
m
b
er

o
f
it
er
a
ti
o
n
s

(a) Friedrichs angle: 0.041 radians.

0.0 0.2 0.4 0.6 0.8 1.0

α

0

50

100

150

200

N
u
m
b
er

o
f
it
er
a
ti
o
n
s

(b) Friedrichs angle: 0.283 radians.

0.0 0.2 0.4 0.6 0.8 1.0

α

0

20

40

60

80

100

N
u
m
b
er

o
f
it
er
a
ti
o
n
s

(c) Friedrichs angle: 0.610 radians.

0.0 0.2 0.4 0.6 0.8 1.0

α

0

10

20

30

40

50

N
u
m
b
er

o
f
it
er
a
ti
o
n
s

(d) Friedrichs angle: 1.001 radians.

Figure 3.9: Number of required iterations with respect to the value of α of GDR and AAMR
for three different values of the parameter β.

82 Chapter 3. The averaged alternating modified reflections method

3.1.4.2 Comparison with other projection methods

Our second experiment consisted in replicating some of the tests performed in [27] to

compare DR and AP, adding this time the results of CM, Haugazeau’s method and the

new AAMR. We randomly generated 100 pairs of subspaces U and V in R50. For each pair

of subspaces, 10 random starting points (with Euclidean norm 10) were chosen and each

of the five methods were applied. We realized that the parameter β has a big influence in

the behavior of the AAMR scheme, as can be observed in Figure 3.9. Thus, we computed

the sequences generated by the AAMR method for six different values of β (these values

were 0.5, 0.6, 0.7, 0.8, 0.9 and 0.99), and we did the same with CM. Although there is a

freedom of choice for the initial point in AAMR and CM, we took it as the point to be

projected, as this is the starting point that needs to be used by DR, AP and Haugazeau’s

method. The results are shown in Figures 3.11 and 3.12. For each pair of subspaces, the

horizontal axis represents the Friedrichs angle, and the vertical axis represents the median

(Fig. 3.11) or the standard deviation (Fig. 3.12) of the number of iterations required to

converge for the 10 random initializations.

On one hand, we can deduce from Figure 3.11 that the rate of convergence of the

AAMR method depends on both the angle and the parameter β. For values of β above

0.7, there exists an interval of small angles for which AAMR is the fastest method. For

large angles, AP and Haugazeau’s method clearly outperforms DR and AAMR. A simple

example showing this behavior is depicted in Figure 3.10.

U V

x0

(a) Small angle

U

V

x0

(b) Large angle

Figure 3.10: Behavior of the AAMR (in blue) and alternating projections (in red) algorithms
when applied to two lines in R2 for two different Friedrichs angles. We see that AAMR outper-
forms AP for small angles, while AP is faster for large angles.

3.1. A new best approximation algorithm 83

AP DR Haugazeau

10
−1 10

0

Friedrichs angle (in radians)

10
0

10
1

10
2

10
3

10
4

M
ed

ia
n

of
it

er
at

io
n

s
AAMR β = 0.5

AAMR β = 0.6

CM β = 0.5

CM β = 0.0.6

10
−1 10

0

Friedrichs angle (in radians)

10
0

10
1

10
2

10
3

10
4

M
ed

ia
n

of
it

er
at

io
n

s

AAMR β = 0.7

AAMR β = 0.8

CM β = 0.7

CM β = 0.0.8

10
−1 10

0

Friedrichs angle (in radians)

10
0

10
1

10
2

10
3

10
4

M
ed

ia
n

of
it

er
at

io
n

s

AAMR β = 0.9

AAMR β = 0.99

CM β = 0.9

CM β = 0.0.99

Figure 3.11: Median of the required number of iterations with respect to the Friedrichs angle
of AP, DR, Haugazeau’s method, CM and AAMR for six different values of β.

84 Chapter 3. The averaged alternating modified reflections method

AP DR Haugazeau

10
−1 10

0

Friedrichs angle (in radians)

10
−1

10
0

10
1

10
2

10
3

10
4

S
ta

n
d

a
rd

d
ev

ia
ti

on
of

it
er

a
ti

on
s

AAMR β = 0.5

AAMR β = 0.6

CM β = 0.5

CM β = 0.0.6

10
−1 10

0

Friedrichs angle (in radians)

10
−1

10
0

10
1

10
2

10
3

10
4

S
ta

n
d

ar
d

d
ev

ia
ti

on
of

it
er

at
io

n
s

AAMR β = 0.7

AAMR β = 0.8

CM β = 0.7

CM β = 0.0.8

10
−1 10

0

Friedrichs angle (in radians)

10
−1

10
0

10
1

10
2

10
3

10
4

S
ta

n
d

ar
d

d
ev

ia
ti

on
of

it
er

at
io

n
s

AAMR β = 0.9

AAMR β = 0.99

CM β = 0.9

CM β = 0.0.99

Figure 3.12: Standard deviation of the required number of iterations with respect to the
Friedrichs angle of AP, DR, Haugazeau’s method, CM and AAMR for six different values of β.

3.1. A new best approximation algorithm 85

We observe that AP, DR and Haugazeau’s method satisfy a decrease in the number

of iterations when the angle increases. Unfortunately, while the number of iterations in

these three methods keep on decreasing for large values of the angle, the AAMR method

and CM seem to have an asymptotic behavior around a horizontal line. That is, they

need a minimum number of iterations to converge whatever the angle is (although this

number is not very big). On the other hand, Figure 3.12 shows that the AAMR method

is more robust in terms of the standard deviation of the number of iterations. In fact, it

seems that the larger the value of β is, the more robust it becomes.

For additionally comparing the rate of convergence of the methods, we computed the

distance of the first 100 iterates of the sequences to be monitored to the real solution. We

show the results of four instances with well-differentiated Friedrichs angles in Figure 3.13.

DR

AP

Haugazeau

HLWB

AAMR β=0.5

AAMR β=0.6

AAMR β=0.7

AAMR β=0.8

AAMR β=0.9

0 20 40 60 80 100

Iteration

10
−2

10
−1

10
0

10
1

D
is
ta
n
ce

to
th
e
so
lu
ti
o
n

(a) Friedrichs angle: 0.074 radians.

0 20 40 60 80 100

Iteration

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

10
1

D
is
ta
n
ce

to
th
e
so
lu
ti
o
n

(b) Friedrichs angle: 0.314 radians.

0 20 40 60 80 100

Iteration

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

D
is
ta
n
ce

to
th
e
so
lu
ti
o
n

(c) Friedrichs angle: 0.751 radians.

0 20 40 60 80 100

Iteration

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

D
is
ta
n
ce

to
th
e
so
lu
ti
o
n

(d) Friedrichs angle: 1.393 radians.

Figure 3.13: Distance to the solution of the 100 first iterations of the monitored sequences of
AP, DR, HLWB, Haugazeau’s method and AAMR for five different values of the parameter β.

86 Chapter 3. The averaged alternating modified reflections method

Note that we have not included the results of CM in Figure 3.13 to improve the clarity

and comprehensibility of the plots, as it was outperformed by AAMR. One might expect

the AAMR method to inherit the “rippling” behavior of the DR, specially when β is large,

which is when the definition of the iterations of both methods are more similar. This is not

entirely truth: although the AAMR method indeed shows these “waves” in Figure 3.13,

this behavior depends on both the Friedrichs angle and the parameter β. Additionally, we

see in this figure that the AAMR method with a large parameter β clearly outperforms

the other schemes when the Friedrichs angle is small. The larger the angle becomes,

the better AP and Haugazeau’s method behave. As pointed out in Remark 2.12, it is

expected that AP performs better than DR, specially when the Friedrichs angle is large.

Finally, we clearly observe in Figure 3.13 that HLWB is the slowest algorithm for solving

this problem.

3.1.4.3 Influence of the parameter β

In our third numerical experiment, we continued investigating how the parameter β af-

fects the number of iterations depending on the angle. In this experiment, 1000 pairs

of subspaces were generated. Then, for 10 random starting points, we ran the AAMR

method for every value of β in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}. The results are

shown in Figure 3.14. One can see that values of β ≤ 0.4 are an inefficient choice, since

β = 0.5 appears to dominate them for every angle. Larger values of β work better for

small angles, but then the performance of the method becomes worse for large angles.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Friedrichs angle (in radians)

101

102

103

104

105

N
u

m
b

er
o
f

it
er

at
io

n
s

β = 0.1

β = 0.2

β = 0.3

β = 0.4

β = 0.5

β = 0.6

β = 0.7

β = 0.8

β = 0.9

β = 0.99

Figure 3.14: Median number of iterations for 10 random starting points required by the AAMR
method for different values of the parameter β with respect to the Friedrichs angle.

3.2. Optimal rates of linear convergence for two subspaces 87

3.2 Optimal rates of linear convergence for two subspaces

The goal of this section is to provide the theoretical results that substantiate the beha-

vior of the algorithm that has been numerically observed in Section 3.1.4. Therefore,

throughout this section, we shall assume without lost of generality that U and V are two

subspaces of the Euclidean space Rn such that

1 ≤ p := dimU ≤ dimV =: q ≤ n− 1, with U 6= U ∩ V and U ∩ V 6= {0}; (3.31)

otherwise, the best approximation problem defined by U and V would be trivial.

By following the same approach as in [26], we analyze the linear rate of conver-

gence of the AAMR method by studying the convergence rates of powers of matrices

(see Section 1.2.2). The rate obtained depends on both the Friedrichs angle and the pa-

rameters defining the algorithm. In addition, we also analyze the optimal selection of the

parameters according to the Friedrichs angle, so that the rate of convergence is minimized.

This rate coincides with the one for GAP, which is the best among all the known rates

with optimal parameters of the classical projection algorithms discussed in Section 2.2.

This is not just by chance: the shadow sequences of GAP and AAMR coincide for linear

subspaces under some conditions (see Theorem 3.34 and Figure 3.18). The theoretical

results are also demonstrated through various numerical experiments.

3.2.1 Convergence rate analysis

We begin this section with the following theorem that establishes the rate of convergence

of the AAMR algorithm in terms of α, β and the Friedrichs angle between the subspaces.

We denote the positive part of x ∈ R by x+ := max{0, x}.

Theorem 3.28 (Rate of linear convergence of AAMR for two subspaces). Let

U, V ⊂ Rn be two subspaces verifying (3.31), and fix α ∈]0, 1] and β ∈]0, 1[. Then, the

AAMR operator

Tα,β := (1− α)In + α(2βPV − In)(2βPU − In)

is linearly convergent to PU⊥∩V ⊥ with any rate µ ∈]γ(Tα,β), 1[, where

γ(Tα,β) =

1− 4αβ(1− β), if 0 ≤ cF < c(α, β);√

4(1− α)αβ2c2
F + (1− 2αβ)2, if c(α, β) ≤ cF < ĉβ;

1 + 2αβ
(
βc2

F − 1 + cF
√
β2c2

F − 2β + 1
)
, if ĉβ ≤ cF < 1;

(3.32)

88 Chapter 3. The averaged alternating modified reflections method

with cF := cos θF and θF being the Friedrichs angle between U and V ,

ĉβ :=

√
(2β − 1)+

β
and c(α, β) :=

√

((1−4αβ(1−β))2−(1−2αβ)2)
+

4(1−α)αβ2 , if α < 1;

0, if α = 1.

(3.33)

Furthermore, γ(Tα,β) is the optimal linear convergence rate if and only if

β 6= 1

1 + sin θF
or θF =

π

2
.

Proof. To prove the result, we consider two main cases.

Case 1: p+ q < n. By Proposition 1.36, we can find an orthogonal matrix D ∈ Rn×n

such that (1.7) holds. After some calculations, we obtain

Tα,β = D

 Mα,β 0 0

0 (1− 2αβ)Iq−p 0

0 0 In−p−q

D∗, (3.34)

where

Mα,β :=

(
2αβ(2β − 1)C2 + (1− 2αβ)Ip −2αβCS

2αβ(2β − 1)CS 2αβC2 + (1− 2αβ)Ip

)
.

Let s := dim(U ∩ V) and let 1 = c1 = · · · = cs > cs+1 = cF ≥ cs+2 ≥ · · · ≥ cp ≥ 0 be

the cosine of the principal angles 0 = θ1 = · · · = θs < θs+1 = θF ≤ θs+2 ≤ · · · ≤ θp ≤ π
2

between U and V (see Proposition 1.35). By using the block determinant formula (see,

e.g., [119, (0.8.5.13)]), we deduce after some algebraic manipulation that the spectrum of

the matrix Tα,β is

σ(Tα,β) =

p⋃
i=1

{
1 + 2αβ

(
βc2

i − 1± ci
√
β2c2

i − 2β + 1

)}
∪ {1}, if q = p;

p⋃
i=1

{
1 + 2αβ

(
βc2

i − 1± ci
√
β2c2

i − 2β + 1

)}
∪ {1, 1− 2αβ}, if q > p.

Then λi,r := 1 + 2αβ
(
βc2

i − 1 + (−1)rci
√
β2c2

i − 2β + 1
)

are eigenvalues of Tα,β, with

i = 1, . . . , p and r = 1, 2 . Observe that the real-valuedness of these eigenvalues depends

on the sign of β2c2
i − 2β + 1. Hence we have that λi,r ∈ R if ci ≥ β−1

√
(2β − 1)+ =: ĉβ,

while λi,r ∈ C otherwise. In order to study the modulus of the eigenvalues λi,r, consider

3.2. Optimal rates of linear convergence for two subspaces 89

the function fα,β,r : [0, 1]→ R given by

fα,β,r(c) :=

 (1 + 2αβ(βc2 − 1))
2 − 4α2β2c2 (β2c2 − 2β + 1) , if c < ĉβ;(

1 + 2αβ
(
βc2 − 1 + (−1)rc

√
β2c2 − 2β + 1

))2

, if c ≥ ĉβ.

Hence, one has |λi,r|2 = fα,β,r(ci).

Let us analyze some properties of the function fα,β,r. When ĉβ > 0, observe that fα,β,r

is continuous at ĉβ, since

lim
c→ĉ−β

fα,β,r(c) = lim
c→ĉ+β

fα,β,r(c) = (1− 2α(1− β))2 .

To simplify the presentation, define the auxiliary function

gβ,r(c) := βc2 − 1 + (−1)rc
√
β2c2 − 2β + 1, for c ≥ ĉβ.

Then,

fα,β,r(c) =

{
4(1− α)αβ2c2 + (1− 2αβ)2, if c < ĉβ;

(1 + 2αβgβ,r(c))
2 , if c ≥ ĉβ.

The derivative of fα,β,r is given for c 6= ĉβ by

f ′α,β,r(c) =

 8(1− α)αβ2c, if c < ĉβ;

4αβ (1 + 2αβgβ,r(c)) (−1)r
(√

β2c2−2β+1+(−1)rβc
)2

√
β2c2−2β+1

, if c > ĉβ.

Further, we claim that 1 + 2αβgβ,2(c) > 1 + 2αβgβ,1(c) ≥ 0 for all c > ĉβ. Indeed, since

(2β2c2 − 2β + 1)2 = 4β2c2(β2c2 − 2β + 1) + (2β − 1)2 ≥ (2βc)2(β2c2 − 2β + 1),

we deduce, after taking square roots and reordering, that

−1 ≤ 2β
(
βc2 − 1− c

√
β2c2 − 2β + 1

)
= 2βgβ,1(c) < 2βgβ,2(c),

from where the assertion easily follows.

All the above properties of the function fα,β,r can be summarized as follows:

(i) for all 0 ≤ c < d ≤ ĉβ,

F 0
α,β := (1− 2αβ)2 ≤ fα,β,r(c) ≤ fα,β,r(d) ≤ (1− 2α(1− β))2 ;

90 Chapter 3. The averaged alternating modified reflections method

(ii) for all ĉβ ≤ c < d ≤ 1,

F 1
α,β := (1− 4αβ(1− β))2 ≤ fα,β,1(d) ≤ fα,β,1(c)

≤ (1− 2α(1− β))2 ≤ fα,β,2(c) < fα,β,2(d) ≤ 1.

In view of Proposition 1.38, we have to show that the eigenvalue λ = 1 is semisimple

and the only eigenvalue in the unit circle. According to the monotonicity properties of

fα,β,r in (i)–(ii), we have that

|λi,r| ≤ 1, for all i = 1, 2, . . . , p and r = 1, 2;

and further,

|λi,r| = 1 ⇔ i ∈ {1, 2, . . . , s} and r = 2,

in which case λi,2 = 1. Thus, we have shown that ρ (Tα,β) = 1 and λ = 1 is the only

eigenvalue in the unit circle.

Let us show now that λ = 1 is semisimple. First observe that, for any λ ∈ C, given

the block diagonal structure of Tα,β, one has

ker (Tα,β − λI) = ker
(
(Tα,β − λI)2) ⇔ ker (Mα,β − λI) = ker

(
(Mα,β − λI)2) .

Then, we can compute

Mα,β − I = 2αβ

(
(2β − 1)C2 − Ip −CS

(2β − 1)CS −S2

)
.

Observe that the matrices C and S can be decomposed as

C =

(
Is 0

0 C̃

)
and S =

(
0s 0

0 S̃

)
, (3.35)

where both C̃ and S̃ are diagonal matrices and S̃ has strictly positive entries. Hence,

Mα,β − I = 2αβ

−2(1− β)Is 0 0 0

0 (2β − 1)C̃2 − Ip−s 0 −C̃S̃
0 0 0 0

0 (2β − 1)C̃S̃ 0 −S̃2

 ,

3.2. Optimal rates of linear convergence for two subspaces 91

and one has that ker (Mα,β − I) = ker
(
(Mα,β − I)2) if and only if ker (M0) = ker (M2

0),

where

M0 :=

(
(2β − 1)C̃2 − Ip−s −C̃S̃

(2β − 1)C̃S̃ −S̃2

)
.

Since det (M0) = det
(
S̃2
)
6= 0 (again, by the block determinant formula), we conclude

that λ = 1 is a semisimple eigenvalue. Then, since Tα,β is nonexpansive by Proposition 3.6,

we have by Proposition 1.38 that Tα,β is linearly convergent to PFixTα,β with any rate

µ ∈]γ(Tα,β), 1[, and FixTα,β = U⊥ ∩ V ⊥ by Proposition 3.15.

Furthermore, we can also deduce from the properties (i)–(ii) that the subdominant

eigenvalues of Tα,β are determined by

γ(Tα,β) = max {|λs+1,2|, |λ1,1|}

= max

{∣∣∣∣1 + 2αβ

(
βc2

F − 1 + cF

√
β2c2

F − 2β + 1

)∣∣∣∣ , 1− 4αβ(1− β)

}
.

To prove (3.32), let us compute the value of γ(Tα,β). If cF > ĉβ, then |λ1,1| < |λs+1,2|.
Otherwise,

|λs+1,2| ≤ |λ1,1| ⇔ fα,β,2(cF) ≤ fα,β,1(1) ⇔ 4(1− α)αβ2c2
F ≤ F 1

α,β − F 0
α,β.

Consequently, if we define

c(α, β) :=

√

F 1
α,β−F

0
α,β

4(1−α)αβ2 , if F 1
α,β > F 0

α,β;

0, otherwise;

which is equivalent to the expression in (3.33), we obtain (3.32). Three possible scenarios

for fα,β,r and the constants c(α, β) and ĉβ depending on the values of α and β are shown

in Figure 3.15.

To conclude the proof, let us show that the subdominant eigenvalues are semisimple

if and only if β2c2
F − 2β + 1 6= 0 or cF = 0. The candidate eigenvalues to be subdominant

are λ1,1 and λs+1,2, possibly simultaneously.

Consider first the case where λ1,1 = 1− 4αβ(1− β) is subdominant, and compute

Mα,β − λ1,1I = 2αβ

(
−(2β − 1)S2 −CS
(2β − 1)CS C2 − (2β − 1)Ip

)
.

92 Chapter 3. The averaged alternating modified reflections method

0.2 0.4 0.6 0.8 1c(α, β) = ĉβ

0.2

0.6

0.8

1

F 1
α,β

F 0
α,β

y = fα,β,1(1)

α = 0.5, β = 0.3

fα,β,2(c)

fα,β,1(c)

(a) 0 = c(α, β) = ĉβ < 1

0.2 0.4 0.6 0.8 1ĉβc(α, β)

0.4

0.6

0.8

1

F 1
α,β

F 0
α,β y = fα,β,1(1)

α = 0.95, β = 0.75

fα,β,r(c), c < ĉβ

fα,β,2(c), c ≥ ĉβ
fα,β,1(c), c ≥ ĉβ

(b) 0 = c(α, β) < ĉβ < 1

0 0.2 0.4 0.8 1ĉβc(α, β)

0

0.2

0.6

0.8

1

F 1
α,β

F 0
α,β

y = fα,β,1(1)

α = 0.35, β = 0.58

fα,β,r(c), c < ĉβ

fα,β,2(c), c ≥ ĉβ
fα,β,1(c), c ≥ ĉβ

(c) 0 < c(α, β) < ĉβ < 1

Figure 3.15: The three possible scenarios for the function fα,β,r(c).

Using the decomposition of C and S given in (3.35), we get

Mα,β − λ1,1I = 2αβ

0 0 0 0

0 −(2β − 1)S̃2 0 −C̃S̃
0 0 2(1− β)Is 0

0 (2β − 1)C̃S̃ 0 C̃2 − (2β − 1)Ip−s

 ,

and one has that ker (Mα,β − λ1,1I) = ker
(
(Mα,β − λ1,1I)2) if and only if

ker (M1) = ker
(
M2

1

)
, where M1 :=

(
−(2β − 1)S̃2 −C̃S̃
(2β − 1)C̃S̃ C̃2 − (2β − 1)Ip−s

)
.

3.2. Optimal rates of linear convergence for two subspaces 93

Since we are assuming that λ1,1 is subdominant, it necessarily holds that 1
2
< β < 1.

Hence,

det (M1) = det
(

(2β − 1)2S̃2
)
6= 0,

and one trivially has that ker (M1) = ker (M2
1), which proves that λ1,1 is semisimple.

Consider now the case where λs+1,2 = 1 + 2αβ
(
βc2

F − 1 + cF
√
β2c2

F − 2β + 1
)

is a

subdominant eigenvalue. Denote ∆F :=
√
β2c2

F − 2β + 1 and compute

Mα,β − λs+1,2I = 2αβ

(
(2β − 1)C2 − cF (βcF + ∆F)Ip −CS

(2β − 1)CS C2 − cF (βcF + ∆F)Ip

)
.

Let t ∈ {1, . . . , p− s} be such that cF = cs+1 = cs+2 = · · · = cs+t > cs+t+1. Then

C =

 Is 0 0

0 cF It 0

0 0 C̃

 and S =

 0s 0 0

0 sF It 0

0 0 S̃

 ,

where both C̃ and S̃ are diagonal matrices and C̃ has entries strictly smaller than cF .

Hence, one has

MF := Mα,β − λs+1,2I = 2αβ

m1 0 0 0 0 0

0 m2 0 0 m25 0

0 0 m3 0 0 m36

0 0 0 m4 0 0

0 m52 0 0 m5 0

0 0 m63 0 0 m6

,

where

m1 := (2β − 1− cF (βcF + ∆F))Is, m2 := −cF (∆F + (1− β)cF)It,

m3 := (2β − 1)C̃2 − cF (βcF + ∆F)Ip−t−s, m4 := (1− cF (βcF + ∆F))Is,

m5 := −cF (∆F − (1− β)cF)It, m6 := C̃2 − cF (βcF + ∆F)Ip−t−s,

m25 := −cF sF It, m36 := −C̃S̃, m52 := (2β − 1)cF sF It and m63 := (2β − 1)C̃S̃.

Thus, if we denote

M{2,5} :=

(
m2 m25

m52 m5

)
and M{3,6} :=

(
m3 m36

m63 m6

)
,

94 Chapter 3. The averaged alternating modified reflections method

we get that

ker (MF) = ker
(
M2

F

)
⇔ ker

(
M{2,5}

)
= ker

(
M2
{2,5}

)
and ker

(
M{3,6}

)
= ker

(
M2
{3,6}

)
.

On the one hand, by the block determinant formula we have that

det
(
M{3,6}

)
= det(m3m6 −m63m36)

= det
(

(2β − 1)C̃4 + c2
F (βcF + ∆F)2Ip−t−s − 2βcF (βcF + ∆F)C̃2 + (2β − 1)C̃2S̃2

)
= det

(
(2β − 1− 2βcF (βcF + ∆F))C̃2 + c2

F (βcF + ∆F)2Ip−t−s

)
= det

(
(−(β2c2

F − 2β + 1)− β2c2
F − 2βcF∆F)C̃2 + c2

F (βcF + ∆F)2Ip−t−s

)
= det

(
− (βcF + ∆F)2

(
C̃2 − c2

F Ip−t−s

))
.

Observe that βcF + ∆F = 0 if and only if β = 1
2

and cF = 0, what implies that

M{3,6} = 02p−2t−2s. If βcF + ∆F 6= 0, then det
(
M{3,6}

)
6= 0. Thus, in either case, we

get ker
(
M{3,6}

)
= ker(M2

{3,6}).

On the other hand, we can rewrite

M{2,5} = −cF

(
(∆F + (1− β)cF)It sF It

−(2β − 1)sF It (∆F − (1− β)cF)It

)
,

and one has

M2
{2,5} = c2

F

(
((∆F + (1− β)cF)2 − (2β − 1)s2

F) It 2∆F sF It

−2∆F (2β − 1)sF It ((∆F − (1− β)cF)2 − (2β − 1)s2
F) It

)
.

Observing that

(∆F − (1− β)cF)2 − (2β − 1)s2
F = 2∆F (∆F − (1− β)cF) ,

(∆F + (1− β)cF)2 − (2β − 1)s2
F = 2∆F (∆F + (1− β)cF) ,

we deduce that M2
{2,5} = −2∆F cFM{2,5}. If cF = 0, then M{2,5} = 02t. Therefore, it holds

that ker(M{2,5}) = ker(M2
{2,5}) if and only if ∆F 6= 0 or cF = 0.

Summarizing the discussion above, we have shown that

ker (MF) = ker
(
M2

F

)
⇔ ∆F 6= 0 or cF = 0.

3.2. Optimal rates of linear convergence for two subspaces 95

Finally, observe that ∆F = 0 if and only if cF = ĉβ, in which case λs+1,1 is a subdominant

eigenvalue, and this proves the last assertion in the statement.

Case 2: p + q ≥ n. We can take some t ≥ 1 such that n′ := n + t > p + q, and

consider the subspaces U ′ := U × {0t×1} ⊂ Rn′ , V ′ := V × {0t×1} ⊂ Rn′ , and denote

by T ′α,β := TU ′,V ′,α,β = (1− α)I + α(2βPV ′ − I)(2βPU ′ − I). Since

PU ′ =

(
PU 0

0 0t

)
and PV ′ =

(
PV 0

0 0t

)
,

it holds that

T ′α,β =

(
Tα,β 0

0 It

)
.

Therefore, σ(Tα,β) ∪ {1} = σ(T ′α,β) and γ(Tα,β) = γ(T ′α,β). Note that the principal angles

between U ′ and V ′ are the same that the ones between U and V . Hence, the result follows

from applying Case 1 to T ′α,β.

Remark 3.29. For simplicity, we have assumed that dimU = p ≤ q = dimV . If this

is not the case and q < p, observe that one has to exchange the matrix decomposition

of PU and PV given in (1.7). In this case, one can check that the matrix Tα,β obtained

corresponds to the transpose of the one given in (3.34). Hence, the spectrum of Tα,β

remains the same and thus all the results in Theorem 3.28 also hold.

Remark 3.30. The expression in (3.32) corroborates what it was numerically observed

in Figure 3.11: there are values of α and β for which the rate of convergence of AAMR does

not depend on the value of the Friedrichs angle for all angles larger than arccos c(α, β).

Corollary 3.31. Let α ∈]0, 1] and β ∈]0, 1[. Given z ∈ Rn, choose any x0 ∈ Rn and

consider the sequence generated, for k = 0, 1, 2, . . ., by

xk+1 = TU−z,V−z,α,β(xk) = (1− α)xk + α(2βPV−z − I)(2βPU−z − I)(xk).

Let γ(Tα,β) be given by (3.32). Then, for every µ ∈]γ(Tα,β), 1[, the sequence (xk)
∞
k=0 and

the shadow sequence (PU(z + xk))
∞
k=0 are R-linearly convergent to PFixTU−z,V−z,α,β(x0) and

to PU∩V (z), respectively, both with rate µ. That is, there exists a positive integer k0 such

that

‖PU(z + xk)− PU∩V (z)‖ ≤
∥∥xk − PFixTU−z,V−z,α,β(x0)

∥∥ ≤ µk, for all k ≥ k0. (3.36)

96 Chapter 3. The averaged alternating modified reflections method

Proof. Sice U and V are finite-dimensional subspaces they have the strong CHIP by

Proposition 1.33. Then, Corollary 3.10 yields FixTU−z,V−z,α,β 6= ∅ and by Proposition 3.14

we have that

xk+1 = TU−z,V−z,α,β(xk) = TU,V,α,β(xk − x∗) + x∗,

for x∗ := PFixTU−z,V−z,α,β(x0). Hence, one has

‖xk − x∗‖ = ‖TU,V,α,β(xk−1 − x∗)‖ = · · · = ‖T kU,V,α,β(x0 − x∗)‖.

Again by Proposition 3.14, together with Proposition 3.15, one has

FixTU−z,V−z,α,β = x∗ + U⊥ ∩ V ⊥.

By using the translation formula for projections in Proposition 1.2(iv), we get that

x∗ = PFixTU−z,V−z,α,β(x0) = Px∗+U⊥∩V ⊥(x0) = PU⊥∩V ⊥(x0 − x∗) + x∗,

which implies PU⊥∩V ⊥(x0 − x∗) = 0, and therefore,

‖xk − x∗‖ =
∥∥T kU,V,α,β(x0 − x∗)

∥∥ =
∥∥(T kU,V,α,β − PU⊥∩V ⊥) (x0 − x∗)

∥∥ .
Let ν ∈]γ(Tα,β), µ[. Since ν > γ(Tα,β), by Theorem 3.28, there exists a positive integer

k1 and some M > 0 such that

∥∥T kU,V,α,β − PU⊥∩V ⊥∥∥ ≤Mνk, for all k ≥ k1.

Let k0 ≥ k1 be a positive integer such that(µ
ν

)k
≥M‖x0 − x∗‖, for all k ≥ k0.

Then, we deduce that

‖xk − x∗‖ ≤
∥∥T kU,V,α,β − PU⊥∩V ⊥∥∥ ‖x0 − x∗‖ ≤Mνk‖x0 − x∗‖ ≤ µk,

for all k ≥ k0, which proves the second inequality in (3.36).

By Proposition 3.8 and the translation formula for projections in Proposition 1.2(iv),

we can deduce that

PU
(
z + PFixTU−z,V−z,α,β(x0)

)
= PU∩V (z).

3.2. Optimal rates of linear convergence for two subspaces 97

Thus, the first inequality in (3.36) is a consequence of this, and the linearity and nonex-

pansiveness of PU . Indeed

‖PU(z + xk)− PU∩V (z)‖ = ‖PU(z + xk)− PU(z + PFixTU−z,V−z,α,β(x0))‖

= ‖PU(xk − PFixTU−z,V−z,α,β(x0))‖ ≤ ‖xk − PFixTU−z,V−z,α,β(x0)‖,

which completes the proof.

Remark 3.32. The convergence of AAMR for arbitrary closed and convex sets was only

guaranteed for the shadow sequence when α = 1 (see Theorem 3.17). Observe that Corol-

lary 3.31 extends this result for the case of finte-dimensional spaces since it proves the

convergence of both the original and the shadow sequence even when α = 1.

We now look for the values of the parameters α and β, in order to minimize the rate

of convergence of the AAMR method obtained in Theorem 3.28.

Theorem 3.33. The infimum of the linear convergence rates of the AAMR operator Tα,β

attains its smallest value at α? = 1 and β? = 1
1+sin θF

, where θF is the Friedrichs angle

between U and V ; i.e., it holds

1− sin θF
1 + sin θF

= γ (T1,β?) ≤ γ (Tα,β) for all (α, β) ∈]0, 1]×]0, 1[.

Furthermore, γ (T1,β?) is an optimal linear convergence rate if and only if θF = π
2
.

Proof. Let us look for the values of parameters α and β that minimize the rate γ(Tα,β)

given by (3.32). Define the sets D :=]0, 1]×]0, 1[,

D1 :=

{
(α, β) ∈ D : β <

1

1 + sF

}
,

D2 :=

{
(α, β) ∈ D :

1

1 + sF
≤ β ≤ 1

1 + s2
F

or α ≥ 1− β(1 + s2
F)

β (4(1− β)2 − s2
F)
, β >

1

1 + s2
F

}
,

D3 :=

{
(α, β) ∈ D : α <

1− β(1 + s2
F)

β (4(1− β)2 − s2
F)
, β >

1

1 + s2
F

}
,

and the functions

Γ1(α, β) := 1 + 2αβ

(
βc2

F − 1 + cF

√
β2c2

F − 2β + 1

)
, for (α, β) ∈ D1,

Γ2(α, β) :=
√

4(1− α)αβ2c2
F + (1− 2αβ)2, for (α, β) ∈ D,

Γ3(α, β) := 1− 4αβ(1− β), for (α, β) ∈ D,

98 Chapter 3. The averaged alternating modified reflections method

having D = D1 ∪ D2 ∪ D3. Hence, we can define the convergence rate in terms of the

parameters α and β through the function

Γ(α, β) := γ(Tα,β) =

Γ1(α, β), if (α, β) ∈ D1,

Γ2(α, β), if (α, β) ∈ D2,

Γ3(α, β), if (α, β) ∈ D3,

see Figure 3.16.

D1 D2 D3 β =
1

1 + sF
β =

1

1 + s2F
αβ

(
4(1− β)2 − s2F

)
= 1− β(1 + s2F)

0.0 0.2 0.4 0.6 0.8 1.0

β

0.0

0.2

0.4

0.6

0.8

1.0

α

(a) Friedrichs angle: π
6 radians

0.0 0.2 0.4 0.6 0.8 1.0

β

0.0

0.2

0.4

0.6

0.8

1.0

α

(b) Friedrichs angle: π
3 radians

0.0 0.2 0.4 0.6 0.8 1.0

β

0.0

0.2

0.4

0.6

0.8

1.0

α

(c) Friedrichs angle: π
2 radians

Figure 3.16: Piecewise domain of the function Γ(α, β) for three different values of the angle.

The function Γ is piecewise defined, continuous and differentiable on the interior of

each of the three regions D1, D2 and D3, but is not differentiable on the boundaries. Let

us analyze the three problems of minimizing the function Γ over the closure of each of the

three pieces. The gradient of the functions Γ1, Γ2 and Γ3 are given by

∇Γ1(α, β) =

 2β
(
βc2

F − 1 + cF
√
β2c2

F − 2β + 1
)

2α
(
βc2

F − 1 + cF
√
β2c2

F − 2β + 1
)(

βcF+
√
β2c2F−2β+1√

β2c2F−2β+1

) ,

∇Γ2(α, β) =
1√

4(1− α)αβ2c2
F + (1− 2αβ)2

(
2β (βc2

F − 1 + 2αβ(1− c2
F))

2α (2βc2
F − 1 + 2αβ(1− c2

F))

)
,

∇Γ3(α, β) =

(
−4β (1− β)

−4α (1− 2β)

)
.

3.2. Optimal rates of linear convergence for two subspaces 99

To minimize Γ over D1, first observe that for any (α, β) ∈ D1 we have that β < 1
1+sF

and thus β2c2
F − 2β + 1 > 0. Then Γ1 is smooth in D1, and we further assert that

∂Γ1

∂α
(α, β) < 0,

∂Γ1

∂β
(α, β) < 0, for all (α, β) ∈ D1. (3.37)

Indeed, on the one hand, since c2
F < 1, then βc2

F − 1 + cF
√
β2c2

F − 2β + 1 < 0. On the

other hand, one has βcF +
√
β2c2

F − 2β + 1 ≥ 0, with equality if and only if cF = 0 and

β = 1
2
. In this case, the point has the form

(
α, 1

2

)
/∈ D1 for α ∈]0, 1]. We have then

shown that (3.37) holds, and thus
(

1, 1
1+sF

)
becomes the unique minimum of Γ over D1.

Let us consider now the problem of minimizing Γ over D2. To address this problem,

we consider two cases. Suppose first that cF = 0 and observe that

Γ2(α, β) =
√

(1− 2αβ)2 ≥ 0, for all (α, β) ∈ D2,

having Γ2(α, β) = 0 if and only if 2αβ = 1. Since
(
1, 1

2

)
is the only point in D2 satisfying

this equation, we deduce that it is the unique minimum.

Suppose now that cF > 0. In this case, we claim that Γ2 attains its minimimum over

the region D2 ∪D3 = [0, 1] ×
[

1
1+sF

, 1
]

at the point
(

1, 1
1+sF

)
∈ D2, and so does Γ over

D2. Indeed, observe that Γ2 is smooth on the interior of the set D2 ∪D3. Moreover, ∇Γ2

only vanishes in D at the point (0, 0). Therefore, the minimum has to be attained at

some point in the boundary. Note that, for all β ∈
[

1
1+sF

, 1
]
, the following hold.

(i) Γ2(0, β) = 1.

(ii) Γ2(1, β) = 2β − 1, which attains its minimum at β = 1
1+sF

.

(iii) The function α 7→ Γ2(α, β) is the square root of a positive non-degenerated convex

parabola,

α 7→ Γ2(α, β) =
√

4β2s2
Fα

2 − 4β(1− βc2
F)α + 1;

which attains its minimum at α?(β) :=
1−βc2F
2βs2F

. Since α?
(

1
1+sF

)
= 1+sF

2sF
≥ 1, we

have

Γ2

(
1,

1

1 + sF

)
< Γ2

(
α,

1

1 + sF

)
, for all α ∈ [0, 1] .

On the other hand, α?(1) = 1
2
, which implies

Γ2

(
1

2
, 1

)
< Γ2(α, 1), for all α ∈ [0, 1] .

100 Chapter 3. The averaged alternating modified reflections method

Then, noting that

Γ2

(
1,

1

1 + sF

)
=

1− sF
1 + sF

< cF = Γ2

(
1

2
, 1

)
,

we have shown by (i)–(iii) that Γ2 attains its minimum over D2 ∪D3 at
(

1, 1
1+sF

)
∈ D2,

as claimed.

Finally, observe that if (α, β) ∈ D3, it holds that 1
2
< β < 1. Then

∂Γ3

∂α
(α, β) < 0,

∂Γ3

∂β
(α, β) > 0, for all (α, β) ∈ D3.

Thus, there exists some point (α?3, β
?
3) ∈ D3 with α?3β

?
3 (4(1− β?3)2 − s2

F) = 1− β?3(1 + s2
F)

such that

Γ3(α?3, β
?
3) < Γ3(α, β), for all (α, β) ∈ D3.

Note that (α?3, β
?
3) lies on the boundary curve between D2 and D3. Since Γ is continuous

on D, it holds that Γ2(α?3, β
?
3) = Γ3(α?3, β

?
3) and hence,

Γ

(
1,

1

1 + sF

)
≤ Γ(α?3, β

?
3) < Γ(α, β), for all (α, β) ∈ D3.

Hence, all the reasoning above proves that

argmin
(α,β)∈D

Γ(α, β) =

(
1,

1

1 + sF

)
,

with Γ
(

1, 1
1+sF

)
= 1−sF

1+sF
. Finally, by the last assertion in Theorem 3.28, γ

(
T1, 1

1+sF

)
is

an optimal linear convergence rate if and only if cF = 0, as claimed.

3.2.2 Comparison with other projection methods

We compare now the rate of AAMR with optimal parameters obtained in Theorem 3.33

with the rates of AP, SP and DR, as well as the ones of their relaxed variants in Theo-

rems 2.8 and 2.13. We summarize the key features of these schemes in Table 3.1, where

we recall the operator defining the iteration of each method, as well as the optimal para-

meters and rates of convergence when these schemes are applied to linear subspaces. Note

that all these rates only depend on the Friedrichs angle θF between the subspaces (this is

not the case for PRAP, see Theorem 2.8(ii), so it has not been taken into consideration).

3.2. Optimal rates of linear convergence for two subspaces 101

Method Optimal parameter(s) Rate

Alternating Projections
– cos2 θF

AP = PV PU

Simultaneous Projections
– 1

2 + 1
2 cos θF

SP = 1
2 (PV + PU)

Relaxed Alternating Projections
α? = 2

1+sin2 θF
1−sin2 θF
1+sin2 θFRAP = (1− α)I + αPV PU

Generalized Alternating Projections α? = 1
1−sin θF
1+sin θF

GAP = (1− α)I + α (α2PV + (1− α2)I) (α1PU + (1− α1)I) α?1 = α?2 = 2
1+sin θF

Generalized Douglas–Rachford
α? = 1

2 (DR) cos θF
GDR = (1− α)I + α(2PV − I)(2PU − I)

Averaged Alternating Modified Reflections
α? = 1, β? = 1

1+sin θF
1−sin θF
1+sin θF

AAMR = (1− α)I + α(2βPV − I)(2βPU − I)

Table 3.1: Rates of convergence with optimal parameters of AP, SP, RAP, GAP, GDR and
AAMR when they are applied to two subspaces.

On the one hand, we observe that the rates with optimal parameters for AAMR

and GAP coincide. The reason for this is discussed in Section 3.2.2.1, where under

some conditions, we show that the shadow sequences of these methods coincide for linear

subspaces (Theorem 3.34). On the other hand, we note that the rate for AAMR/GAP is

considerably smaller than the one of other methods, see Figure 3.17.

0 π

8

π

4
3π

8

π

2

Friedrichs angle (in radians)

0.0

0.2

0.4

0.6

0.8

1.0

R
at

e
of

co
n
ve

rg
en

ce

AP

SP

RAP

DR

AAMR ≡ GAP

Figure 3.17: Comparison of the rates of linear convergence with optimal parameters of AP,
SP, RAP, DR, AAMR and GAP.

102 Chapter 3. The averaged alternating modified reflections method

3.2.2.1 Relationship between AAMR and GAP for subspaces

Observe in Table 3.1 that, apart from the fact that the rates of GAP and AAMR coincide,

their optimal parameters are closely related, in the sense that

α?AAMR = α?GAP and α?1,GAP = α?2,GAP = 2β?AAMR. (3.38)

In general, if the parameters defining the AAMR and GAP schemes are chosen so that

they satisfy (3.38), then both methods turn out to be strongly connected when applied

to two subspaces. This is formally stated in the following result.

Theorem 3.34. Let U, V ⊆ Rn be two closed subspaces and let z ∈ Rn. Set x0 = 0

and let {xk}∞k=0 be the sequence generated by AAMR (3.3) with parameters α ∈]0, 1] and

β ∈]0, 1[. Set z0 = z and let {zk}∞k=0 be the sequence generated by GAP (2.12) with

parameters α and α1 = α2 = 2β. Then, for all nonnegative integer k, one has

PU(xk + z) = PU(zk) and PV (xk) = (2β − 1)PV (zk − z). (3.39)

Proof. Using the linearity of the projection operator onto subspaces (Proposition 1.11),

we deduce that the AAMR iteration (3.3) takes the form

xk+1 = (1− α)xk + α(2βPV−z − I)(2βPU−z − I)(xk)

= (1− α)xk + α(2βPV−z − I) (2β (PU(xk + z)− z)− xk)

= (1− α)xk + α (2βPV−z (2β (PU(xk + z)− z)− xk)− 2β (PU(xk + z)− z) + xk)

= xk + 2αβ (PV (2β (PU(xk + z)− z)− xk + z)− PU(xk + z))

= xk + 2αβ (2βPV PU(xk + z) + (1− 2β)PV (z)− PV (xk)− PU(xk + z)) . (3.40)

To simplify the notation, let η := 2β. We shall prove (3.39) by induction. Since both

equalities clearly hold for k = 0, we can assume that they are valid for some k ≥ 0.

By (3.40), the sequence generated by the AAMR scheme satisfies

PU(xk+1) = PU(xk) + αη
(
ηPUPV PU(xk + z)

+ (1− η)PUPV (z)− PUPV (xk)− PU(xk + z)
)

=
(
αη2PUPV PU − αηPUPV + (1− αη)PU

)
(xk)

+ α
(
η2PUPV PU + η(1− η)PUPV − ηPU

)
(z), (3.41)

3.2. Optimal rates of linear convergence for two subspaces 103

and,

PV (xk+1) = PV (xk) + αη ((η − 1)PV PU(xk + z) + PV ((1− η)z − xk))

= αη(η − 1)PV PU(xk + z) + PV (αη(1− η)z + (1− αη)xk) . (3.42)

Thanks to the linearity of the projectors onto subspaces and using α1 = α2 = η, the GAP

iteration (2.12) takes the form

zk+1 = (1− αη(2− η)) zk + α
(
η2PV PUzk + η(1− η)PV zk + η(1− η)PUzk

)
;

and thus this scheme verifies

PU(zk+1) =
(
αη2PUPV PU + αη(1− η)PUPV + (1− αη)PU

)
(zk), (3.43)

and

PV (zk+1) = (1− αη)PV (zk) + αηPV PU(zk). (3.44)

Then, by (3.42), the induction hypothesis (3.39) and (3.44), we obtain

PV (xk+1) = αη(η − 1)PV PU(zk) + (1− αη)PV (xk) + PV (αη(1− η)z)

= αη(η − 1)PV PU(zk) + (1− αη)(η − 1)PV (zk − z) + PV (αη(1− η)z)

= (η − 1) (αηPV PU(zk) + (1− αη)PV (zk)) + (1− η)PV (z)

= (η − 1)PV (zk+1 − z),

which proves the second equation in (3.39) for k+ 1. Finally, by (3.43), (3.39) and (3.41),

we have that

PU(zk+1) = αη2PUPV PU(xk + z) + αηPUPV (−xk + (1− η)z) + (1− αη)PU(xk + z)

=
(
αη2PUPV PU − αηPUPV + (1− αη)PU

)
(xk)

+ α
(
η2PUPV PU + η(1− η)PUPV − ηPU

)
(z) + PU(z) = PU(xk+1 + z),

which proves the first equation in (3.39) for k + 1 and completes the proof.

Theorem 3.34 shows that, for subspaces, the shadow sequences of GAP and AAMR

coincide when α1 = α2 = 2β and the starting point of AAMR is chosen as x0 = 0; see

Figure 3.18(a) for a simple example in R2. This is not the case for general convex sets,

as shown in Figure 3.18(b).

104 Chapter 3. The averaged alternating modified reflections method

U

V

z = z0
x1 + z

x2 + z

···

x1
x2

···

z1z2···

w1
w2

···

(a) U and V are two lines in R2. Then PU (xk +
z) = PU (zk) and these converge to PU∩V (z). We
also represent wk := (2β − 1)(zk − z)

AB

z = z0

x1 + z

x2 + z···
z1

z2···

PA∩Bz

(b) B is a line but A is a halfspace. The sequence
{xk + z}∞k=0 converges to PA∩B(z), while {zk}∞k=0

only converges to some point in A ∩B

Figure 3.18: Graphical representation of Theorem 3.34 for two subspaces (a) and failure of
the result for two arbitrary closed and convex sets (b). The sequence {xk + z}∞k=0 is generated
by AAMR with x0 = 0, while the sequence {zk}∞k=0 is generated by GAP with z0 = z.

3.2.3 Computational experiments

In this section we demonstrate the theoretical results obtained in the previous sections

with two different numerical experiments. In both of them we considered randomly gene-

rated subspaces U and V in R50 with U ∩ V 6= {0}.

3.2.3.1 Rate of convergence with fixed parameters

The purpose of our first computational experiment is to exhibit the piecewise expression

of the convergence rate γ(Tα,β) given in Theorem 3.28. To this aim, we generated 500

pairs of random subspaces. For each pair of subspaces, we chose 10 random starting points

with ‖x0‖ = 1. Then, for each of these instances, we ran the AAMR method with α = 0.8

and β ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. The algorithm was stopped when the shadow sequence

satisfies

‖PU(xk + x0)− PU∩V (x0)‖ < ε := 10−8, (3.45)

where (xk)
+∞
k=0 is the sequence iteratively defined by (3.3) with z = x0. According to Corol-

lary 3.31, for any µ ∈]γ(Tα,β), 1[, the left-hand side of (3.45) is bounded by µk for n big

enough. Therefore, an estimate of the maximum number of iterations is given by

log ε

log γ(Tα,β)
. (3.46)

3.2. Optimal rates of linear convergence for two subspaces 105

The results are shown in Figure 3.19, where the points represent the number of iterations

required by AAMR to satisfy (3.45), and the lines correspond to the estimated upper

bounds given by (3.46). We clearly observe that the algorithm behaves in accordance

with the theoretical rates. We emphasize the fact that (3.46) is expected to be a good

upper bound on the number of iterations only when this number is sufficiently large. We

can indeed find a few instances in the plot, especially those which require a small number

of iterations, exceeding its estimated upper bound.

0.2 0.4 0.6 0.8 1.0 1.2

Friedrichs angle (in radians)

101

102

103

104

N
u

m
b

er
o
f

it
er

at
io

n
s

β=0.5

β=0.6

β=0.7

β=0.8

β=0.9

Figure 3.19: Number of iterations required to converge for the AAMR algorithm with α = 0.8
and five different values of the parameter β, with respect to the Friedrichs angle. The lines
correspond to the approximate upper bounds given by (3.46) and the theoretical rates (3.32).

3.2.3.2 Behavior of the algorithms with optimal parameters

In our second experiment we compare the performance of AP, SP, RAP, DR and AAMR,

when their parameters are selected to be optimal (see Table 3.1). For 100 pairs of sub-

spaces, we generated 50 random starting points with ‖x0‖ = 1. For a fair comparison,

we monitored the shadow sequence for all the algorithms. We also used the stopping

criterion (3.45), with ε = 10−8. The results of this experiment are summarized in Fi-

gure 3.20, where we show in three different graphics the median, the difference between

the maximum and the median, and the coefficient of variation of the number of iterations

needed to converge for each pair of subspaces.

106 Chapter 3. The averaged alternating modified reflections method

10
−1 10

0

Friedrichs angle (in radians)

10
1

10
2

10
3

10
4

M
ed

ia
n

of
it

er
a
ti

on
s

AP

SP

RAP

DR

AAMR

10
−1 10

0

Friedrichs angle (in radians)

10
0

10
1

10
2

10
3

M
ax

-m
ed

ia
n

o
f

it
er

at
io

n
s

AP

SP

RAP

DR

AAMR

10
−1 10

0

Friedrichs angle (in radians)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

C
o
eff

.
of

va
ri

at
io

n
of

it
er

at
io

n
s AP

SP

RAP

DR

AAMR

Figure 3.20: Median, difference between the maximum and the median, and coefficient of
variation of the required number of iterations with respect to the Friedrichs angle of AP, SP,
RAP, DR and AAMR for their respective optimal parameters.

3.3. Extension to monotone operator theory 107

As expected, since the rate of convergence of AAMR is the smallest amongst all the

compared methods, this algorithm is clearly the fastest, particularly for small angles.

Moreover, we can observe that AAMR is one of the most robust methods (together with

RAP), which makes the median to be a good representative of the rate of convergence.

Remark 3.35. In a more practical context, the AAMR algorithm has been recently

employed in [32] to solve a continuous-time optimal control problem, under the name

Aragón Artacho–Campoy (AAC) algorithm. Their numerical results show a very good

performance of the algorithm, compared to the other methods considered. Moreover, the

optimal parameters in their tests are in accordance with that stated in Theorem 3.33,

since the best choice was α = 1 and some β ∈ [0.5, 1[depending on the problem.

3.3 Extension to monotone operator theory

The AAMR algorithm has been shown to be a modification of the Douglas–Rachford

algorithm, allowing to solve best approximation problems rather than just feasibility ones.

As explained in Section 2.2.2.5, the DR algorithm can be generally applied to maximally

monotone operators, where it solves the sum problem (2.22). The objective of this section

is to extend the AAMR scheme to this more general context. As explained in Remark 2.24,

the generalized version of a best approximation problem (3.1), can be stated as

Find w = JA+B(z), (3.47)

for some maximally monotone operators A,B : H⇒ H and any z ∈ ran(Id +A+B).

The AAMR method can be naturally extended from the convex feasibility framework

to the context of maximally monotone operators by considering resolvents instead of

projectors in the AAMR operator (2.19). The iterative scheme is thus given by

xk+1 := (1− α)xk + α(2βJB − Id)(2βJA − Id)(xk), k = 0, 1, 2, . . . , (3.48)

with α ∈]0, 1] and β ∈]0, 1[. The Douglas–Rachford splitting algorithm (2.23) can be

viewed now as a limiting case of (3.48) when β = 1.

The analysis of AAMR for monotone operators presented in this section is inspired

by the work of Combettes [77], where he proposed the algorithm in (2.32) for computing

the resolvent of the sum (see Remark 2.24(i)). Our approach consists in reformulating

the AAMR iteration so that it can be viewed as the one generated by the DR splitting

algorithm for finding a zero of the sum of an appropriate modification of the operators.

108 Chapter 3. The averaged alternating modified reflections method

3.3.1 AAMR splitting algorithm for maximally monotone operators

We begin this section with the definition of a modified reflected resolvent, which is the

natural extension of the modified reflector introduced in Definition 3.2.

Definition 3.36 (Modified reflected resolvent). Let A : H ⇒ H be an operator.

Given any β ∈]0, 1], the operator 2βJA − Id is called a modified reflected resolvent of A.

Our analysis is mainly based on the connection of the modified reflected resolvent with

the classical reflected resolvent of a different operator, which we define next.

Definition 3.37 (Strengthening of an operator). Given an operator A : H⇒ H and

given any β ∈]0, 1[, we define the β-strengthening of A as the operator A(β) : H ⇒ H
defined by

A(β)(x) := (A+ (1− β) Id)

(
x

β

)
, for all x ∈ H.

Proposition 3.38. Let A : H⇒ H be an operator and let β ∈]0, 1[. Then,

JA(β) = βJA.

Further, A is monotone if and only if A(β) is 1−β
β

-strongly monotone, and A is maximally

monotone if and only if A(β) is so.

Proof. The β-strengthening of A can be expressed as

A(β) = A ◦
(

1

β
Id

)
+

1− β
β

Id . (3.49)

Now observe that,

ran
(
Id +A(β)

)
= ran

(
(Id +A) ◦

(
1

β
Id

))
= ran (Id +A) . (3.50)

For any x ∈ dom JA(β) = dom JA and w ∈ H, we have

w ∈ JA(β)(x)⇔ x ∈
(
Id +A(β)

)
(w)⇔ x ∈ (Id +A)

(
w

β

)
⇔ w

β
∈ JA(x)⇔ w ∈ βJA(x),

which proves that JA(β) = βJA, as claimed.

By Lemma 1.19, A is monotone if and only if A ◦
(

1
β

Id
)

is monotone, so the assertion

about the 1−β
β

-strong monotonicity of A(β) directly follows from (3.49). Finally, A is

maximally monotone if and only if A(β) is so, according to Theorem 1.20 and (3.50).

3.3. Extension to monotone operator theory 109

Proposition 3.38 establishes strong monotonicity of A(β) when A is monotone. The set

of zeros of a strongly monotone operator is known to be at most a singleton (see Proposi-

tion 1.29). Hence, the sum of the β-strengthenings of two monotone operators will have at

most one zero. In the next result, we characterize this set for any pair of general operators.

Proposition 3.39. Let A,B : H ⇒ H be two operators and let β ∈]0, 1[. Then, the set

of zeros of the sum of their β-strengthenings A(β) and B(β) is given by

zer
(
A(β) +B(β)

)
= βJ 1

2(1−β) (A+B)(0).

Consequently, zer
(
A(β) +B(β)

)
6= ∅ if and only if 0 ∈ ran

(
Id + 1

2(1−β)
(A+B)

)
.

Proof. For any x ∈ H, one can easily check that x ∈ zer
(
A(β) +B(β)

)
if and only if

0 ∈ A(β)(x) +B(β)(x) ⇔ 0 ∈ A
(
x

β

)
+B

(
x

β

)
+ 2(1− β)

x

β

⇔ 0 ∈ x

β
+

1

2(1− β)
(A+B)

(
x

β

)
⇔ x

β
∈ J 1

2(1−β) (A+B)(0),

which is equivalent to x ∈ βJ 1
2(1−β) (A+B)(0) and proves the result.

We are ready to prove our main result, which shows that the AAMR method can be

applied to compute the resolvent of the sum of two maximally monotone operators.

Theorem 3.40 (AAMR splitting algorithm). Let A,B : H ⇒ H be two maximally

monotone operators, let γ > 0 and let (λk)
∞
k=0 be a sequence in [0, 1]. Fix any β ∈]0, 1[

and suppose that z ∈ ran
(

Id + γ
2(1−β)

(A+B)
)

. Given any x0 ∈ H, set

xk+1 = (1− λk)xk + λk(2βJγB−z − Id)(2βJγA−z − Id)(xk), k = 0, 1, 2, (3.51)

Then there exists x? ∈ Fix
(
(2βJγB−z − Id)(2βJγA−z − Id)

)
such that the following hold.

(a) If
∑∞

k=0 λk(1− λk) = +∞, then

(i) (xk+1 − xk)∞k=0 converges strongly to 0;

(ii) (xk)
∞
k=0 converges weakly to x?, and JγA(z + x?) = J γ

2(1−β) (A+B)(z).

(b) If
∑∞

k=0 λk(1− λk) = +∞ or λk = 1, for all k = 0, 1, . . ., then

(JγA(z + xk))
∞
k=0 converges strongly to J γ

2(1−β) (A+B)(z).

110 Chapter 3. The averaged alternating modified reflections method

Proof. Since A and B are maximally monotone, by Lemma 1.19, the operators γA−z

and γB−z are also maximally monotone. Thus, in view of Proposition 3.38, the iterative

scheme in (3.51) becomes

xk+1 = (1− λk)xk + λkR(γB−z)(β)R(γA−z)(β)(xk), k = 0, 1, 2, . . . ,

with (γA−z)
(β) and (γB−z)

(β) maximally monotone and β
1−β -strongly monotone. Now

observe that z ∈ ran
(

Id + γ
2(1−β)

(A+B)
)

if and only if there exists w ∈ H such that

z = w +
γ

2(1− β)
(A+B) (w) ⇔ 0 = w − z +

1

2(1− β)
γ (A−z +B−z) (w − z)

⇔ 0 ∈ ran

(
Id +

1

2(1− β)
(γA−z + γB−z)

)
.

Hence, Proposition 3.39 implies

zer
(
(γA−z)

(β) + (γB−z)
(β)
)

=
{
βJ γ

2(1−β) (A−z+B−z)(0)
}
6= ∅. (3.52)

We are then in position to apply Theorem 2.14(i)–(ii), which yields the existence of

x? ∈ Fix
(
R(γB−z)(β)R(γA−z)(β)

)
= Fix

(
(2βJγB−z − Id)(2βJγA−z − Id)

)
such that (xk+1 − xk)∞k=0 → 0, (xk)

∞
k=0 ⇀ x? and

J(γA−z)(β)(x
?) ∈ zer

(
(γA−z)

(β) + (γB−z)
(β)
)
. (3.53)

According to Proposition 3.38, together with Lemma 1.27, we have that

J(γA−z)(β)(x) = βJγA−z(x) = β (JγA(x+ z)− z) , for all x ∈ H; (3.54)

and also by Lemma 1.27,

J γ
2(1−β) (A−z+B−z)(0) = J(γ

2(1−β) (A+B))
−z

(0) = J γ
2(1−β) (A+B)(z)− z. (3.55)

Therefore, by combining (3.52), (3.53), (3.54) and (3.55), we obtain that

JγA(z + x?) = J γ
2(1−β) (A+B)(z),

and thus statement (a) has been proved.

3.3. Extension to monotone operator theory 111

Finally, thanks to the strong monotonicity of (γA−z)
(β), we can use Theorem 2.14(iv)

if
∑∞

k=0 λk(1 − λk) = +∞, or Theorem 2.15 if λk = 1, to get that
(
J(γA−z)(β)(xk)

)∞
k=0

converges strongly to the unique zero of (γA−z)
(β) +(γB−z)

(β). Again, taking into account

(3.52), (3.54) and (3.55), this is equivalent to

(β (JγA(z + xk)− z))∞k=0 → β
(
J γ

2(1−β) (A+B)(z)− z
)
,

which implies (b) and completes the proof.

Let us show in the next result how the convergence of the AAMR method in the

convex feasibility setting, stated in Theorem 3.17, can be derived as a direct consequence

of Theorem 3.40 when we turn from resolvents to projectors.

Corollary 3.41 (AAMR for best approximation problems). Let A,B ⊆ H be

nonempty, closed and convex sets. Let (λk)
∞
k=0 be a sequence in [0, 1] and fix any β ∈]0, 1[.

Given z ∈ H, choose any x0 ∈ H and consider the sequence defined by

xk+1 = (1− λk)xk + λk(2βPB−z − Id)(2βPA−z − Id)(xk), k = 0, 1, 2,

If A∩B 6= ∅ and z−PA∩B(z) ∈ (NA +NB) (PA∩B(z)), then the following assertions hold.

(a) If
∑∞

k=0 λk(1− λk) = +∞, then

(i) (xk+1 − xk)∞k=0 is strongly convergent to 0;

(ii) (xk)
∞
k=0 is weakly convergent to a point x? ∈ Fix ((2βPB−z − Id)(2βPA−z − Id))

such that

PA(z + x?) = PA∩B(z).

(b) If
∑∞

k=0 λk(1− λk) = +∞ or λk = 1, for all k = 0, 1, . . ., then

(PA(z + xk))
∞
k=0 converges strongly to PA∩B(z).

Proof. We know from Examples 1.18(ii) and 1.25(ii) that the normal cones NA and NB

are maximally monotone operators with JNA = PA and JNB = PB. Moreover, it can be

easily checked that the normal cones to the displaced sets A− z and B − z coincide with

the inner (−z)-perturbations of NA and NB, i.e.,

N(A−z) = (NA)−z and N(B−z) = (NB)−z .

112 Chapter 3. The averaged alternating modified reflections method

Then, according to Example 1.25(ii), it holds that J(NA)−z
= PA−z and J(NB)−z

= PB−z.

Now observe that

z − PA∩B(z) ∈ (NA +NB) (PA∩B(z)) =
1

2(1− β)
(NA +NB) (PA∩B(z)) ,

which implies that z ∈ ran
(

Id + 1
2(1−β)

(NA +NB)
)

and

PA∩B(z) = J 1
2(1−β) (NA+NB)(z).

Hence, the result follows from applying Theorem 3.40 to NA and NB, with γ = 1.

Example 3.42 (Proximity operator of the sum of two functions). Given two

proper lower semicontinuous convex functions f, g : H →]−∞,+∞], Theorem 3.40 can

be applied to their subdifferentials ∂f and ∂g. Hence, given a point z ∈ H, this gives rise

to a sequence (xk)
∞
k=0 such that

(
proxf (z + xk)

)∞
k=0

→ prox 1
2(1−β) (f+g)(z),

provided that

z ∈ ran

(
Id +

1

2(1− β)
(∂f + ∂g)

)
. (3.56)

Note that the latter holds for all z ∈ H when ∂f +∂g = ∂(f +g), so a sufficient condition

for (3.56) is

0 ∈ sri(dom f − dom g);

see, e.g., [35, Corollary 16.48].

Remark 3.43. According to Theorem 3.40, the AAMR splitting algorithm solves (3.47),

which can be seen as a generalization of the best approximation problem described by two

closed and convex sets (Corollary 3.41). However this is not the only possible generaliza-

tion. Given two convex sets C1, C2 ⊆ H, we know by (2.24) that C1∩C2 = zer(NC1 +NC2).

Hence, an alternative generalization of (3.1) is

Find w = Pzer(A+B)(z), (3.57)

with A and B maximally monotone operators and z ∈ H. In the recent work by Alwadani,

Bauschke, Moursi and Wang [5], the authors have complemented our analysis by establis-

hing that the underlying curve defined by the AAMR splitting algorithm converges to the

closest zero of the sum (see [5, Theorem 3.4]), solving thus problem (3.57).

3.3. Extension to monotone operator theory 113

3.3.2 Parallel AAMR splitting for the resolvent of a finite sum

In this section we discuss how to implement the AAMR scheme to compute the resolvent

of a finite sum of maximally monotone operators. Given a collection of r operators

Ai : H⇒ H, i = 1, 2, . . . , r, and z ∈ ran (Id +
∑r

i=1Ai), the problem of interest is now

Find w ∈ J∑r
i=1 Ai

(z). (3.58)

According to Proposition 2.16, the product space reformulation is a powerful trick

for reducing the problem of finding zeros of the sum of finitely many operators to an

equivalent problem involving only two, while keeping their monotonicity properties. As

we show next, it turns out to be very useful in our context, where we are interested in

computing the resolvent of the sum. The following proposition can be seen as an extension

of Lemma 3.25 for maximally monotone operators.

Proposition 3.44. Let Ai : H⇒ H be maximally monotone operators for i = 1, 2, . . . , r.

Let H be the product Hilbert space as in (2.3), and consider the diagonal set D ⊂ H
defined in (2.4) and the product operator A = A1 × · · · × Ar as in (2.25). For any

x = j(x) = (x, x, . . . , x) ∈D, we have

JA+ND
(x) = j

(
J 1
r

∑r
i=1 Ai

(x)
)
.

Consequently,

ran (Id +A+ND) ∩D = j

(
ran

(
Id +

1

r

r∑
i=1

Ai

))
.

Proof. Fix x = (x, x, . . . , x) ∈D. To prove the direct inclusion, pick any y ∈ JA+ND
(x).

Then, we have that

x ∈ y +A(y) +ND(y).

This ensures the nonemptyness ofND(y), and then it necessarily holds that y = j(y) ∈D,

for some y ∈ H. Moreover, there must exist u = (u1, u2, . . . , ur) ∈ H with
∑r

i=1 ui = 0

such that

x ∈ y + Ai(y) + ui, for all i = 1, 2, . . . , r.

By adding up all these equations and dividing by r, we deduce that x ∈ y+ 1
r

∑r
i=1Ai(y),

or equivalently, that

y ∈ J 1
r

∑r
i=1 Ai

(x) .

114 Chapter 3. The averaged alternating modified reflections method

To prove the reverse inclusion, take any y = j(y) with y ∈ J 1
r

∑r
i=1 Ai

(x). Then, for

each i = 1, 2, . . . , r, there exists ai ∈ Ai(y) such that

x = y +
1

r

r∑
i=1

ai ⇔ r(x− y)−
r∑
i=1

ai = 0 ⇔
r∑
i=1

(x− y − ai) = 0.

Set a := (a1, a2, . . . , ar) and u := (u1, u2, . . . , ur), where ui := x − y − ai, for each

i = 1, 2, . . . , r. By construction, we get that x = y + a + u, with a ∈ A(y) and

u ∈ ND(y). This implies y ∈ JA+ND
(x) and completes the proof.

Thanks to Proposition 3.44, problem (3.58) can be fitted within the framework of The-

orem 3.40, allowing us to derive the following parallel splitting algorithm.

Theorem 3.45 (Parallel AAMR splitting algorithm). Let Ai : H⇒ H be maximally

monotone operators for i = 1, 2, . . . , r, let γ > 0 and let (λk)
∞
k=0 be a sequence in [0, 1].

Fix any β ∈]0, 1[and suppose that z ∈ ran
(

Id + γ
2r(1−β)

∑r
i=1Ai

)
. Given r arbitrary

points x1,0, x2,0, . . . , xr,0 ∈ H, set

for k = 0, 1, 2, . . . :
pk = 1

r

∑r
i=1 xi,k,

for i = 1, 2, . . . , r :⌊
xi,k+1 = (1− λk)xi,k + λk

(
2βJγ(Ai)−z − Id

)
(2βpk − xi,k) .

(3.59)

Then the following hold.

(a) If
∑∞

k=0 λk(1− λk) = +∞, then

(i) (xi,k+1 − xi,k)∞k=0 converges strongly to 0, for all i = 1, 2, . . . , r;

(ii) (xi,k)
∞
k=0 converges weakly to xi

? ∈ H, for all i = 1, 2, . . . , r, and

z +
1

r

r∑
i=1

x?i = J γ
2r(1−β)

∑r
i=1 Ai

(z).

(b) If
∑∞

k=0 λk(1− λk) = +∞ or λk = 1, for all k = 0, 1, . . ., then

(z + pk)
∞
k=0 converges strongly to J γ

2r(1−β)
∑r
i=1 Ai

(z).

Proof. Let H be the product Hilbert space as in (2.3) and let D be the diagonal set

defined in (2.4). Consider the product operator A defined as in (2.25), and the normal

3.3. Extension to monotone operator theory 115

cone to the diagonal set ND. By Proposition 2.16(i)–(ii), both operators are maximally

monotone. For each k = 0, 1, 2, . . ., set

xk := (x1,k, x2,k, . . . , xr,k) ∈H and pk := j(pk) ∈D.

Observe that pk = PD(xk) = JND
(xk). Further, set z := j(z) and note that, since D is

a linear subspace and z ∈D, we have

ND = ND−z = (ND)−z = (γND)−z .

Therefore, the iterative scheme in (3.59) can be expressed as

xk+1 = (1− λk)xk + λk
(
2βJγA−z − Id

) (
2βJγ(ND)−z − Id

)
(xk), for k = 0, 1, 2,

According to Proposition 3.44, we have that

z ∈ ran

(
Id +

γ

2r(1− β)

r∑
i=1

Ai

)
⇔ z ∈ ran

(
Id +

γ

2(1− β)
(A+ND)

)
,

and

J γ
2(1−β) (A+ND)(z) = j

(
J γ

2r(1−β)
∑r
i=1 Ai

(z)
)
.

Finally, note that the shadows can be expressed, for any x = (x1, x2, . . . , xr) ∈H, as

JγND
(z + x) = PD(z + x) = j

(
z +

1

r

r∑
i=1

xi

)
.

In particular, JγND
(z + xk) = j(z + pk). Hence, the result follows by applying Theo-

rem 3.40 to A and ND.

Remark 3.46. As done in Corollary 3.41, if the operators involved in Theorem 3.45 are

chosen to be the normal cones to r closed and convex sets C1, C2, . . . , Cr ⊆ H, and z is a

point in H satisfying

z − P⋂r
i=1 Ci

(z) ∈
r∑
i=1

NCi

(
P⋂r

i=1 Ci
(z)
)
,

we can deduce the convergence of the parallel AAMR algorithm established in Theo-

rem 3.26 for finding the projection of the point z onto the intersection of finitely many

sets.

116 Chapter 3. The averaged alternating modified reflections method

3.3.2.1 An alternative parallel splitting

Recall that the AAMR method for two operators (Theorem 3.40) has been shown to be, in

essence, a Douglas–Rachford iteration for finding a zero of the sum of the β-strengthenings.

The following result is a generalization of Proposition 3.39, and characterizes the set of

zeros of the sum of the β-strengthenings of a finite collection of operators. The proof is

completely analogous so it is omitted.

Proposition 3.47. Let Ai : H ⇒ H be some operators for i = 1, 2, . . . , r and fix any

β ∈]0, 1[. Then, the set of zeros of the sum of their β-strengthenings is given by

zer

(
r∑
i=1

A
(β)
i

)
= βJ 1

r(1−β)
∑r
i=1 Ai

(0).

Consequently, zer
(∑r

i=1 A
(β)
i

)
6= ∅ if and only if 0 ∈ ran

(
Id + 1

r(1−β)

∑r
i=1 Ai

)
.

In view of the previous proposition, we derive the following alternative splitting algo-

rithm for computing the resolvent of a finite sum of maximally monotone operators.

Theorem 3.48 (Alternative parallelized AAMR-like splitting algorithm). Let

Ai : H ⇒ H be maximally monotone operators for i = 1, 2, . . . , r, let γ > 0 and let

(λk)
∞
k=0 be a sequence in [0, 1] such that

∑∞
k=0 λk(1 − λk) = +∞. Let β ∈]0, 1[and

suppose that z ∈ ran
(

Id + γ
r(1−β)

∑r
i=1Ai

)
. Given x1,0, x2,0, . . . , xr,0 ∈ H, set

for k = 0, 1, 2, . . . :
pk = 1

r

∑r
i=1 xi,k,

for i = 1, 2, . . . , r :⌊
xi,k+1 = (1− λk)xi,k + λk

(
2βJγ(Ai)−z − Id

)
(2pk − xi,k) .

(3.60)

Then the following hold:

(i) (xi,k+1 − xi,k)∞k=0 converges strongly to 0, for all i = 1, 2, . . . , r;

(ii) (xi,k)
∞
k=0 converges weakly to xi

? ∈ H, for all i = 1, 2, . . . , r, and

z +
1

βr

r∑
i=1

x?i = J γ
r(1−β)

∑r
i=1 Ai

(z);

(iii)
(
z + 1

β
pk

)∞
k=0

converges strongly to J γ
r(1−β)

∑r
i=1 Ai

(z).

3.3. Extension to monotone operator theory 117

Proof. After rewriting the iterative scheme in (3.60) as

xk+1 = (1− λk)xk + λkR(γA−z)(β)RND
(xk), for k = 0, 1, 2, . . . , (3.61)

repeat the proof of Theorem 3.40, using Proposition 3.47 together with Proposition 2.16(iii)

instead of Proposition 3.39. The convergence is thus derived from Theorem 2.14.

Remark 3.49. Two comments concerning Theorem 3.48 are provided next.

(i) Observe that the parallel AAMR-like splitting algorithm in (3.60) differs from the

one in (3.59). Particularly, we can derive an algorithm for projecting onto the inter-

section of finitely many sets which is different from the one stated in Theorem 3.26.

The new algorithm is illustrated in Figure 3.21 (compare it with Figure 3.7).

(ii) Unlike in Theorem 3.45(b), the sequence (λk)
∞
k=0 is not allowed to be constantly

equal to 1 in Theorem 3.48(iii). The reason is that the first resolvent of the DR-like

iteration in (3.61) is computed with respect to ND, rather than (ND)(β). Then, since

ND is not strongly monotone we cannot apply Theorem 2.15, which is the result that

covers the case λk = 1. This could be fixed by reverting the order of the reflected

resolvents. However, in that case the shadow sequence (J(γA−z)(xk))
∞
k=0 6⊂ D, and

thus, it cannot be identified with a sequence in the original space H as in (3.60).

C1

C2

C3

x1,0

x2,0

x3,0

p0

1
β
p0

x1,1

x2,1

x3,1

p1

1
β
p1

2p0 − x1,0

x1,0 − 2p0

RC1(2p0 − x1,0)

PC1∩C2∩C3
z

z = 0

Figure 3.21: Illustration of the AAMR iterative scheme for many sets in Theorem 3.48.

Chapter 4

Solving combinatorial problems with

the Douglas–Rachford algorithm

In this chapter we present some well-known combinatorial problems which, after appro-

priately reformulating them as feasibility problems of the form (2.1), can be successfully

tackled with the Douglas–Rachford algorithm introduced in Section 2.2.2. Namely, those

applications consist of the so-called graph coloring problem and the construction of com-

binatorial designs of circulant type.

The combinatorial nature of the underlying problems yields the nonconvexity of some

of the sets defining the feasibility models. We have then no convergence guarantees

since the general convex theory cannot be applied. Moreover, none of the feasibility

problems presented in this chapter can be cast into any of the particular nonconvex

settings described in Section 2.2.2.6, for which global convergence of the DR iteration

is proved; while local convergence of the algorithm is rather useless when addressing a

combinatorial problem, as the algorithm is never run locally in practice. Nonetheless, as

pointed out in that section, the method has already been successfully applied to nonconvex

(specially combinatorial) problems. This is also the case for the problems in this chapter,

as we shall show by an extensive numerical experimentation.

The goal of this chapter is twofold. Firstly, we present the DR algorithm as a successful

heuristic for solving the considered problems, something that one might find interesting

by itself. Secondly, a better understanding of the behavior of the method onto certain

nonconvex scenarios is acquired. This can provide some insights and play a fundamental

role in the development of new convergence results of the algorithm in nonconvex settings.

The chapter is structured in two sections. In Section 4.1 we focus on a wide variety

of graph coloring problems, where we introduce two different feasibility models of the

problem, and collect various numerical experiments that show the good performance of

119

120 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

the DR algorithm when applied to them. Then, in Section 4.2, we model a general combi-

natorial desing of circulant type as a feasibility problem, with application to constructing

circulant weighing matrices, D-optimal designs and double core Hadamard matrices. New

constructions and computational experiments are also provided.

4.1 Graph coloring problems

4.1.1 Introduction

A graph G = (V,E) is a collection of points V that are connected by links E ⊂ V × V .

The points are usually known as nodes or vertices while the links are called edges, arcs

or lines. An undirected graph is a graph in which the edges have no orientation; that is,

the edges are not ordered pairs of vertices but sets of two vertices.

A proper m-coloring of an undirected graph G is an assignment of one of m possible

colors to each vertex of G such that no two adjacent vertices share the same color. More

specifically, given the set of colors K = {1, . . . ,m}, an m-coloring of G is a mapping

c : V 7→ K, assigning a color to each vertex. We say that c is proper if

c(i) 6= c(j) for all {i, j} ∈ E.

An example of proper 3-coloring of the so-called Petersen graph is depicted in Figure 4.1.

The graph coloring problem consists in determining whether it is possible to find a proper

m-coloring of the graph G. For a basic reference on graph coloring, see e.g. [123].

1

2

3 4

5
6

7

8 9

10

Figure 4.1: A 3-coloring of Petersen graph.

Graph coloring has been used in many practical applications such as timetabling and

scheduling [135], computer register allocation [70, 71], radio frequency assignment [112],

and printed circuit board testing [106]. The graph coloring problem was proved to be

4.1. Graph coloring problems 121

NP-complete [127], so it is reasonable to believe that no polynomial-time exact algorithm

solving these problems can be found. For this reason, a wide variety of heuristics and

approximation algorithms have been developed. For basic references on graph coloring al-

gorithms and applications, see the surveys [102, 148], or the more recent monograph [139].

In this section we show that the Douglas–Rachford algorithm can be successfully

used as a heuristic for solving a wide variety of graph coloring problems when they are

conveniently modeled as feasibility problems. This is not the first time that the DR

scheme has been used to solve graph coloring problems. It was first employed by Elser

et al. in [94], where the authors showed the good performance of the algorithm for edge-

colorings, in particular, colorings that avoid monochromatic triangles. As far as we know,

this is the only instance of a graph coloring problem whose solution with the Douglas–

Rachford algorithm has been studied in the literature. Further, the graph coloring problem

considered in [94] is a very specific problem dealing with the coloring of the edges of

a complete graph, while we consider any possible graph, and we study node-coloring

problems instead of edge-coloring ones.

Before presenting how to reformulate various problems as graph coloring problems,

let us shortly summarize some basic concepts of graph theory. A complete graph is an

undirected graph in which every pair of nodes is connected by an edge. A clique is a

subset of vertices of an undirected graph such that its induced graph is complete. A

maximal clique is a clique that cannot be extended by adding one more vertex. A path is

a sequence of edges that connects a sequence of distinct vertices. A path is said to be a

cycle if there is an edge from the last vertex in the path to the first one.

Example 4.1 (Formulating 3-SAT as 3-coloring). A Boolean variable takes logical

values: True (T) or False (F). A literal is either a variable or its negation (¬). A clause

is a disjunction (∨) of literals. A formula in conjunctive normal form is a conjunction

(∧) of clauses. Given a formula in conjunctive normal form with 3 literals per clause, the

3-SAT (3-satisfiability) problem consists in determining if there exists an assignment of

variables that makes the formula true. Specifically, let x1, . . . , xn be n Boolean variables

and consider m clauses θ1, . . . , θm, where each clause is the disjunction of 3 literals,

θj = tj1 ∨ t
j
2 ∨ t

j
3, for all j = 1, 2, . . . ,m;

with tj1, t
j
2, t

j
3 ∈

⋃n
i=1{xi,¬xi}. Let φ be the formula comprising the conjunction of all the

clauses:

φ = θ1 ∧ θ2 ∧ · · · ∧ θm.

122 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

Then, the 3-SAT problem consists in determining if there exists an assignment of the va-

riables that makes the formula φ true. Consider for instance the following 3-SAT problem

with 3 variables and 2 clauses:

φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) . (4.1)

There are several solutions to φ such as (F, T, F), (T, T, F) or (F, F, T), among others.

A 3-SAT problem can be reduced to a 3-coloring problem by using gadgets. A gadget

is a small graph whose coloring solves some part of the problem. Using a set of gadgets

and connecting them in an appropriate manner, the 3-coloring problem of the full graph

can be made equivalent to solving the 3-SAT problem. We start by creating n+ 1 gadgets,

one for each variable and an additional one for setting the interpretation of the colors.

(a) Create a gadget formed by a complete graph with 3 “color-meaning” nodes named

T, F and G, see Figure 4.2(a). As this gadget is a complete graph, a different color

must be assigned to each node. The color assigned to node T will be interpreted

as True, the color assigned to F as False, and the remaining color assigned to G

(ground node) will not have any special interpretation.

(b) For each variable xi, construct a gadget with 2 connected nodes, one associated to xi

and the other to ¬xi. Link both of them to the node G to create a gadget of the form

in Figure 4.2(b). This gadget forces a logical choice in the value of the variables.

Thus, every variable will be assigned to either T or F, and the assignment of every

variable and its complement will be consistent.

F

G

T

(a) Colors

xi ¬xi

G

(b) Variables

Figure 4.2: Gadgets of the variables and colors.

We present next two different formulations of the gadgets corresponding to the clauses.

4.1. Graph coloring problems 123

(c) For the 4-nodes formulation1, take each clause θ = t1 ∨ t2 ∨ t3 and create the gadget

in Figure 4.3(a) with the nodes associated to t1, t2, t3, F, G, and 4 new nodes. The

new unlabeled nodes do not have any special meaning, but, by the construction of

the gadgets, every 3-coloring of a clause gadget will assign the same color as T to at

least one of the literals t1, t2 or t3. Thus, a valid 3-coloring of the gadget will make

the corresponding clause to be True.

For the 5-nodes formulation2, the process is similar but introduces five new nodes

instead of four: the gadget is shown in Figure 4.3(b).

t1

t2

t3

T

F

(a) 4-nodes

t1

t2

t3

T

(b) 5-nodes

Figure 4.3: Gadgets of the clauses.

(d) Finish building the graph by connecting the clause gadgets together using the edges

from the common gadgets from Figure 4.2. Full graphs for the four and five node

formulations of the 3-SAT problem in (4.1) are shown in Figure 4.4.

The graph resulting from putting all these gadgets together in the 4-nodes formulation

has a total of 3 + 2n+ 4m nodes and 3 + 3n+ 9m edges. Observe that the graph has n+ 1

maximal cliques with 3 nodes, one for each gadget of type (a) and (b). In the 5-nodes

formulation, the resulting graph has a total of 3 + 2n+ 5m nodes and 3 + 3n+ 10m edges.

The number of maximal cliques with 3 nodes has increased up to n+ 1 + 2m, one for each

gadget of type (a) and (c) and two for each gadget of type (c). A 3-coloring of the graph

built under one of these two formulations corresponds to a solution of the associated 3-

SAT problem. A solution to the 3-SAT problem in (4.1) using both formulations is shown

in Figure 4.4.
1We inquired of various experts in the field about the origin of the 4-nodes gadget, but none of them

knew about it. We found it in the class notes prepared by Keith Schwarz [160, p. 27]. As he independently
came up with it and we have not been able to find it elsewhere, we believe K. Schwarz is its originator.

2The gadget corresponding to the 5-nodes formulation is well-known and first appeared in [107, Fig. 1].

124 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

T

F

G

x1

x2

x3

¬x1

¬x2

¬x3

(a) 4-nodes formulation.

T

FG

x1

x2

x3

¬x1

¬x2

¬x3

(b) 5-nodes formulation.

Figure 4.4: Two different formulations of the 3-SAT problem in (4.1) as a 3-coloring problem.
The same solution of the 3-SAT problem is shown for both formulations.

Remark 4.2 (Douglas–Rachford for 3-SAT problems). We shall use the DR algorithm

to solve 3-SAT instances by reformulating them as a 3-coloring problems, as explained

in Example 4.1. With a totally different direct formulation, the Douglas–Rachford method

was first shown to be successful for solving 3-SAT problems in [94].

We present next some generalizations or modifications of the graph coloring problem.

4.1.1.1 Precoloring and list coloring problems

In many practical graph coloring problems, the set of eligible colors for each of the nodes

can be different. This is the case in the precoloring problem, a slight modification of the

graph coloring problem in which a subset of the vertices has been preassigned to some

colors. The task is to color the remaining vertices to obtain a valid coloring of the entire

graph. More generally, in the list coloring problem, each vertex can only be colored from

a list of admissible colors.

The notion of list coloring was independently introduced by Vizing [173], and Erdös,

Rubin and Taylor [97]. Given a graph G = (V,E) and a set of m colors K = {1, . . . ,m},
let L : V ⇒ K be a mapping assigning to each vertex v ∈ V a list of admissible colors

L(v) ⊆ K. Thus, the list coloring problem consists in finding a proper coloring of the

vertices of the graph G verifying that the color assigned to each vertex belongs to its list

of admissible colors; that is,

c(i) 6= c(j) for all {i, j} ∈ E and c(i) ∈ L(i) for all i ∈ V.

4.1. Graph coloring problems 125

Note that an ordinary graph coloring problem is a special case of list coloring where

L(i) = K for every vertex i ∈ V , and so are the precoloring problems, where the precolored

vertices have a list of admissible colors with size one.

List coloring problems can be reduced to standard graph coloring problems. To this

aim, one shall add a complete subgraph with m new nodes, each one representing a color

in K, and connect each vertex i ∈ V with the new nodes that represent the colors not

belonging to L(i). If we denote by |A| the cardinality of a finite set A, the new graph

will have n + m nodes, l? = |E| + m(m−1)
2

+ nm −
∑n

i=1 |L(i)| edges, and an additional

maximal clique of size m. In this way, any valid m-coloring of the extended graph will

lead to a solution for the original list coloring problem. An example of such construction

is shown in Figure 4.5.

c1

c2

c3

2

3

4

5

1

Figure 4.5: List coloring reduced to graph coloring of a wheel graph of 5 nodes with admissible
colors lists L(1) = L(4) = {1, 2, 3}, L(2) = {1}, L(3) = {3}, and L(5) = {2, 3}. Nodes c1, c2 and
c3 represent colors 1, 2 and 3, respectively.

Example 4.3 (Formulating Sudokus as 9-precoloring problems). It is easy to

formulate Sudoku puzzles as graph coloring problems. This kind of puzzles consist in a

9×9 grid, divided in nine 3×3 subgrids, with some entries already prefilled. The objective

is to fill the remaining cells in such a way that each row, each column and each subgrid

contains the digits from 1 to 9 exactly once.

We shall model Sudokus as 9-precoloring problems, with the aim of applying DR. The

construction of the graph is very simple and intuitive. Each cell in the grid shall be

represented by a node. Then, we link two nodes if their respective associated cells lay

in the same row, same column or same subgrid (see Figure 4.6). The graph obtained

contains 81 nodes and 810 edges. Furthermore, a rich maximal clique information is

known. Namely, there are 27 maximal cliques of size 9, one per row, one per column and

one per subgrid.

We associate a color to each of the 9 digits of the puzzle. Since some cells of the

Sudoku are prefilled, this is actually a graph precoloring problem. A valid coloring of the

graph will lead to a solution of the Sudoku, as shown in the example in Figure 4.7.

126 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54

55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72

73 74 75 76 77 78 79 80 81

Figure 4.6: Graph formulation of a Sudoku, with maximal cliques highlighted.

1 7 9

4 7 2

8

7 1 6

3 5

6 4 2

8

5 3 7

7 2 4 6

1
2 3

4
5 6

7
8 9

6

4

9
8

3

7

2

5

1

8
5

7

2
9

1

6
3

4

2
7 4

5
1 8

9
6 3

3

9

8
6

7

2

4

1

5

5
6

1

9
4

3

8
2

7

4
1 6

7
2 5

3
9 8

9

8

5

3

6

4

1

7

2

7
3

2

1
8

9

5
4

6

Figure 4.7: Unsolved Sudoku puzzle (left) and its graph representation (right): each complete
subgraph represents a subgrid and the squared nodes correspond to prefilled cells. The valid
9-coloring of the graph leads to a solution of the Sudoku.

Remark 4.4 (A direct feasibility formulation for Sudoku). Sudoku puzzles can be directly

modeled as integer feasibility programs as a matrix A ∈ {1, 2, . . . , 9}9×9 verifying some

constraints. Despite that the Douglas–Rachford algorithm use to fail when tackling these

4.1. Graph coloring problems 127

integer problems, it can be successfully used for solving the puzzles after reformulating

them as zero-one programs. Specifically, the matrix A it is reformulated as B ∈ {0, 1}9×9×9

where

B[i, j, k] :=

{
1, if A[i, j] = k,

0 otherwise;

see [10, Section 6.2] for a more detailed explanation. We must acknowledge here the

fundamental contribution of Elser, Rankenburg and Thibault in [94], who first realized

the usefulness of this binary reformulation for the success of the DR algorithm. This

formulation will be referred to as the cubic formulation.

4.1.1.2 Partial graph coloring

In a partial graph coloring problem not all the nodes are necessarily colored. Instead, we

require each color in K to be assigned to exactly q nodes. We considered this variant of

the problem motivated by the well-known puzzle in the following example.

Example 4.5 (The 8-queens puzzle as a partial graph coloring problem). The

8-queens puzzle consists in placing eight chess queens on an 8 × 8 chessboard, so that

none of them attack any other. Since a chess queen can be moved any number of squares

vertically, horizontally or diagonally, the puzzle’s constraints can be formulated as: there

is at most one queen at each row, each column and each diagonal. The reformulation of

an 8-queens puzzle as a graph coloring problem is similar to the one shown for Sudokus.

Each square in the chessboard is represented by a node, and two nodes are linked if their

corresponding squares lay on the same column, row or diagonal. The graph has 64 nodes,

728 links and 42 maximal cliques. A partial coloring of this graph, with only one color

used q = 8 times, leads to a solution of the puzzle (see Figure 4.8).

qZ0Z0Z0Z
Z0Z0Z0l0
0Z0ZqZ0Z
Z0Z0Z0Zq
0l0Z0Z0Z
Z0ZqZ0Z0
0Z0Z0l0Z
Z0l0Z0Z0

Figure 4.8: A solution to the 8-queens puzzle (left) and its graph representation (right).

128 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

Remark 4.6 (Douglas–Rachford for 8-queens puzzles). The use of the Douglas–Rachford

algorithm for solving the 8-queens puzzle was already proposed and studied through a

direct formulation in [159]. One of the main advantages of formulating these puzzles

as graph coloring problems is that it is straightforward to model many variations of

the problem. For instance, to model the knights puzzle, a similar puzzle played with

knights instead of queens, one only needs to change the links of the chessboard graph,

see Figure 4.9(a). Different shapes can also be considered: we show in Figure 4.9(b) a

chessboard with a hole, and in Figure 4.9(c) a puzzle dedicated to Jonathan Borwein.

(a) Knights graph. (b) Queens graph with a hole.

J O N

B O R W E I N

(c) ‘π-zzle’ graph.

Figure 4.9: (a) A 16-knights puzzle with 4 colors: a solution will fill the chessboard. (b) A
10-queens puzzle with 3 colors played in a 9×9 chessboard with a hole. (c) Empty ‘π-zzle’. The
goal of this puzzle is to place on the board 8 times each of the 18 letters A, B, C, D, E, F, G,
H, I, J, K, L, M, N, O, P, R and W. Ten cells have been prefilled.

4.1. Graph coloring problems 129

Remark 4.7 (Generalizations of the 8-queens problem). Note that the 8-queens puzzle

can be easily posed for any size of the chessboard. The problem has been generalized in

many different directions, see [53] for a recent survey. One of these generalizations is the

Queens n2 puzzle, where one must cover an entire chessboard n × n with n2 queens, so

that two queens of the same color do not attach each other. This problem is actually a

classical graph coloring problem of the queens’ chessboard graph.

4.1.1.3 The Hamiltonian path problem

A Hamiltonian path is a path in a graph that visits every vertex exactly once. The

Hamiltonian path problem consists in determining whether or not such a path exists.

A Hamiltonian path can be constructed from a proper coloring of the graph satisfying

certain constraints, as we explain next.

Given a graph G with n nodes, our objective will be to find an n-coloring of the graph,

where each color 1, 2, . . . , n will represent a position in the path. In order to ensure that

the coloring represents a valid path, we will impose that two nodes assigned with two

consecutive colors must be linked; i.e., for all i, j ∈ V , and for all k ∈ K, it holds that

c(i) = k and c(j) = k ± 1 ⇒ {i, j} ∈ E.

The construction of a Hamiltonian path from such coloring is illustrated in Figure 4.10.

v1

v2

v3

v4

color 1

color 2

color 3

color 4

Figure 4.10: A Hamiltonian path constructed from a coloring of the graph.

A Hamiltonian cycle is a Hamiltonian path that is also a cycle, that is, there is a link

connecting the last node in the path and the first one. The problem of finding such a

cycle can be cast as a Hamiltonian path problem as we show next.

Given a graph G = (V,E), select any node v ∈ V and make a copy of it, i.e., create a

new node v′ that is connected with all nodes linked to v. Then, create another two new

nodes t and s, and link t with v and s with v′ (see Figure 4.11).

130 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

v1

v2

v3

v4 v1

v2

v3

v4

v′1s

t

Figure 4.11: Hamiltonian cycle reduced to Hamiltonian path.

Since t and s have degree one (i.e., they are only linked with another node), every

admissible Hamiltonian path in the new graph needs to start in one of these nodes and

finish in the other. Thus, after removing t and s, we end up with a path going from v to

v′. As these nodes were originally the same, we have actually found a Hamiltonian cycle.

Example 4.8 (The knight’s tour problem). An example of Hamiltonian path/cycle

arises in the knight’s tour problem. The knight’s path problem consists in finding a

sequence of moves of a knight on a chessboard such that it visits exactly once every square.

If the final position of such a path is one knight’s move away from the starting position

of the knight, the path is called a knight’s cycle. Thus, to find a knight’s cycle, one only

needs to build the graph corresponding to the knight’s movements on a chessboard shown

in Figure 4.9(a), and find a Hamiltonian cycle in the graph. A solution for a 12 × 12

chessboard is shown in Figure 4.12.

143 14 127 110 141 108 3 132 139 106 91 134

126 111 142 15 128 77 140 107 4 133 138 105

13 11 76 109 2 67 78 131 92 135 90

10 125 112 1 16 129 22 5 68 79 104 137

113 12 75 8 23 66 69 130 93 136 89 80

124 9 114 17 70 19 6 21 88 63 94 103

115 74 123 24 7 86 65 84 45 102 81 62

122 41 116 73 18 71 20 87 64 83 100 95

117 28 121 42 25 32 85 44 101 46 61 82

40 37 118 27 72 43 56 49 58 53 96 99

29 120 35 38 31 26 33 54 51 98 47 60

36 39 30 119 34 55 50 57 48 59 52 97

Figure 4.12: A knight’s cycle on a 12× 12 chessboard found with DR.

4.1. Graph coloring problems 131

4.1.2 A feasibility model based on a binary linear program

We present now our first formulation of the graph coloring problem as a feasibility one.

This is expressed in terms of binary indicator variables, the same variables that would

be used in an integer programming formulation. The model can be easily adapted to

cover all the variants and generalizations of the graph coloring problem discussed in the

previous section. The good performance of the Douglas–Rachford when applied to the

proposed formulations is shown in various computational experiments.

4.1.2.1 Modelling the classical graph coloring problem with binary variables

The m-coloring of a graph G = (V,E) with n nodes shall be modeled as a binary matrix

X = (xik) ∈ {0, 1}n×m, where xik = 1 indicates that vertex i receives color k. Then, we

have the following constraints:

m∑
k=1

xik = 1, for all i = 1, . . . , n; (4.2)

xik + xjk ≤ 1, for all {i, j} ∈ E, k = 1, . . . ,m; (4.3)

xik ∈ {0, 1}, for all i = 1, . . . , n, k = 1, . . . ,m. (4.4)

Constraint (4.2) together with (4.4) determine that each node is assigned with exactly

one color. Constraint (4.3) combined with (4.4) impose the requirement that any two

adjacent nodes cannot be assigned with the same color.

The formulation of the constraints has a big effect on the behavior of the Douglas–

Rachford scheme when applied to nonconvex problems. On the one hand, ones needs a

formulation where the projectors onto the sets are easy to compute. On the other hand,

the formulation chosen often determines whether or not the Douglas–Rachford scheme

can successfully solve the problem at hand always, frequently or never [10]. For these two

reasons, we have realized that it is convenient to reformulate constraint (4.3) as

xik + xjk − yek = 0, for all e = {i, j} ∈ E, k = 1, . . . ,m; (4.5)

where yek ∈ {0, 1}, for all i, j ∈ {1, . . . , n} and k ∈ {1, . . . ,m}. Although we have

considerably increased the number of variables of the feasibility problem by adding lm

new variables, where l is the number of edges in the graph, we have empirically observed

that the Douglas–Rachford scheme becomes much more successful with this formulation.

132 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

Note that every permutation of a proper coloring is also a proper coloring. In our

numerical tests we observed that this abundance of equivalent solutions significantly de-

creases the rate of success of the Douglas–Rachford algorithm. To avoid this problem,

we may restrict the set of possible colorings to those that assign the first color to the

first vertex. Without loss of generality, we can assume that the first vertex is connected

to at least another node, which thus cannot be colored with the first color. Hence, we

can reduce the number of solutions by forcing one of these nodes to be assigned with the

second color. For this reason, we add to the formulation the constraint

x1,1 = 1 and xi0,2 = 1, for some fixed i0 ∈ {2, . . . , n} such that {1, i0} ∈ E. (4.6)

In our experiments, vertex i0 was chosen as i0 := min {i ∈ V : {1, i} ∈ E}. It would be

possible to further reduce the number of solutions by following the same strategy with the

largest complete subgraph contained in the graph G. As finding such a subgraph is not a

trivial task and we did not observe in our numerical tests a clear improvement in the rate

of success of the algorithm, we decided to only add constraint (4.6) into our formulation.

We shall also add the additional constraint that all m colors have to be used, i.e.,

n∑
i=1

xik ≥ 1, for all k = 1, . . . ,m. (4.7)

Let E = {e1, . . . , el} be the set of edges, where ep ∈ {1, . . . , n}2 for every p = 1, . . . , l.

Let I := {1, . . . , n} and P := {n + 1, . . . , n + l}, and let K := {1, . . . ,m} be the set of

colors. Then, the m-coloring problem determined by constraints (4.2), (4.4), (4.5), (4.6)

and (4.7) can be formulated as a feasibility problem with four constraints:

Find Z ∈ C1 ∩ C2 ∩ C3 ∩ C4, (4.8)

where Z = (zik) ∈ R(n+l)×m and

C1 :=

{
Z ∈ R(n+l)×m : zik ∈ {0, 1},∀(i, k) ∈ I ×K and

m∑
k=1

zik = 1,∀i ∈ I

}
,

C2 :=
{
Z ∈ R(n+l)×m : zik + zjk − zpk = 0,with ep−n = {i, j} ∈ E,∀(p, k) ∈ P ×K

}
,

C3 :=

{
Z ∈ {0, 1}(n+l)×m :

n∑
i=1

zik ≥ 1,∀k ∈ K

}
,

C4 :=
{
Z ∈ R(n+l)×m : z1,1 = 1 and zi0,2 = 1

}
.

4.1. Graph coloring problems 133

Observe that constraint C2 can be expressed in matrix form as

C2 =
{
Z ∈ R(n+l)×m : AZ = 0l×m

}
, (4.9)

where A = (apq) ∈ Rl×(n+l) is defined by

apq :=

1, if ep = {i, j} and q ∈ {i, j},
−1, if q = n+ p,

0, elsewhere;

for each p = 1, . . . , l and q ∈ I ∪ P .

The projectors onto C1 and C3 can be derived from Propositions 1.45 and 1.46, re-

spectively; while the projector onto C4 is trivially obtained. For any Z ∈ R(n+l)×m, these

projectors are given, pointwise, by

PC1(Z)[i, :] =

{ {
eTk : zik = max{zi1, zi2, . . . , zim}

}
, if i ∈ I,

(zi1, zi2, . . . , zim), if i ∈ P ;

PC3(Z)[:, k] =

{
P{0,1}n+l(Z[:, k]) \ {0n+l}, if P{0,1}n+l(Z[:, k]) 6= {0n+l},
{ei : zik = max {z1k, . . . , znk}} , otherwise;

(PC4(Z)) [i, k] =

{
1, if (i, k) ∈ {(1, 1), (i0, 2)},
zik, otherwise;

for each i ∈ I ∪ P and k ∈ K. Since A is full row rank, according to Proposition 1.47,

the projector onto C2 is given by

PC2(Z) =
(

Idn+l − AT
(
AAT

)−1
A
)
Z.

Finally, observe that the projectors onto C1 and C3 may be multivalued. A projection

onto these sets πC1(Z) ∈ PC1(Z) and πC3(Z) ∈ PC3(Z) is given, pointwise, by

(πC1(Z)) [i, k] =

1, if i ∈ I, k = argmax{zi1, zi2, . . . , zim},
zik, if i ∈ P,
0, otherwise;

(πC3(Z)) [i, k] =

{
1, if i = argmax{z1k, z2k, . . . , znk},
min {1,max {0, round(zik)}} , otherwise;

where the lowest index is chosen in argmax and round(0.5) = 0.

134 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

Adding maximal clique information

Let us illustrate with an example the need of adding maximal clique information into our

formulation, whenever this information is available.

Example 4.9. Let us consider now the so-called windmill graph Wd(a, b), which is the

graph constructed for a ≥ 2 and b ≥ 2 by joining b copies of a complete graph with a

vertices at a shared vertex. A plot of Wd(6, 5) is shown in Figure 4.13.

2

3
4

5
6

7
8

9
10

11

1

12

13
14

15

16

17
18

19

20
21

22

23

24
25

26

Figure 4.13: Plot of the windmill graph Wd(6, 5).

Every windmill graph Wd(a, b) can be easily a-colored (there are a((a− 1)!)b different

ways). Despite this abundance of valid colorings, the Douglas–Rachford scheme fails to

find a solution rather often, see the results in Figure 4.17. This graph has an additional

available information that can be used: it has b maximal cliques of size a, and each color

can be used at most once within each maximal clique.

Let Q ⊂ 2V be a nonempty subset of maximal cliques of the graph G = (V,E) and let

Ê := E ∪Q. Let Q = {el+1, . . . , er}, with r ≥ l + 1. Thus, Ê = {e1, . . . , el, el+1, . . . , er}.
The maximal clique information can be easily added into constraint C2 in (4.9). Indeed,

let

Ĉ2 :=
{
Z ∈ R(n+r)×m : ÂZ = 0r×m

}
,

where Â = (âpq) ∈ Rr×(n+r) is defined, for each p = 1, . . . , r and q ∈ {1, . . . , n+ r}, by

âpq :=

1, if q ∈ ep;
−1, if q = n+ p;

0, elsewhere.

4.1. Graph coloring problems 135

This is clearly an equivalent formulation of the m-coloring problem, where we have ad-

ded (r − l)m new variables (now Z ∈ R(n+r)×m), which correspond to the (redundant)

information that each color can only be used once within each maximal clique. Despite

that, this formulation can be advantageous, as shown in Figure 4.17. For some particu-

lar graphs, adding this information can be crucial, see Table 4.5, where we compare two

reformulations of 3-SAT problems with and without maximal clique information.

4.1.2.2 Modelling other variants of the graph coloring problem

The feasibility problem in (4.8) can be adequately adapted so that it permits to solve any

of the previously presented variants of the graph coloring problem. To do so, some of the

constraint sets defining the model must be removed or replaced. Such modifications of

the formulation are explained in detail hereafter.

Precoloring and list coloring

Consider first the case where a list coloring problem has been reduced to a classical one

through the reformulation shown in Figure 4.5. Note that the new feasibility problem is

defined in R(n+m+l?)×m. Constraint C4 has to be changed, as it no longer makes sense.

We have m new nodes, labeled n+ 1, . . . , n+m, and each of them represents a color. To

include this information, we shall replace C4 by

C?
4 :=

{
Z ∈ R(n+m+l?)×m : zn+k,k = 1,∀k ∈ K

}
.

Thereby, the solution set is C1 ∩ C2 ∩ C3 ∩ C?
4 . The projector onto C?

4 at any point

Z ∈ R(n+m+l?)×m is given componentwise by

(
PC?4 (Z)

)
[i, k] =

{
1, if i = k + n;

zik, otherwise.

However, note that the increase in the number of nodes and edges may cause the DR

algorithm to become slower.

Another option here would be to directly modify the constraint C1 to only allow

admissible colors, that is, to replace it by the set

C1 :=

Z ∈ R(n+l)×m : zik ∈ {0, 1},∀(i, k) ∈ I ×K and
∑
k∈L(i)

zik = 1,
∑
k 6∈L(i)

zik = 0,∀i ∈ I

 .

136 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

A projection onto C1 is given, pointwise, by

(
πC1

(Z)
)

[i, k] =

1, if i ∈ I, k = argmax{zij, j ∈ L(i)};
zik, if i ∈ P ;

0, otherwise.

In this formulation, constraint C4 cannot be adapted and it has to be removed from the

feasibility problem. Then, the solution set becomes C1 ∩ C2 ∩ C3.

Partial coloring

Recall that in a partial coloring, not all the nodes need to be colored, but only q nodes

per color. We must then remove the set C4 in (4.8) and replace the sets C1 and C3 by

qC1 :=

{
Z ∈ R(n+l)×m : zik ∈ {0, 1}, ∀(i, k) ∈ I ×K and

m∑
k=1

zik ≤ 1,∀i ∈ I

}
,

qC3 :=

{
Z ∈ {0, 1}(n+l)×m :

n∑
i=1

zik = q,∀k ∈ K

}
.

For instance, for the 8-queens puzzle (Example 4.5) we need q = 8 and m = 1. Hence, the

solution set of these problems is qC1 ∩ C2 ∩ qC3. A projection onto qC1 and qC3 is given by

(
π
qC1

(Z)
)

[i, k] =

min {1,max{0, round(zik)}} , if i ∈ I, k = argmax{zi1, zi2, . . . , zim},
zik, if i ∈ P,
0, otherwise;

(
π
qC3

(Z)
)

[i, k] =

1, if i ∈ Qk,q,

min {1,max{0, round(zik)}} , if i ∈ P,
0, otherwise;

where, for a given color k ∈ K, we denote by Qk,q ⊂ I the set of indices corresponding to

the q largest values in {z1k, z2k, . . . , znk} (lowest index is chosen in case of tie).

Hamiltonian paths

In a Hamiltonian path problem every node must be assigned with a different color. It is

thus no longer necessary to work in R(n+l)×n, but in Rn×n, so constraint C1 becomes

C̃1 :=

{
X ∈ Rn×n : xik ∈ {0, 1},∀(i, k) ∈ I ×K and

m∑
k=1

xik = 1,∀i ∈ I

}
.

4.1. Graph coloring problems 137

To ensure that the coloring leads to a path, the set C3 must be modified and replaced by

C̃3 :=
{
X ∈ {0, 1}n×n : ∀k = 1, . . . , n− 1,∃{i, j} ∈ E s.t. xi,kxj,k+1 = 1

}
.

Constraint C2 is no longer needed. We have observed that the rate of success of DR is

decreased if C2 is removed, and that it is better to replace it by the redundant constraint

C̃2 := Rn×n, see the experiment shown in Figure 4.21. Note that constraint C4 forces the

path to start on node 1 (a path which may not even exist), so it is eliminated.

The projector onto C̃3 is hard to compute because of the recurrent dependence between

all the columns in the matrix X. To overcome this problem, we propose to split the set C̃3

into two constraints, one relating each odd column with its following one, and another

similar constraint for the even columns. That is, we define the constraints

C̃3,odd :=
{
X ∈ {0, 1}(n+l)×n : ∀k = 1, . . . ,

⌊n
2

⌋
,∃{i, j} ∈ E s.t. xi,2k−1xj,2k = 1

}
,

C̃3,even :=

{
X ∈ {0, 1}(n+l)×n : ∀k = 1, . . . ,

⌊
n− 1

2

⌋
, ∃{i, j} ∈ E s.t. xi,2kxj,2k+1 = 1

}
,

which satisfy C̃3 = C̃3,odd ∩ C̃3,even, where b·c denotes the integer part of a number.

Therefore, the solution set of the Hamiltonian path problem is C̃1 ∩ C̃2 ∩ C̃3,odd ∩ C̃3,even.

To compute a projection onto C̃3,odd and C̃3,even, consider the function h : R 7→ R
defined by

h(x) :=

{
x, if x ≤ 0.5,

1, if x > 0.5;

and let us denote by

(s0
k1,k2

, s1
k1,k2

) = argmin
{

(1− h(xi,k1))
2 + (1− h(xj,k2))

2 , {i, j} ∈ E
}
,

where the lowest index is taken in argmin to avoid multivaluedness. Then, a projection

onto C̃3,odd and C̃3,even can be obtained as follows

(
πC̃3,odd

(Z)
)

[i, k] =

1, if i = s0

k,k+1, k < n and k is odd,

1, if i = s1
k−1,k and k is even,

min {1,max{0, round(xik)}} , otherwise;

(
πC̃3,even

(Z)
)

[i, k] =

1, if i = s0

k,k+1, k < n and k is even,

1, if i = s1
k−1,k, 1 < k and k is odd,

min {1,max{0, round(xik)}} , otherwise.

138 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

4.1.2.3 Numerical experiments

In this section we test the performance of the Douglas–Rachford algorithm for solving

a representative sample of the graph coloring problems previously presented. Note that

the feasibility problem in (4.8), as well as all its adjustments presented in Section 4.1.2.2,

are described by more than two constraints. We have thus to turn to a many-set version

of the DR algorithm (see Section 2.2.2.2). One option would be to use the cyclic DR

method defined by (2.18). However this method suffers the same unsuitable behavior than

alternating projections when tackling combinatorial problems (see Figure 2.11). Hence,

we use the Douglas–Rachford scheme in the product space, whose iteration is generated

by (2.17). For each formulation defined by r sets, we use the stopping criterion

r∑
i=1

‖pk − PCi(pk)‖2 < ε := 10−10. (4.10)

All codes were written in Python 2.7 and the tests were run on an Intel Core i7-4770 CPU

3.40 GHz with 12 GB RAM, under Windows 10 (64-bit).

Testing some simple graphs

We begin our tests with one of the most well-known graphs: Petersen graph (see Fi-

gure 4.1). This graph has 10 vertices, 15 edges and can be 3-colored in 120 different

ways. The results of our first experiment are shown in Figure 4.14. For 100,000 random

starting points and using formulation (4.8), we report the number of iterations needed by

the Douglas–Rachford algorithm until it obtained a solution or it reached 500 iterations.

The success rate was nearly 100% in this experiment: the algorithm was able to find a

solution for almost every starting point (with the exception of 2 instances out of 100,000).

0 50 100 150 200 250 300

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
te
d
in
st
a
n
ce
s Iterations Instances Cumulated

0-99 98,653 98.653%
100-199 1,334 99.987%
200-299 9 99.996%
300-399 2 99.998%
400-499 0 99.998%

Unsolved 2 100%

Figure 4.14: Number of iterations spent by DR to find a solution of a 3-coloring of Petersen
graph for 100,000 random starting points. On average, each solution was found in 0.00533
seconds. Instances were labeled as “Unsolved” after 500 iterations.

4.1. Graph coloring problems 139

We also tested the performance of the Douglas–Rachford algorithm with formula-

tion (4.8) for finding a valid coloring of some other different simple graphs. Namely, we

used complete graphs of 4, 5 and 6 nodes; wheel graphs of 5 and 6 nodes; and cycle graphs

of 10, 15 and 20 nodes. These graphs are explained next and are illustrated in Figure 4.15.

� In a complete graph every pair of nodes is connected. A complete graph with n

vertices has n(n− 1)/2 edges and can be n-colored in n! different ways.

� A cycle graph consists in a collection of vertices connected in a closed chain. A cycle

graph with n vertices has n edges. If n is even, it can be 2-colored in 2 different

ways; if n is odd, it can be 3-colored in 2n − 2 different ways.

� A wheel graph is a cycle with an extra node which is connected to all other nodes.

A wheel graph with n vertices has 2(n− 1) edges. If n is even, it can be 4-colored

in 4(2n−1 − 2) different ways; if n is odd, it can be 3-colored in 6 different ways.

(a) Complete
graph of 5 nodes

(b) Wheel graphs of 5 and 6 nodes (c) Cycle graphs of 5 and 6 nodes

Figure 4.15: Proper colorings of some simple graphs.

The DR algorithm was run on each of the considered problems from 10, 000 random

starting points, and it was stopped after a maximum of 500 iterations. For each type of

graph, we plot in Figure 4.16 the cumulated number of solved instances with respect to

the first 300 iterations, while some more detailed results are shown in Tables 4.1 to 4.3.

0 100 200 300

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
te
d
in
st
a
n
ce
s

Complete 4

Complete 5

Complete 6

(a) Complete graphs

0 100 200 300

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
te
d
in
st
a
n
ce
s

Wheel 5

Wheel 6

(b) Wheel graphs

0 100 200 300

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
te
d
in
st
a
n
ce
s

Cycle 10

Cycle 15

Cycle 20

(c) Cycle graphs

Figure 4.16: Cumulated number of instances solved by DR with respect to the 300 first
iterations for some complete, cycle and wheel graphs of different sizes.

140 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

Complete 4 Complete 5 Complete 6

Iterations Instances Cumul. Instances Cumul. Instances Cumul.

0-99 9,981 99.81% 9,961 99.61% 9,847 98.47%
100-199 14 99.95% 37 99.98% 143 99.9%
200-299 0 99.95% 2 100.0% 6 99.96%
300-399 0 99.95% 0 100.0% 4 100.0%
400-499 0 99.95% 0 100.0% 0 100.0%

Unsolved 5 100% 0 100% 0 100%

Table 4.1: Number of iterations spent by DR to find a solution of an n-coloring of a complete
graph with n vertices for 10,000 random starting points, with n = 4, 5, 6. Each solution was
found, on average, in 0.00215 seconds for n = 4, 0.00371 seconds for n = 5, and 0.00569 seconds
for n = 6. Instances were labeled as “Unsolved” after 500 iterations.

Wheel 5 Wheel 6

Iterations Instan. Cumul. Instan. Cumul.

0-49 9,988 99.88% 8,332 83.32%
50-99 12 100% 1,600 99.32%

100-149 0 100% 65 99.97%
150-249 0 100% 2 99.99%
250-499 0 100% 0 99.99%

Unsolved 0 100% 1 100%

Table 4.2: Number of iterations spent by DR to find a solution of two wheel graphs for 10,000
random starting points. Each solution was found, on average, in 0.00266 seconds for wheel 5,
and 0.00455 seconds for wheel 6. Instances were labeled as “Unsolved” after 500 iterations.

Cycle 10 Cycle 15 Cycle 20

Iterations Instances Cumul. Instances Cumul. Instances Cumul.

0-49 9,967 99.67% 7,276 72.76% 5,438 54.38%
50-99 33 100% 2,640 99.16% 3,349 87.87%

100-149 0 100% 81 99.97% 1,156 99.43%
150-199 0 100% 2 99.99% 57 100%
200-499 0 100% 0 99.99% 0 100%

Unsolved 0 100% 1 100% 0 100%

Table 4.3: Number of iterations spent by DR to find a solution of three cycle graphs for
10,000 random starting points. Each solution was found, on average, in 0.0025 seconds for cycle
10, 0.00561 seconds for cycle 15, and 0.00731 seconds for cycle 20. Instances were labeled as
“Unsolved” after 500 iterations.

We note the good behavior of the DR algorithm: it was able to find a solution for

every random starting point for the complete graphs of 5 and 6 nodes, the wheel graph

of 5 nodes, and the cycle graphs of 10 and 20 nodes; while it failed in at most the 0.05%

of the instances in the remaining cases.

4.1. Graph coloring problems 141

In our following experiment, whose results are shown in Figure 4.17 and Table 4.4, we

compare the performance of the Douglas–Rachford algorithm with and without maximal

clique information when it is applied for finding a solution of the windmill graph Wd(6, 5).

Observe that, even having increased the number of variables in the feasibility problem,

both the rate of success and the rate of convergence (in terms of iterations as well as

computing time) are much improved.

0 2000 4000 6000 8000 10000

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
te

d
in

st
a
n

ce
s

Without clique info

With clique info

Figure 4.17: Cumulated number of instances solved by DR (out of 10, 000 random starting
points) to find a solution of the windmill graph Wd(6, 5), with and without maximal clique
information, with respect to the iterations.

Without maximal With maximal
clique information clique information

Iterations Instances Cumul. Instances Cumul.

0-999 7,448 74.48% 9,999 99.99%
1,000-1,999 728 81.76% 0 99.99%
2,000-2,999 165 83.41% 0 99.99%
3,000-3,999 64 84.05% 0 99.99%
4,000-4,999 29 84.34% 0 99.99%
5,000-5,999 17 84.51% 0 99.99%
6,000-6,999 7 84.58% 0 99.99%
7,000-7,999 7 84.65% 0 99.99%
8,000-8,999 4 84.69% 0 99.99%
9,000-9,999 1 84.7% 0 99.99%

Unsolved 1,530 100% 1 100%

Table 4.4: Comparison of the number of iterations spent by DR to find a solution of the
windmill graph Wd(6, 5) for 10,000 random starting points. Complete maximal clique informa-
tion was used in the right columns. Each solution was found, on average, in 0.13347 seconds
without clique information, and 0.02424 seconds with maximal clique information. Instances
were labeled as “Unsolved” after 10,000 iterations.

142 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

If the norm of the iterates, ‖Zk‖, increases as k increases, the Douglas–Rachford

algorithm may serve to detect infeasibility of the corresponding coloring problem, see Fi-

gures 4.18(a) and 4.18(b). In the convex case, according to Theorem 2.9(ii), this behavior

is ensured for infeasible problems. However, due to the lack of convexity, this is not always

the case in our context, as shown in Figures 4.18(c) and 4.18(d). Interestingly, when we

removed the extra constraints (4.6) and (4.7), which is something that does not change the

feasibility of the problems, the algorithm was not able to detect any infeasible problem.

0 50 100 150

k

10

12

14

16

‖Z
k
‖

(a) 3-coloring of Petersen graph (feasible)

0 200 400 600 800 1000

k

0

100

200

300

‖Z
k
‖

(b) 2-coloring of Petersen graph (infeasible)

0 200 400 600 800 1000

k

12.5

15.0

17.5

20.0

22.5

‖Z
k
‖

(c) 4-coloring of a 7-complete graph (infeasible)

0 200 400 600 800 1000

k

0

50

100

150

200

‖Z
k
‖

(d) 3-coloring of a 7-complete graph (infeasible)

Figure 4.18: For 1,000 random starting points, we represent the iteration k in the horizontal
axis and ‖Zk‖ in the vertical axis for 1,000 iterations of the Douglas–Rachford algorithm.

3-SAT problems

Next, we tested the performance of DR for the 4-nodes and the 5-nodes formulations for

the first 50 3-SAT problems with 20 variables and 91 clauses in SATLIB3. For each of the

formulations, we run the Douglas–Rachford algorithm with and without maximal clique

information for 10 random starting points. The results are shown in Table 4.5. Clearly,

the addition of the maximal clique information turns out to be crucial for the success of

the Douglas–Rachford algorithm, specially for the 5-nodes formulation.

3SATLIB: www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/RND3SAT/uf20-91.tar.gz

www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/RND3SAT/uf20-91.tar.gz

4.1. Graph coloring problems 143

4-nodes without 4-nodes with 5-nodes without 5-nodes with
clique info. clique info. clique info. clique info.

Time Inst. Cumul. Inst. Cumul. Inst. Cumul. Inst. Cumul.

0-49 278 55.6% 323 64.6% 0 0.0% 249 49.8%
50-99 60 67.6% 65 77.6% 0 0.0% 69 63.6%

100-149 31 73.8% 24 82.4% 0 0.0% 42 72.0%
150-199 20 77.8% 14 85.2% 0 0.0% 31 78.2%
200-249 16 81.0% 11 87.4% 0 0.0% 21 82.4%
250-299 11 83.2% 10 89.4% 0 0.0% 8 84.0%

Unsolved 84 100% 53 100% 500 100% 80 100%

Table 4.5: Time spent (in seconds) by DR to find a solution of 50 different 3-SAT problems
with 20 variables and 91 clauses. For each problem, 10 random starting points were chosen.
After 300 seconds without finding a solution, instances where labeled as “Unsolved”. Two
formulations of the gadgets were considered, with 4 and 5 nodes.

Remark 4.10 (Performance profiles). For an appropriate visualization of the results and

comparison of the formulations, we turn to performance profiles (see [88]). We use the

modification proposed in [122], since it suits better our experiment, where we have multiple

runs for every formulation and problem. Let Φ denote the (finite) set of all formulations.

A performance profile is constructed as follows.

1. For each formulation f ∈ Φ, let tf,p be the average time required by DR to solve

problem p among all the successful runs, and let us denote by sf,p the portion of

successful runs for problem p.

2. Compute t?p := minf∈Φ tf,p, for all p ∈ {1, . . . , np}, where np is the number of

problems in the experiment.

3. Then, for any τ ≥ 1, define Rf (τ) := {p ∈ {1, . . . , np}, tf,p ≤ τt?p}; that is, Rf (τ) is

the set of problems for which formulation f is at most τ times slower than the best

one.

4. The performance profile function of formulation f is given by

ρf : [1,+∞) 7−→ [0, 1]

τ 7→ ρf (τ) :=
1

np

∑
p∈Rf (τ)

sf,p.

The value ρf (1) indicates the portion of runs for which f was the fastest formulation.

When τ → +∞, then ρf (τ) shows the portion of successful runs for formulation f .

144 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

The performance profiles for the results of the 3-SAT experiment in Table 4.5 are

displayed in Figure 4.19. It clearly shows that the 4-nodes formulation with maximal

clique information is the best one. Despite that the addition of maximal clique information

increases the dimension of the problem, it improves both the rate of success and the speed

of convergence of the algorithm for both formulations (specially for the 5-nodes one).

1 2 3 4 5 6 7 8 9 10

τ

0.0

0.2

0.4

0.6

0.8

1.0

ρ
(τ

)

4NF

4NF+clique infomation

5NF

5NF+clique infomation

Figure 4.19: Performance profiles for the results of the 3-SAT experiment in Table 4.5.

Sudokus

In our next numerical experiment, for solving Sudoku puzzles, we compared the perfor-

mance of the DR algorithm applied to the cubic formulation for Sudokus (see Remark 4.4),

with the reformulations as a graph coloring (C1∩C2∩C3∩C?
4) and as a graph precoloring

(C1 ∩C2 ∩C3), explained in Section 4.1.2.2. We considered the 95 hard puzzles from the

library top954, which was the one among the libraries tested in [10, Table 2] where DR

was most unsuccessful. For each formulation and each puzzle, Douglas–Rachford was run

for 20 random starting points. Results are shown in Table 4.6 and performance profiles

are displayed in Figure 4.20.

As it was expected, the cubic formulation was much faster, since this formulation is

specifically designed for solving these puzzles. On average, the cubic formulation solved

a Sudoku in 5.76 seconds, while the graph precoloring formulation needed 33.78 seconds.

The worst method was the reformulation as a graph coloring problem, which needed

112.25 seconds on average to solve a Sudoku. Even so, it was surprising to see that the

rate of success for these three formulations was very similar, around 90%.

4top95: http://magictour.free.fr/top95

http://magictour.free.fr/top95

4.1. Graph coloring problems 145

Cubic Graph Reformulation as
formulation precoloring graph coloring

Time Inst. Cumul. Inst. Cumul. Inst. Cumul.

0-49 1,688 88.8% 1,451 76.4% 261 13.7%
50-99 19 89.8% 173 85.5% 534 41.8%

100-149 15 90.6% 40 87.6% 451 65.6%
150-199 6 90.9% 22 88.7% 267 79.6%
200-249 4 91.2% 12 89.4% 118 85.8%
250-299 2 91.3% 5 89.6% 45 88.2%

Unsolved 166 100% 197 100% 224 100%

Table 4.6: Time spent (in seconds) to find the solution of 95 different Sudoku problems by DR
with the graph precoloring, the cubic, and the graph coloring formulations. For each problem,
20 starting points were randomly chosen. We stopped the algorithm after a maximum time of
300 seconds, in which case the problem was labeled as “Unsolved”.

25 50 75 100 125 150 175 200

τ

0.0

0.2

0.4

0.6

0.8

1.0

ρ
(τ

)

Cubic formulation

Graph precoloring

Reform. as graph coloring

Figure 4.20: Performance profiles for the results of the Sudoku experiment in Table 4.6.

In Table 4.7 we list the Sudokus for which either the cubic or the graph precoloring

formulation failed to find a solution for some starting points. It is apparent that the

three methods tend to fail on the same Sudokus. The reformulation as graph coloring

was clearly the most successful method for Sudoku 19. The graph precoloring formulation

had a very bad performance on Sudoku 22, compared to the other two methods. On the

other hand, it is remarkable that the cubic formulation was significantly less successful

than the graph precoloring for Sudoku 90, and that it failed to find any solution at all

for Sudoku 25. Both the graph precoloring formulation and the reformulation as graph

coloring also had troubles with this Sudoku, and were only able to find a solution for 3 and

2 out of the 20 starting points, respectively. This Sudoku is the one shown in Figure 4.7.

146 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

Sudoku Number 5 12 13 17 19 22 25 29 38

Cubic formulation 0 0 16 19 5 1 20 1 17
Graph precoloring 6 1 18 18 13 19 17 7 15

Reformulation as graph coloring 13 1 16 18 1 9 18 15 12

Sudoku Number 53 59 66 82 83 85 86 90 94

Cubic formulation 0 0 14 0 5 18 17 14 19
Graph precoloring 5 3 13 3 5 15 15 8 16

Reformulation as graph coloring 6 1 11 7 4 14 16 14 15

Table 4.7: Number of failed runs in either the cubic or the graph precoloring formulation.
Sudokus not listed here were solved by these two formulations for every starting point.

Knight’s tours

In our next experiment, we explored the behavior of DR for solving the knight’s tour

problem when the size of the chessboard is increased. Results are displayed in Figure 4.21,

where we analyze both paths and cycles with the two formulations C̃1 ∩ C̃3,odd ∩ C̃3,even

(red crosses) and C̃1 ∩ C̃2 ∩ C̃3,odd ∩ C̃3,even (blue dots). Clearly, the formulation including

the redundant constraint C̃2 = Rn×n is much faster. For this reason, no knight’s paths

of size 10 or 11 are shown for the formulation without C̃2, as the algorithm was stopped

before it had enough time to converge. The rate of success of both formulations for paths

and cycles was very similar, around 95%. It can be observed an exponential dependence

between time and size, which makes DR to be inappropriate for big puzzles.

4 6 8 10 12

Chessboard size (n)

−1

0

1

2

3

lo
g
1
0
(t
im

e)

t(n) = 0.00252× 100.4792n

(a) Knight’s paths

5 6 7 8 9 10 11

Chessboard size (n)

0

1

2

3

lo
g
1
0
(t
im

e)

t(n) = 0.00889× 100.4341n

(b) Knight’s cycles

Figure 4.21: Time (in log10) required by DR for finding knight’s paths and cycles on chessbo-
ards of different size. For each size, 50 random starting points were chosen. Blue dots represent
instances of the DR method applied with the addition of the redundant constraint C̃2 = Rn×n,
while red crosses represent instances where the method was run without C̃2. The dotted lines
were obtained by linear regression. The algorithm was stopped after a maximum time of 5,000
seconds, in which case the instance is not displayed.

4.1. Graph coloring problems 147

It is remarkable that the line t(n) obtained by linear regression in Figure 4.21(b)

predicts an average time of t(12) = 1,439 seconds for finding a knight’s cycle in a 12× 12

chessboard, and this totally fits with the average time of 1,397 seconds spent by DR to

obtain the tour previously shown in Figure 4.12.

Generalizations of the 8-queens puzzle

Finally, we apply the DR algorithm for solving the generalizations of the 8-queen puzzle

proposed in Figure 4.9. For each of them, we run the algorithm from 10 random starting

points. Solutions and results are shown in Figure 4.22.

(a) Knights on a classic chessboard (b) Queens in a chessboard with a hole

P N D

G K H

N M A

L H E

I N O

F W K

J R B

C A F

D H P

W I G

L E B

O R J

C M O

D W J

G I B

K A F

P M R

C E L

H B M

J O A

C G F

N M L

G I D

D R J

W K I

A L H

E P R

M C B

O J W

K A G

N O W

F G C

L J K

I C P

P L G

K H E

R B F

H K N

E D A

A R M

M F D

N

E I

C D H

W L P

P F B

J O N

B O R W E I

(c) ‘π-zzle’

Figure 4.22: Solution to the puzzles in Figure 4.9 computed with DR. For 10 random starting
points, the average (maximum) time spent for puzzles (a), (b) and (c) was 0.23, 3.32 and 252.82
seconds (0.35, 11.49 and 424.67 seconds), respectively.

148 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

4.1.3 A feasibility model based on a low-rank constrained matrix

In this section we consider a different formulation of graph coloring, which is based on

semi-definite programming. It is due to Karger, Motwani and Sudan [126], who proposed

using the geometry of the regular simplex to color the vertices of a graph. The associated

feasibility problem relies on the reconstruction of a non-negative rank-constrained matrix.

This geometrical encoding of the problem, which respects all its symmetries, is well suited

to projection based algorithms. Although this model cannot be so easily adapted to cover

other type of graph coloring problems apart from precoloring, our numerical experiments

indicate that the KMS formulation appears to be superior to the indicator variable for-

mulation proposed in Section 4.1.2, when using the DR heuristic. While we do not have

an interpretation of this result, it is empirically supported on a wide spectrum of problem

instances.

4.1.3.1 Modelling graph coloring with vertices of the regular simplex

Suppose that we have a proper m-coloring of the graph G = (V,E) given by c : V 7→ K.

The m-coloring c can be represented by a matrix as follows. Let u1, u2, . . . , um ∈ Rm−1

be the vertices of a standard centered regular (m− 1)-simplex, i.e.,

u1 + · · ·+ um = 0 and 〈ui, uj〉 =

{
1, if i = j,

µ, if i 6= j;
(4.11)

for some constant µ ∈ R. It directly follows from (4.11) that

0 =

〈
m∑
i=1

ui,

m∑
i=1

ui

〉
= m+ 2m(m− 1)µ ⇔ µ =

−1

m− 1
.

Each of the vertices of the (m − 1)-simplex shall represent one of the m colors. Hence,

the m-coloring of the graph G can be recovered from the matrix

Uc :=
[
uc(1), uc(2), . . . , uc(n)

]
∈ R(m−1)×n, (4.12)

whose rows are vertices of the (m−1)-simplex (possibly repeated). Finally, let us construct

the Gram matrix associated with Wc, namely,

Wc := UT
c Uc ∈ Rn×n. (4.13)

4.1. Graph coloring problems 149

Since c is a proper coloring, and by (1.4), the matrix Wc has the following properties:

(P1) Wc ∈ Sn+,

(P2) rank(Wc) ≤ m− 1,

(P3) Wc ∈
{

1, −1
m−1

}n×n
and some of the entries of Wc = [wij] are determined as follows:

wii = 1, ∀i ∈ V, and wij =
−1

m− 1
, ∀{i, j} ∈ E.

Hence, every valid m-coloring of the graph G leads to a matrix verifying (P1)–(P3).

In fact, this is an equivalence, as we shall show after the next illustrative example.

Example 4.11. Consider a graph G=(V,E) where the set of vertices is V = {1, 2, 3, 4, 5},
and the set of edges is E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 5}}. A proper 3-coloring of

G is shown in Figure 4.23(a). We identify each of the colors with one of the vertices

u1, u2, u3 ∈ R2 of a standard centered regular 2-simplex (see Figure 4.23(b)), where

u1 = (1, 0)T , u2 =
1

2

(
−1,
√

3
)T

and u3 =
1

2

(
−1,−

√
3
)T

.

Then the matrix representation of c given in (4.13) becomes

Wc = UT
c Uc =

1 −0.5 −0.5 1 −0.5

−0.5 1 −0.5 −0.5 1

−0.5 −0.5 1 −0.5 −0.5

1 −0.5 −0.5 1 −0.5

−0.5 1 −0.5 −0.5 1

, with Uc = [u1, u2, u3, u1, u2] .

The boxed entries in Wc correspond to those determined by (P3).

1

2

3

4

5

(a) A 3-coloring of the graph

u1

u2

u3

(b) A standard centered regular 2-simplex

Figure 4.23: Graphical representation of Example 4.11.

150 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

Proposition 4.12. Let G = (V,E) be a graph with n nodes and let K be a set of m

colors. Consider a matrix X ∈ Rn×n that verifies properties (P1)–(P3). Then, there

exists a proper m-coloring c : V 7→ K such that

X = UT
c Uc,

where Uc is given by (4.12).

Proof. Consider the spectral decomposition X = QΛQT , where Λ = diag(λ1, λ2, . . . , λn)

is the diagonal matrix of eigenvalues. Since X is positive definite and has rank not greater

than m− 1, we can assume without loss of generality that

λ1 ≥ λ2 ≥ · · · ≥ λm−1 ≥ 0 = λm = · · · = λn.

Then, we can express

X = QΛQT =

(
Q11 Q12

Q21 Q22

)(
Λ̂ 0

0 0

)(
QT

11 QT
21

QT
12 QT

22

)
=

(
Q11

Q21

)
Λ̂
(
QT

11 QT
21

)
,

with Λ̂ = diag(λ1, . . . , λm−1). Hence, we can factorize X = Y TY , with

Y = Λ̂
1
2

(
QT

11 QT
21

)
.

Let y1, . . . , yn ∈ Rm−1 be the columns of Y , i.e., Y = [y1|y2| · · · |yn]. Observe that

y1, . . . , yn are unit vectors because X has ones on the diagonal, and thus

〈yi, yj〉 =

{
1, if yi = yj,
−1
m−1

, if yi 6= yj;
(4.14)

for all i, j = 1, . . . , n. Let us show now that there are at most m distinct vectors among

them. To this aim, suppose that yi1 , yi2 , . . . , yim+1 are m+ 1 different vectors. Consider

X̃ :=

yTi1

yTi2
...

yTim+1

[
yi1|yi2| · · · |yim+1

]
=

1 −1

m−1
· · · −1

m−1

−1
m−1

1 · · · −1
m−1

...
...

. . .
...

−1
m−1

−1
m−1

· · · 1

 ∈ R(m+1)×(m+1).

4.1. Graph coloring problems 151

It holds that rank(X̃) ≤ rank(X) ≤ m − 1, since X̃ is a submatrix of X, but this is a

contradiction with the fact that

det(X̃) =

(
1− m

m− 1

)(
1 +

1

m− 1

)m
6= 0.

Therefore, it must hold that ∪nj=1{yj} = {u1, . . . , ur}, where u1, . . . , ur are r ≤ m distinct

vertices of a regular (m− 1)-simplex (a rotation of the standard simplex). Finally, define

c : V 7→ K by c(i) = {k ∈ {1, . . . , r} : yi = uk}, so that we trivially get Y = Uc, where

Uc is as in (4.12). According to (P3), together with (4.14), we have that c is a proper

m-coloring of G, as claimed.

In view of Proposition 4.12, finding a proper m-coloring of a graph with n vertices is

equivalent to finding an n×n matrix verifying properties (P1), (P2) and (P3). Therefore,

the latter will be tackled by solving the following feasibility problem:

Find X ∈ C1 ∩ C2 ⊆ Rn×n, (4.15)

where the constraint sets are defined by

C1 :=

{
X ∈

{
1,
−1

m− 1

}n×n
: xii = 1,∀i ∈ V and xij =

−1

m− 1
,∀{i, j} ∈ E

}
, (4.16a)

C2 :=
{
X ∈ Sn+ : rank(X) ≤ m− 1

}
. (4.16b)

Remark 4.13. One advantage of the feasibility problem (4.15) is the avoidance of equi-

valent colorings in the following sense. Suppose that c : V 7→ K is a proper m-coloring of

a graph G, and let Wc be its associated matrix given by (4.13). For any permutation of

the colors, σ : K 7→ K, we have that σ ◦ c is also a proper m-coloring of G, so there exist

many equivalent valid colorings. However, observe that Wσ◦c = Wc, and thus all of them

lead to a unique solution of (4.15).

Modeling precoloring problems

Precoloring problems can be modeled by a slight modification of the feasibility problem

in (4.15). Let Ṽ ⊆ V be the subset of precolored nodes and denote by pi ∈ K the

preassigned color to node i ∈ Ṽ . The task then is to find a coloring c : V 7→ K such that

c(i) 6= c(j), for all {i, j} ∈ E and c(i) = pi, for all i ∈ Ṽ . (4.17)

152 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

Notice that any coloring satisfying (4.17) also verifies

c(i) 6= c(j), for all {i, j} ∈ E and c(i) = c(j)⇔ pi = pj, for all i, j ∈ Ṽ . (4.18)

In fact, both conditions can be shown to be equivalent in the following sense. Suppose

that c : V 7→ K is a coloring verifying (4.18). Then, for any permutation of the colors

σ : K 7→ K such that σ(c(i)) = pi for all i ∈ Ṽ , one can easily check that σ ◦ c is a proper

coloring for which (4.17) holds.

Therefore, we shall focus on finding colorings fulfilling condition (4.18). The matrix Wc

constructed from c as in (4.13), shall verify now (P1), (P2) and

(P3’) Wc ∈
{

1, −1
m−1

}n×n
and some of the entries of Wc = [wij] are determined as follows:

wij = 1, ∀{i, j} ∈ Î and wij =
−1

m− 1
, ∀{i, j} ∈ Ê;

where Î := {{i, i} : i ∈ V } ∪
{
{i, j} ⊆ Ṽ : pi = pj

}
and Ê := E ∪

{
{i, j} ⊆ Ṽ : pi 6= pj

}
.

The new modified property (P3’) can be incorporated into the formulation of the

feasibility problem (4.15) by replacing the constraint C1 by

Ĉ1 :=

{
X ∈

{
1,
−1

m− 1

}n×n
: xij = 1,∀{i, j} ∈ Î and xij =

−1

m− 1
,∀{i, j} ∈ Ê

}
. (4.19)

Example 4.14 (Example 4.11 revisited). Consider the graph in Example 4.11 and

suppose that node 2 is precolored red (R), and nodes 4 and 5 are precolored blue (B). The

precoloring problem is shown in Figure 4.24(a). Following the notation established above,

we have

Î = {{i, i} : i ∈ V } ∪ {{4, 5}} and Ê = E ∪ {{2, 4}, {2, 5}} = E ∪ {{2, 5}} .

The unique solution to the feasibility problem Ĉ1 ∩ C2 is the matrix

Wc =

1 −0.5 −0.5 1 1

−0.5 1 −0.5 −0.5 −0.5

−0.5 −0.5 1 −0.5 −0.5

1 −0.5 −0.5 1 1

1 −0.5 −0.5 1 1

,

4.1. Graph coloring problems 153

where the boxed entries in Wc correspond to those determined by (P3’). The entries whose

values are fixed by (P3’) but not by (P3) are marked with a double-box.

Suppose that we obtain the factorization Wc = UT
c Uc, with Uc = [u1, u2, u3, u1, u1]. The

3-coloring determined by Uc is represented in Figure 4.24(b). Then, in order to make this

coloring consistent with the precoloring of the vertices, we need to suitably permute the set

of colors. Precisely, we require σ(G) = R and σ(R) = B. It must therefore be σ(B) = G.

The permuted 3-coloring consistent with the precoloring, given by Uσ◦c = [u3, u1, u2, u3, u3],

is shown in Figure 4.24(c).

1

2

3

4

5

(a) Precolored graph

1

2

3

4

5

(b) A 3-coloring of the graph

1

2

3

4

5

(c) A permutation consis-
tent with the precoloring

Figure 4.24: Graphical representation of Example 4.14

4.1.3.2 Implementation of the Douglas–Rachford algorithm

Projecting onto the constraints

In order to apply any projection algorithm to feasibility problems, and (4.15) in particular,

it must be possible to efficiently compute the projections onto the two constraint sets, in

our case (4.16). This is indeed the case, as shown in the following results.

Proposition 4.15 (Projection onto C1). Consider any X = (xij) ∈ Rn×n. A pro-

jection of X onto the set C1 defined in (4.16a) is given componentwise by

(
πC1(X)

)
[i, j] =

{
1, if xij >

m−2
2(m−1)

and {i, j} 6∈ E, or i = j;
−1
m−1

, if xij ≤ m−2
2(m−1)

and i 6= j, or {i, j} ∈ E.
(4.20)

A projection of X onto the set Ĉ1 in (4.19) is given componentwise by

(
πĈ1

(X)
)

[i, j] =

{
1, if xij >

m−2
2(m−1)

and {i, j} 6∈ Ê, or {i, j} ∈ Î;
−1
m−1

, if xij ≤ m−2
2(m−1)

and {i, j} 6∈ Î , or {i, j} ∈ Ê.
(4.21)

Proof. Clearly, the projector of X onto C1 can be computed componentwise. Taking into

account the constraints in (4.16a), the projection of an entry xij is 1 if i = j, and is −1
m−1

154 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

if {i, j} ∈ E. Otherwise, it is equal to P{1, −1
m−1}(xij). As the middle point between these

two values is m−2
2(m−1)

, then (4.20) follows. The proof of (4.21) is analogous.

Proposition 4.16 (Projection onto C2). Let X ∈ Sn and consider its spectral decom-

position X = QΛQT , with Λ = diag(λ1, . . . , λn) and λ1 ≥ λ2 ≥ · · · ≥ λn. A projection of

X onto the set C2 defined in (4.16b) is given componentwise by

πC2(X) = QΛ+
m−1Q

T , (4.22)

where Λ+
m−1 = diag (max{0, λ1}, . . . ,max{0, λm−1}, 0, . . . , 0).

Proof. See Proposition 1.49.

Remark 4.17. According to Propositions 4.15 and 4.16, computing a projection onto C1

is a simple rounding operation, while a projection onto C2 requires the computation of

the spectral decomposition of an n× n matrix. From a computational point of view, the

former is not a problem but the later may be time-consuming, especially for big problems.

However, observe that we do not need to compute the whole spectrum in (4.22), but only

the m − 1 largest eigenvalues and their associated eigenvectors. In large-scale problems,

m is usually much smaller than n and hence πC2 can be computed reasonably fast.

The nonconvexity of the constraints manifests itself in the equality case of the con-

ditionals in Proposition 4.15, and the case of degenerate eigenvalues in Proposition 4.16.

None of them can be acted upon in practice, given the finite precision of the computations.

Remark 4.18. In order to find πC2(X), Proposition 4.16 requires the matrix X to be

symmetric. Observe that, according to (4.20) and by definition of C2, we get that

πC1(X), πC2(X) ∈ Sn, for all X ∈ Sn.

Hence, since Sn is a subspace, the iterates generated by DR (2.26) will remain symmetric

(with due attention to numerical precision), as long as the initial point is chosen in Sn.

Variety of implementations

For a more complete experimentation, instead of the classical Douglas–Rachford algorithm

we consider its generalized version GDR (2.19), so that the parameter α can play a role

in the rate of convergence and success of the method. There are several options for

implementing the GDR algorithm. The simplest choice would be to directly apply GDR

in the original space Rn×n, since the feasibility problem to be solved (4.15) only involves

4.1. Graph coloring problems 155

two constraint sets. Then, we can iterate by using either TC1,C2,α or TC2,C1,α. On the other

hand, although the product space reformulation (Section 2.1.1) is typically employed for

feasibility problems involving more than two sets, it can be still applied to two sets. In

this way, we obtain two additional implementations by either using the operator TD,C,α

or TC,D,α, where C and D are the sets defined in (2.4). The purpose of the next section

is to numerically compare these different implementations. In our tests we observed that

the numerical behavior of TD,C,α and TC,D,α is similar; thus, to simplify, we only show

the results with the operator TD,C,α, whose shadow sequence is easier to track, as it can

be identified with a sequence in the original space Rn×n.

4.1.3.3 Numerical experiments

In this section we run various numerical experiments to test the performance of the GDR

algorithm for solving different graph coloring problems. We compare the formulation

discussed in Section 4.1.3.1 with the one proposed in Section 4.1.2. To distinguish them,

we shall refer to the model proposed in Section 4.1.2 as the binary formulation, and to

the new one developed in Section 4.1.3.1 as the rank formulation.

Different families of graphs are taken into consideration: the Queens n2 puzzles,

random colorable graphs, the windmill graphs, Sudokus, and the DIMACS benchmark

instances. Each of these families is employed for a different purpose. We start with a

difficult coloring problem, the Queens n2 puzzle, where we show the effect that the para-

meter α has in the different implementations. We also use these puzzles to draw attention

to something that is usually overlooked: finite machine precision. Next, to test how the

method scales, we run an experiment on random colorable graphs with controlled asymp-

totic complexity. The windmill graphs and the Sudoku puzzles are used to show that

the rank formulation is superior to the binary formulation, even when we allow maximal

clique information. We finish this experimental section by testing the algorithm on the

DIMACS benchmark instances, a widely used collection of diverse graph types.

Unless otherwise is stated, the stopping criterion used for each implementation of the

form TA,B,α was

ErrorA,B(xk) := ‖PB(PA(xk))− PA(xk)‖ ≤ 10−10, (4.23)

where xk is the current iterate, in which case the instance was labeled as successful. All

codes were written in Python 2.7 and the tests were run on an Intel Core i7-4770 CPU

3.40 GHz with 32 GB RAM, under Windows 10 (64-bit).

156 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

Queens n2 puzzles

A well-known and challenging graph coloring problem is the Queens n2 puzzle. This is a

puzzle that consists in covering an entire n×n chessboard with queens of different colors,

so that two queens of the same color do not attack each other (see Remark 4.7). The

puzzle is equivalent to finding a proper coloring of the queens graph. In Table 4.8 we show

the chromatic number of the graph for the first nine puzzles. The smallest open case for

which the chromatic number is currently unknown is n = 27, see [121].

n 2 3 4 5 6 7 8 9 10

χ(n) 4 5 5 5 7 7 9 10 11

Table 4.8: Chromatic number χ(n) of the Queens n2 graph.

In our first experiment, we analyze how both the implementation and the choice in

the relaxation parameter α affects the behavior of GDR for solving this type of puzzles.

For each n ∈ {3, 4, . . . , 10} and each α ∈ {0.125, 0.25, . . . , 0.875}, we ran three different

implementations of GDR (namely, TC1,C2,α, TC2,C1,α and TD,C,α) from 10 random starting

points. The results are shown in Figure 4.25, where the markers correspond to the median

among the solved instances. We also show the percentage of instances solved for each value

of α, among all the problems and repetitions. According to these results, it seems that

the value of the parameter α that suits best each of the formulations TC1,C2,α, TC2,C1,α and

TD,C,α, is α = 0.375, α = 0.25 and α = 0.5, respectively.

To corroborate the previous conclusion, we visualize the results using performance

profiles (see Remark 4.10). We show in Figure 4.26 the performance profiles for each

value of α and each of the three implementations TC1,C2,α, TC2,C1,α and TD,C,α. This

corroborates our previous choice of best parameters α for each implementation. Finally,

we compare TC1,C2,0.375, TC2,C1,0.25 and TD,C,0.5 in Figure 4.27, where we can clearly observe

that the first implementation dominates the others.

Remark 4.19 (On the machine precision). Our numerical tests show no systematic effect

of the machine precision on the average number of iterations per solution, provided the

precision is above a modest threshold of about 6 decimal digits. This is consistent with

the chaotic dynamics displayed by GDR when solving hard problems.

The behavior explained in Remark 4.19 is demonstrated in the next experiment, where

TD,C,0.5 was implemented for solving the Queens 62 and the Queens 72 puzzles. For each

problem, the algorithm was run from the same starting point using different values of the

machine precision. The stopping criterion (4.23) was decreased to 10−5 to accommodate

the reduced precision. We believe this is still adequate to recover a unique, discrete

4.1. Graph coloring problems 157

n =3

n =4

n =5

n =6

n =7

n =8

n =9

n =10

0.125 0.25 0.375 0.5 0.625 0.75 0.875

α

0

1

2

3

4

5

lo
g
1
0

(i
te

ra
ti

on
s)

91.25% 100% 100% 62.5% 37.5% 37.5% 12.5%

(a) GDR implemented with TC1,C2,α

0.125 0.25 0.375 0.5 0.625 0.75 0.875

α

0

1

2

3

4

5

lo
g
1
0

(i
te

ra
ti

o
n

s)

100% 100% 85% 50% 37.5% 25% 25%

(b) GDR implemented with TC2,C1,α

0.125 0.25 0.375 0.5 0.625 0.75 0.875

α

0

1

2

3

4

5

lo
g
1
0

(i
te

ra
ti

on
s)

97.5% 100% 100% 100% 85% 37.5% 23.75%

(c) GDR implemented with TD,C,α

Figure 4.25: Results of the Queens n2 experiment for three implementations of GDR. Each
marker corresponds to the median of the solved instances among 10 random starting points.
At the bottom of each graph, we show the percentage of solved instances for each value of α.
Instances were considered as unsolved after 100,000 iterations.

158 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

α = 0.125 α = 0.25 α = 0.375 α = 0.5 α = 0.625 α = 0.75 α = 0.875

2 4 6

τ

0.0

0.2

0.4

0.6

0.8

1.0

ρ
(τ

)

(a) TC1,C2,α

2 4 6

τ

0.0

0.2

0.4

0.6

0.8

1.0

ρ
(τ

)

(b) TC2,C1,α

2 4 6

τ

0.0

0.2

0.4

0.6

0.8

1.0

ρ
(τ

)

(c) TD,C,α

Figure 4.26: Performance profiles of the Queens n2 experiment for three implementations
of GDR.

1 2 3 4 5 6

τ

0.0

0.2

0.4

0.6

0.8

1.0

ρ
(τ

)

TC1,C2,0.375

TC2,C1,0.25

TD,C,0.5

Figure 4.27: Performance profiles of the Queens n2 experiment comparing the implementations
TC1,C2,0.375, TC2,C1,0.25 and TD,C,0.5.

coloring from the Gram matrix. The results of repeating this experiment for 10 different

random starting points are shown in Figure 4.28. In Figure 4.29 we plot the value of

ErrorD,C in (4.23) with respect to the number of iterations for up to 15 digits of precision

for one particular random starting point. While these results indicate a high sensitivity to

the numerical precision, there is no evidence of a systematic effect. For these experiments,

we employed the mpmath library [124], which drastically increases the time needed to

compute the iterations of the GDR algorithm.

4.1. Graph coloring problems 159

Seed 0

Seed 1

Seed 2

Seed 3

Seed 4

Seed 5

Seed 6

Seed 7

Seed 8

Seed 9

6 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Number of digits

0

1000

2000

3000

4000

5000

6000

7000

(a) Queens 62

6 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Number of digits

0

100

200

300

400

500

600

(b) Queens 72

Figure 4.28: Comparison of the number of number of iterations and the number of digits used
in the machine precision for 10 random starting points, when TD,C,0.5 was employed to solve the
Queens 62 and the Queens 72 puzzles. For every starting point and every value of the machine
precision, the algorithm found a solution to the puzzle.

6 Digits

7 Digits

8 Digits

9 Digits

10 Digits

11 Digits

12 Digits

13 Digits

14 Digits

15 Digits

0 250 500 750 1000 1250 1500 1750

Number of iterations

0

2

4

6

8

10

(a) Queens 62

0 50 100 150 200 250 300 350

Number of iterations

0

2

4

6

8

10

12

14

(b) Queens 72

Figure 4.29: Comparison of the value of Error in (4.23) and the number of iterations for
different number of decimal digits used in the machine precision, when TD,C,0.5 was employed
to solve the Queens 62 and the Queens 72 puzzles.

160 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

Random colorable graphs

The hardness of finding a proper coloring of a graph depends on many factors, the single

most significant of which is the number of valid colorings. Random colorable graphs are

easily constructed, but to be able to draw some consequences from the experiments we

run on them, we must generate them in such a way that their complexity is controlled.

We consider the Erdös–Renyi model [96], G(δ, n), which is the ensemble of all graphs

with n vertices and l = bδnc edges, where b·c denotes the integer part, endowed with

the uniform measure. Hence, δ represents the averaged number of edges per node. The

probability that a random graph with this distribution is m-colorable depends on the mag-

nitude of the parameter δ. Precisely, the expected number of proper colorings decreases

as δ increases. There is an asymptotic threshold in the colorable-uncolorable transition

denoted δs(m) (see [1, Theorem 1.1]). This means that the probability an m-coloring

exists tends to one as n increases, provided that δ < δs(m), and conversely, it conver-

ges to zero for δ > δs(m). The asymptotic threshold is known to be upper-bounded by

δs(m) ≤ δ̄s(m) := logm
log m

m−1
(see, e.g., [2, Section 2]).

With the number of vertices n and the number of colors m fixed, random graphs

sampled from G(δ̄s(m), n) are at the m-colorability transition and expected to be hard

instances, when solvable. In order to avoid non-colorable graphs, the sampling can be

modified to ensure the existence of a coloring as follows. First, a partition of V into

m groups with approximately equal size is chosen, e.g. consider the equivalence classes

defined by the congruence modulo m of the integer vertex labels. Then, bδ̄s(m)nc edges

are randomly generated from the uniform distribution over the set of all edges connecting

two nodes in different groups. Algorithm 1 contains the discussed routine that generates

such graphs.

Algorithm 1: Generate an m-colorable random graph with low expected number

of m-colorings.

Input: V = {1, . . . , n}, m ≥ 2

Set δ̄s(m) := logm
log m

m−1
, E := ∅ and l = 0;

while l < δ̄s(m)n do

Generate randomly e := {i, j} ∈ V × V ;

if e 6∈ E and (i− j) 6≡ 0 (mod m) then

E = E ∪ {e};
l = l + 1;

Output: G = (V,E)

4.1. Graph coloring problems 161

The goal of our next experiment is to show how the GDR algorithm complexity grows

with respect to the number of vertices in the graph. We make use of colorable random

graphs with low expected number of colors so that we have control of the complexity of

our instances. For each m ∈ {8, 9, 10} and for each n ∈ {50, 75, · · · , 200}, we generated

5 random graphs using Algorithm 1. Then, for each graph, the GDR algorithm was

run from 5 different starting points (this makes a total of 25 runs per each pair (m,n)).

Based on the results in the Queens n2 experiment, we implemented GDR with TC1,C2,0.375.

In Figure 4.30 we plot the number of iterations needed by the algorithm with respect to

the size of the graph, for each m. We can observe that the number of colors does not have

a noticeable effect on the performance of the algorithm. As expected, we come upon an

exponential dependence between size and number of iterations to find a coloring, which

is consistent with the NP-hardness of the problem.

50 75 100 125 150 175 200

Number of nodes (n)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

lo
g

1
0

(i
te

ra
ti

on
s)

m = 8

m = 9

m = 10

Figure 4.30: Results of the experiment on m-colorable random graphs for m = 8, 9, 10, for
GDR implemented with TC1,C2,0.375. Each marker corresponds to the median of the solved
instances among 10 random starting points, and the lines where obtained by linear regression
among all the solved instances.

To confirm our previous choice of the best parameter α = 0.375, we repeated the

experiment for each α ∈ {0.125, 0.375, . . . , 0.875} with the implementation TC1,C2,α. The

results are shown in Figure 4.31, where again the markers correspond to the median

among the solved instances, and the percentage of instances solved for each value of α

is computed among all the problems and repetitions. This results confirm that the best

choice for general purposes is α = 0.375.

162 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

n =50 n =75 n =100 n =125 n =150 n =175 n =200

0.125 0.25 0.375 0.5 0.625 0.75 0.875

α

1

2

3

4

5
lo

g
1
0

(i
te

ra
ti

on
s)

72.57% 86.29% 91.43% 78.86% 14.29% 14.29% 14.29%

(a) 8 colors

0.125 0.25 0.375 0.5 0.625 0.75 0.875

α

1

2

3

4

5

lo
g
1
0

(i
te

ra
ti

o
n

s)

73.71% 82.29% 94.86% 48% 28.57% 14.29% 0%

(b) 9 colors

0.125 0.25 0.375 0.5 0.625 0.75 0.875

α

1

2

3

4

5

lo
g
1
0

(i
te

ra
ti

on
s)

80.57% 89.14% 98.86% 48% 28.57% 21.71% 20%

(c) 10 colors

Figure 4.31: Results of the experiment on m-colorable random graphs for m = 8, 9, 10, for the
implementation TC1,C2,α of GDR. Each marker corresponds to the median of the solved instances
among 10 random starting points. At the bottom of each graph, we show the percentage of solved
instances for each value of α. Instances were considered as unsolved after 100,000 iterations.

4.1. Graph coloring problems 163

Windmill graphs

We turn our attention to windmill graphs (see Figure 4.13). Recall that a windmill graph

Wd(a, b) can be easily a-colored in a((a − 1)!)b different ways. Despite this abundance

of valid colorings, all of them are equivalent under a permutation of the colors. Thus,

by Remark 4.13, there exists a unique solution to the rank feasibility problem. This is

not the case, however, for the binary formulation.

In our tests with the binary formulation (see Figure 4.17 and Table 4.4), the DR

algorithm fails to find colorings of windmill graphs rather often. We tentatively attribute

this to the high multiplicity of solutions in the binary formulation. In Section 4.1.2.3

we have addressed this problem by augmenting the model with information about the

maximal cliques of the graph (see Table 4.4). The set of maximal cliques would normally

be unknown (and difficult to find) for general graphs, so a formulation that does not

require this information would generally be preferred.

In our next experiment, whose results are shown in Table 4.9, we compare the binary

formulation with and without maximal clique information, and the rank formulation for

coloring sixteen windmill graphs of different parameters.

Wd(a, b) Binary formulation
Binary formulation Rank

with clique info. formulation

a b Success Time Iter. Success Time Iter. Success Time Iter.

5

5 10/10 0.05 226 10/10 0.02 63 10/10 0.01 20
10 10/10 0.13 375 10/10 0.04 93 10/10 0.02 33
15 9/10 0.23 503 10/10 0.06 135 10/10 0.03 43
20 9/10 0.3 521 10/10 0.1 170 10/10 0.05 51

10

5 1/10 1.12 1886 10/10 0.12 200 10/10 0.03 33
10 0/10 - - 10/10 0.27 242 10/10 0.08 54
15 0/10 - - 10/10 3.47 1729 10/10 0.24 86
20 0/10 - - 10/10 5.2 1531 10/10 0.45 109

15

5 0/10 - - 10/10 0.54 330 10/10 0.06 44
10 0/10 - - 10/10 1.69 369 10/10 0.29 92
15 0/10 - - 10/10 5.21 588 10/10 0.85 144
20 0/10 - - 10/10 13.35 949 10/10 1.69 180

20

5 0/10 - - 10/10 2.62 642 10/10 0.15 68
10 0/10 - - 10/10 12.52 1059 10/10 0.63 119
15 0/10 - - 10/10 16.95 729 10/10 1.83 170
20 0/10 - - 8/10 31.76 828 10/10 7.3 297

Table 4.9: Summary of the results of GDR for finding proper colorings of windmill graphs.
For each formulation, we show the number of solved instances, the averaged time (in seconds)
and the averaged number of iterations. Instances were considered as unsolved after 60 seconds.

164 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

We observe that the addition of maximal clique information is crucial for the success

of the binary formulation. Without adding it, the DR algorithm was not able to find any

solutions for even modestly large values of a. On the other hand, the superior performance

of the rank formulation for this graph is apparent, both in terms of number of iterations

and time. We emphasize again that the rank formulation does not use maximal clique

information, and despite this, it achieved a success rate of 100%.

Sudokus

In our next experiment, we compare the precoloring rank matrix model (with TC1,C2,0.375)

and the binary formulation for precoloring stated in Section 4.1.2.2, with maximal clique

information included in the latter. We also incorporate to the experiment the cubic

formulation for Sudokus (see Remark 4.4). For each of these three formulations and

each of the 95 puzzles in top95 (the same Sudoku data set used in the experiments

in Section 4.1.2.3), the GDR algorithm was run from 10 random starting points. The

performance profiles of the results are displayed in Figure 4.32.

20 40 60 80 100 120 140

τ

0.0

0.2

0.4

0.6

0.8

1.0

ρ
(τ

)

Cubic formulation

Binary formulation

Rank formulation

Figure 4.32: Performance profiles comparing the binary and the rank matrix formulations for
solving 95 Sudoku problems. For each problem, 10 starting points were randomly generated.
Instances were considered as unsolved after 300 seconds.

The cubic formulation was the fastest in 86.36% of the instances. On average it

solved a Sudoku in 4.65 seconds, while the binary and rank formulations needed 35.8

and 13.79 seconds, respectively. Regarding the success of the algorithm, the cubic and

binary formulations solved about 90% of the instances. The rank formulation was the

clear winner in terms of success, as it solved every single instance, even for those puzzles

listed in Table 4.7, on which DR was observed to be highly unsuccessful.

4.1. Graph coloring problems 165

To further challenge the rank formulation, we performed experiments on the so-called

‘nasty’ Sudoku (shown in Figure 4.33). The ‘nasty’ Sudoku has very low success rate in the

cubic formulation (see [10, Section 6.5]), as the algorithm almost always enters a limit cycle

(see [10, Table 4]). This is not the case, however, for the rank formulation. In our next

experiment we compare the cubic, binary and rank formulations for solving the ‘nasty’

Sudoku from 100 random starting points. The results are summarized in Figure 4.33.

The rank formulation obtained again a success rate of 100%. The second most successful

formulation was the binary one, which was only able to find a solution for 19% of the

starting points. So far, we have not been able to find any Sudoku on which the rank

formulation failed to find a solution for some starting point.

7 9 5
1 3

2 3 7
4 5 7

8 2
6 4

9 1
8 6

5 4 7

Cubic Binary Rank

Time Inst. Cumul. Inst. Cumul. Inst. Cumul.

0-24 12 12% 15 15% 61 61%
25-49 0 12% 2 17% 36 97%
50-99 0 12% 1 18% 3 100%

100-299 0 12% 1 19% 0 100%

Unsolved 88 100% 81 100% 0 100%

Figure 4.33: Number of solved instances (right), among 100 random starting points, to find
the solution of the ‘nasty’ Sudoku (left) by GDR with the cubic, the binary, and the rank
formulations. For each interval of time (in seconds), we show the number of solved instances
and the cummulative proportion of solved instances for each formulation. The algorithm was
stopped after a maximum of 300 seconds, in which case the problem was labeled as “Unsolved”.

DIMACS benchmark instances

In our final experiment, we test the rank formulation on the widely used graph coloring

library from DIMACS benchmark instances5. This collection contains various classes of

graphs, such as random or quasi-random graphs, problems based on register allocation

for variables in real codes, or class scheduling graphs, among others.

The GDR algorithm was applied to a wide sample of the aforementioned benchmark

instances. Guided by the results in the previous experiments, we used the implementation

TC1,C2,0.375. For each graph, the algorithm was run from 10 random starting points and

was stopped after a maximum time of one hour. In Table 4.10 we present the results of

the experiment, as well as the main features of the selected instances. The unsuccessful

instances mainly occurred on the very large graphs, on which the algorithm may have

succeeded given more time.

5DIMACS benchmark instances: http://cse.unl.edu/~tnguyen/npbenchmarks/graphcoloring.

html

http://cse.unl.edu/~tnguyen/npbenchmarks/graphcoloring.html
http://cse.unl.edu/~tnguyen/npbenchmarks/graphcoloring.html

166 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

Instances Nodes Edges Colors Success Iter Time (s)

fpsol2.i.1 496 11,654 65 10/10 8,984 463.94
fpsol2.i.2 451 8,691 30 10/10 13,316 495.94
fpsol2.i.3 425 8,688 30 10/10 14,454 480.27
inithx.i.1 864 18,707 54 10/10 16,174 2,443.43
inithx.i.2 645 13,979 31 10/10 20,049 1,500.45
inithx.i.3 621 13,969 31 10/10 20,604 1,432.43
le450 15a 450 8,168 15 4/10 61,365 1,944.35
le450 15b 450 8,169 15 8/10 65,537 2,076.54
le450 15c 450 16,680 15 10/10 5,464 173.1
le450 15d 450 16,750 15 10/10 19,718 619.74
le450 25a 450 8,260 25 10/10 1,938 68.93
le450 25b 450 8,263 25 10/10 1,849 65.82
le450 25c 450 17,343 25 0/10 - -
le450 25d 450 17,425 25 0/10 - -
le450 5a 450 5,714 5 10/10 3,071 82.47
le450 5b 450 5,734 5 10/10 8,885 238.33
le450 5c 450 9,803 5 10/10 3,212 86.68
le450 5d 450 9,757 5 10/10 1,644 44.49
mulsol.i.1 197 3,925 49 10/10 2,331 18.79
mulsol.i.2 188 3,885 31 10/10 8,696 63.18
mulsol.i.3 184 3,916 31 10/10 7,814 55.88
mulsol.i.4 185 3,946 31 10/10 8,584 60.71
mulsol.i.5 186 3,973 31 10/10 8,685 62.72
zeroin.i.1 211 4,100 49 10/10 3,014 27.1
zeroin.i.2 211 3,541 30 10/10 4,775 39.08
zeroin.i.3 206 3,540 30 10/10 4,286 34.51
anna 138 493 11 10/10 354 1.04
david 87 406 11 10/10 167 0.26
homer 561 1,628 13 10/10 1,222 59.01
huck 74 301 11 10/10 81 0.11
jean 80 254 10 10/10 98 0.13
miles1000 128 3,216 42 10/10 570 2.43
miles1500 128 5,198 73 10/10 4,736 24.65
miles250 128 387 8 10/10 173 0.4
miles500 128 1,170 20 10/10 307 1.07
miles750 128 2,113 31 10/10 671 2.54
myciel3 11 20 4 10/10 7 0.0
myciel4 23 71 5 10/10 15 0.0
myciel5 47 236 6 10/10 41 0.03
myciel6 95 755 7 10/10 179 0.26
myciel7 191 2,360 8 9/10 377 1.52
mug88 1 88 146 4 10/10 43 0.05
mug88 25 88 146 4 10/10 46 0.05
mug100 1 100 166 4 10/10 54 0.07
mug100 25 100 166 4 10/10 47 0.06

Table 4.10: Summary of the results of the GDR algorithm implemented with TC1,C2,0.375

for finding proper colorings of a representative sample of DIMACS benchmark instances. For
each problem, we show the number of solved runs, the average time (in seconds) and the average
number of iterations. We also include the number of nodes and edges, and the chromatic number
of each graph. Runs were considered as unsolved after 3600 seconds.

4.2. Combinatorial designs of circulant type 167

4.2 Combinatorial designs of circulant type

4.2.1 Introduction

The notion of autocorrelation associated with a finite sequence is a unifying concept

that allows for several classes of combinatorial designs of circulant type to be concisely

described. Designs of this type can be represented in terms of circulant matrices formed

from finite complementary sequences (Definition 1.40). Examples of such designs include

certain D-optimal matrices, Hadamard matrices and circulant weighing matrices amongst

many other possibilities. A precise summary describing several of these designs, the

associated sequences and their autocorrelation properties, can be found in [130, Table 1].

For an encyclopedic reference on autocorrelation properties and complementary sequences

more generally, see [161, 162], and for an authoritative reference on combinatorial designs,

see [76].

Many combinatorial designs can be defined as matrices of a given class which attain

certain determinantal bounds. For instance, D-optimal and Hadamard matrices of a given

order are precisely the {±1}-matrices whose determinant is maximal among all other such

matrices of the same order [63, 118, 164]. For this reason, combinatorial designs arise in

various fields where the determinantal bounds give rise to “best possible” or “optimal”

objects. Specific applications include coding theory [19, 158], quantum computing [101,

172], wireless communication, cryptography and radar [109]. In many such applications,

precise knowledge of the relevant combinatorial design is required.

In order to explicitly construct combinatorial designs of non-trivial orders, it is neces-

sary to exploit the underlying structure. Some possibilities include an appropriate group

theoretic structure through which the mathematical analysis can proceed, or an efficient

representation which is amenable to search algorithms such as metaheuristics. We purpose

the Douglas–Rachford algorithm as a search heuristic. The critical feature of the problem,

which allows for an efficient implementation of DR to solve it, is that the autocorrelation

function gives rise to a projection operator which can be efficiently computed.

4.2.2 Modelling Framework

In this section we explain how to model a general combinatorial design of circulant type

as a feasibility problem described by three sets. More precisely, we consider designs

belonging to the following class.

168 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

Definition 4.20 (Design of circulant type). Consider natural numbers n,m ∈ N,

vectors α ∈ Rm and v ∈ Rn, and let A ⊂ R be finite and nonempty. A design of circulant

type of order n with parameters (m,α, v,A) is an m-tuple of vectors,

(a0, a1, . . . , am−1) ∈ (An)m := An×
(m)
· · · ×An,

which satisfy the following two conditions:

n−1∑
s=0

ajs = αj ∀j ∈ {0, 1, . . . ,m− 1}, and
m−1∑
j=0

aj ? aj = v.

We remark that the notation “A” will be reserved for a finite subset of R which we

refer to as the alphabet. We will be concerned with the alphabets {±1} and {0,±1}.
Let A ⊂ R be finite and nonempty, and let α ∈ Rm and v ∈ Rn. A design of circulant

type of order n with parameters (m,α, v,A) can be constructed as a solution of the

following feasibility problem:

Find (a0, a1, . . . , am−1) ∈ C1 ∩ C2 ∩ C3 ⊆ (Rn)m, (4.24)

where the constraint sets are defined by

C1 :=
{

(a0, a1, . . . , am−1) ∈ (Rn)m : aj ∈ An, ∀j = 0, 1, . . . ,m− 1
}
, (4.25a)

C2 :=

{
(a0, a1, . . . , am−1) ∈ (Rn)m :

n−1∑
s=0

ajs = αj,∀j = 0, 1, . . . ,m− 1

}
, (4.25b)

C3 :=

{
(a0, a1, . . . , am−1) ∈ (Rn)m :

m−1∑
j=0

aj ? aj = v

}
. (4.25c)

Remark 4.21 (Autocorrelation constraints in bit retrieval). In the special case that m =

1, the constraint C3 appears in the formulation of the bit retrieval problem used in [94].

Remark 4.22 (Variants of C1). The constraint set C1 in (4.25a) can be easily modified so

that the alphabet A set is different for each vector aj or even for each individual entry of

the vectors aj. In this way, desired entries of a design can be fixed or avoided by choosing

the corresponding alphabet sets to be singleton or to exclude certain values, respectively.

For each set of parameters (m,α, v,A), it transpires that an m-tuple of vectors (aj)m−1
j=0

satisfies Definition 4.20 precisely when it is a feasible point for (4.24). This equivalence

is justified by the following proposition.

4.2. Combinatorial designs of circulant type 169

Proposition 4.23. Let A ⊂ R be nonempty and finite and consider a collection of real

sequences {aj}m−1
j=0 ⊆ An. Then the following assertions are equivalent:

(i) {aj}m−1
j=0 ⊆ An is complementary with constants ν0 and ν1, i.e.,

m−1∑
j=0

aj ? aj = (ν0, ν1, . . . , ν1);

(ii) (aj)m−1
j=0 ∈ (Rn)m solves (4.24) with v = (ν0, ν1, . . . , ν1) and some α ∈ Rm which

satisfies
m−1∑
j=0

α2
j = ν1(n− 1) + ν0.

Proof. This is an immediate consequence of Proposition 1.41.

In order for the feasibility problem (4.24) to be computationally useful, it is necessary

that the projectors onto the constraint sets in (4.25) can be efficiently computed. In what

follows, we prove that this is indeed the case.

Proposition 4.24 (Projector onto C1). Let (a0, a1, . . . , am−1) ∈ (Rn)m and consider

the set C1 described in (4.25a). Then PC1

(
(aj)m−1

j=0

)
is the set of points (āj)m−1

j=0 ∈ (Rn)m

which satisfy

ājs ∈
{
l ∈ A :

∣∣l − ajs∣∣ = min
l̄∈A

∣∣l̄ − ajs∣∣} ,
for all j = 0, 1, . . . ,m− 1 and s = 0, 1, . . . , n− 1.

Proof. Let a ∈ R. We observe that projector onto the set A is given by

PA(a) =

{
l ∈ A : |l − a| = min

l̄∈A

∣∣l̄ − a∣∣} .
Applying this result pointwise and using the definition of the inner product on (Rn)m, the

result follows.

Proposition 4.25 (Projector onto C2). Let e = (1, 1, . . . , 1) ∈ Rn. The projector onto

the set C2 in (4.25b) at (a0, a1, . . . , am−1) ∈ (Rn)m is given by

PC2

(
(aj)m−1

j=0

)
=

(
aj +

1

n

(
αj −

n−1∑
s=0

ajs

)
e

)m−1

j=0

.

170 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

Proof. According to Proposition 1.43, the projection of any point a ∈ Rn onto the hyper-

plane Hj :=
{
a ∈ Rn : eTa = αj

}
is given by

PHj(a) = a+
1

‖e‖2

(
αj − eTa

)
e = a+

1

n

(
αj −

n−1∑
s=0

as

)
e.

The definition of the inner product on (Rn)m yields PC2

(
(aj)m−1

j=0

)
=
(
PHj(a

j)
)m−1

j=0
, from

which the result follows.

Remark 4.26. The implementation of the projectors given in Propositions 4.24 and 4.25,

requires only vector arithmetic and finding the minimum of a finite set, respectively. From

a computation perspective, the latter poses no problem when the alphabet, A, is small.

We now turn our attention to describing the projector onto C3. In the following

proposition, we denote the unit sphere in Cm by

S :=

{
(zj)

m−1
j=0 ∈ Cm :

m−1∑
j=0

|zj|2 = 1

}
,

and we define the set

Y := F(Rn)m = F(Rn)×
(m)
· · · ×F(Rn),

where F denotes the discrete Fourier transform (1.10). In view of Proposition 1.42, the

set F(Rn) is precisely the set of all conjugate symmetric vectors in Cn, i.e.,

F(Rn) =
{

(zs)
n−1
s=0 ∈ Cn : z0 ∈ R, zs = z∗n−s,∀s = 1, 2, . . . , n− 1

}
.

Proposition 4.27 (Projector onto C3). For any v ∈ Rn, the projector onto the set C3

defined in (4.25c) can be computed as

PC3 = (F−1, . . . ,F−1) ◦ PĈ3
◦ (F , . . . ,F), (4.26)

where the set Ĉ3 is described by

Ĉ3 :=

{
(âj)m−1

j=0 ∈ Y :
m−1∑
j=0

|âj|2 = v̂

}
,

with v̂ := F(v).

4.2. Combinatorial designs of circulant type 171

Furthermore, the projector onto Ĉ3 at (â1, â2, . . . , âm−1) ∈ Y , PĈ3

(
(âj)m−1

j=0

)
, is given

by the set of all points (āj)m−1
j=0 ∈ Y which satisfy, for all s = 0, 1, . . . , n− 1:

(ājs)
m−1
j=0 =

√
v̂s√∑m−1

j=0 |â
j
s|2

(âjs)
m−1
j=0 , if (âjs)

m−1
j=0 6= 0m,

(ājs)
m−1
j=0 ∈

√
v̂sS, if (âjs)

m−1
j=0 = 0m.

(4.27)

Proof. We first prove the claimed formula for PĈ3
. To this end, note that

Ĉ3 = E ∩ Y where E :=

{
(âj)m−1

j=0 ∈ (Cn)m :
m−1∑
j=0

|âj|2 = v̂

}
. (4.28)

By Proposition 1.44, the projector onto S for a point z ∈ Cm is given by

PS(z) =

z/‖z‖, if z 6= 0m;

S, if z = 0m.
(4.29)

Applying (4.29) to each m-tuple (âjs)
m−1
j=0 , we deduce that (āj)m−1

j=0 ∈ PE
(
(âj)m−1

j=0

)
⊂ (Cn)m

precisely when the vector (ājs)
m−1
j=0 ∈ Cm satisfies (4.27) for all s = 0, . . . , n − 1. Due to

(4.28), any vector (āj)m−1
j=0 which satisfies (4.27) and is contained in Y is an element of

PĈ3

(
(âj)m−1

j=0

)
. Thus the claimed formula for PĈ3

follows.

Next we prove (4.26). We first note that since the Fourier transform, F , is a linear

isometry on Cn (Proposition 1.42(iii)), the operator (F , . . . ,F) is a linear isometry on

(Cn)m with inverse given by (F , . . . ,F)−1 = (F−1, . . . ,F−1). Since distances are invariant

under isometries, we therefor have that

PC3 = (F−1, . . . ,F−1) ◦ PF(C3) ◦ (F , . . . ,F),

where F(C3) :=
{

(F(aj))
m−1
j=0 : (aj)m−1

j=0 ∈ C3

}
. To complete the proof, it therefore suffices

to show F(C3) = Ĉ3. To this end, in view of Proposition 1.42(ii)–(iii), for any tuple

(aj)m−1
j=0 ∈ (Cn)m we have that

m−1∑
j=0

aj ? aj = v ⇔
m−1∑
j=0

F(aj ? aj) = v̂ ⇔
m−1∑
j=0

∣∣F(aj)
∣∣2 = v̂,

which shows that F(C3) ⊆ Ĉ3. To deduce the reverse inclusion, note that F is invertible

(Proposition 1.42(iii)) and use the same argument with (aj)m−1
j=0 := (F−1(âj))m−1

j=0 .

172 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

Remark 4.28. We emphasize that it is important to note that the projector onto Ĉ3 is

given by (4.27) for tuples (āj)m−1
j=0 contained in Y but not (Cn)m.

We now provide three concrete examples of types of combinatorial designs which can

be described in terms of the structure proposed in formulation (4.24).

4.2.2.1 Circulant weighing matrices

Definition 4.29 (Circulant weighing matrix). Let n, k ∈ N. A circulant weighing

matrix of order n and weight k2, denoted CW(n, k2), is a circulant matrix W ∈ {0,±1}n×n

such that

WW T = k2I. (4.30)

As we show in the next proposition, circulant weighing matrices can be formulated as

desings of circulant type in the sense of Definition 4.20.

Proposition 4.30. Let n, k ∈ N. A matrix W ∈ Rn×n is CW (n, k2) if and only if there

exists a vector a ∈ {0,±1}n with W = c(a) such that

(i)
∑n−1

s=0 as = ±k, and

(ii) a ? a = (k2, 0, 0, . . . , 0).

Proof. Since the matrix W is circulant, there exists a vector a ∈ {0,±1}n such that

W = c(a) where the mapping c : Rn → Rn×n maps a vector to an associated circulant

matrix. For such a vector, the equality (4.30) is equivalent to

a ? a = (k2, 0, 0, . . . , 0).

The result follows by applying Proposition 4.23 (with m = 1).

Example 4.31 (A CW matrix of small order). The vector

a = (−1, 1, 1,−1, 1, 0, 1, 0, 1, 1, 0, 0,−1)

defines a circulant weighing matrix CW (13, 32). Indeed, it verifies
∑12

s=0 as = 3 and

a ? a = (9, 0, 0, 0, 0, 0, 0, 0, 0).

The class of circulant weighing matrices are of interest, in part, because they include

all circulant Hadamard matrices (specially, a CW (n, k2) is a circulant Hadamard matrix

4.2. Combinatorial designs of circulant type 173

whenever n = k2 and n = 0 mod 4). The existence of a CW matrices for a given order

and weight is, in general, not resolved. Strassler’s table, which originally appeared 20

years ago in [165], gives the existence status of CW (n, k2) for n ≤ 200 and k ≤ 10. The

table has been updated several times, but still contains open cases. The most up-to-date

version known to the author at the time of writing is contained in [169, Appendix A]. For

other recent progress regarding CW matrices, see [170]. In Section 4.2.3.1 we present two

circulant weighing matrices found with the DR algorithm, namely, a CW (126, 82) and a

CW (198, 102), whose existence had been previously marked as an open question.

4.2.2.2 D-optimal designs of circulant type

Let n be an odd positive integer. In [92], the author showed that the determinant of a

square matrix of order 2n having {±1} entries satisfies the bound

| det(D)| ≤ 2n(2n− 1)(n− 1)n−1.

Such a matrix is said to be D-optimal if it has maximal determinant, that is, the afore-

mentioned determinate bound is attained.

To construct a D-optimal matrix, it suffices to find two commuting square {±1}-
matrices, A and B, of order n such that

AAT +BBT = (2n− 2)I + 2J, (4.31)

where J ∈ Rn×n denotes the matrix of all ones. A D-optimal matrix D of order 2n can

then be constructed from the matrices A and B as

D =

(
A B

−BT AT

)
. (4.32)

This construction, originally proposed in [92] for the case in which matrices A and B are

circulant, was later extended in [75] to commuting matrices. The former case constitutes

a special type of D-optimal designs known as D-optimal designs of circulant type.

Definition 4.32 (D-optimal design of circulant type). A D-optimal design of circu-

lant type is a matrix D of order 2n given by (4.32) for a pair of circulant {±1}-matrices

A and B of order n satisfying (4.31). In the case when we wish to refer to the underlying

matrices A and B explicitly (rather than D), we shall say that (A,B) is a D-optimal

design of circulant type.

174 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

As before, we deduce the following characterization of D-optimal designs as particular

instances of general combinatorial designs, both of circulant type.

Proposition 4.33. Let n be an odd integer. A matrix D is a D-optimal design of circulant

type of order 2n if and only if there exist constants α, β ∈ Z with α2 + β2 = 4n − 2 and

a pair of vectors (a, b) ∈ {±1}n × {±1}n such that D satisfies (4.32) for A = c(a) and

B = c(b), and the following assertions hold:

(i)
∑n−1

s=0 as = α,

(ii)
∑n−1

s=0 bs = β, and

(iii) a ? a+ b ? b = (2n, 2, 2, . . . , 2).

Proof. Let (A,B) be a D-optimal design of circulant type of order 2n. Since both matrices

A and B are circulant, there exist vectors a, b ∈ {±1}n such that A = c(a) and B = c(b).

For such vectors, (4.31) is equivalent to

a ? a+ b ? b = (2n, 2, 2, . . . , 2).

The result follows by applying Proposition 4.23 (with m = 2).

Example 4.34 (D-optimal design of circulant type of small order). The vectors

a = (−1, 1,−1, 1, 1, 1, 1, 1,−1) and b = (−1, 1, 1, 1, 1,−1, 1, 1, 1)

define a D-optimal design of order 9. Let α = 3 and β = 5. Then we have α2+β2 = 4n−2

with
∑8

s=0 as = α and
∑8

s=0 bs = β, and that a ? a+ b ? b = (18, 2, 2, 2, 2, 2, 2, 2, 2).

The existence of a D-optimal matrix for values n < 100 for which the Diophantine

equation x2 + y2 = 4n − 2 has solutions has been resolved in the affirmative with the

exception of n = 99; see [86] and [87, Table 1]. In other words, the first unresolved case

of existence arises when n = 99.

4.2.2.3 Double circulant core Hadamard matrices

Let n be an odd positive integer. Recall that a Hadamard matrix of order n is a matrix

H ∈ {±1}n×n such that

HHT = HTH = nI.

4.2. Combinatorial designs of circulant type 175

There are many equivalent characterization of Hadamard matrices. For instance, they are

precisely the {±1}-matrices of maximal determinant [118, Chapter 2].

Definition 4.35 (Double circulant core Hadamard matrix). Let n ∈ N. A Hada-

mard matrix, H, of order 2n+2 is said to be a Hadamard matrix with two circulant cores

(DCHM) if it is of either one of the following two forms

− − + . . . + + . . . +

− + + . . . + − . . . −
+ +
...

... A B

+ +

+ −
...

... BT −AT

+ −

,

+ +
...

... A B

+ +

+ −
...

... BT −AT

+ −
− − + . . . + + . . . +

− + + . . . + − . . . −

, (4.33)

where A and B are circulant matrices of order n, and + and − are shorthand for +1 and

−1, respectively.

We note that the two Hadamard matrices in (4.33) are Hadamard equivalent in the

sense that one can be obtained from the other via sequence of row/column negations and

row/column permutation [131, §2.1].

Two circulant matrices A and B satisfy Definition 4.35 precisely when [131, p. 3]

AAT +BBT = (2n+ 2)In − 2Jn, (4.34)

and hence we can deduce the following characterization.

Proposition 4.36. A pair of matrices A and B satisfy (4.34) and, consequently define a

Hadamard matrix with two circulant cores, if and only if there exists vectors a, b ∈ {±1}n

such that A = c(a), B = c(b) with

(i) α :=
∑n−1

s=0 as ∈ {±1},

(ii) β :=
∑n−1

s=0 bs ∈ {±1}, and

(iii) a ? a+ b ? b = (2n,−2,−2, . . . ,−2).

Proof. Denote A = c(a) and B = c(b) for vectors a, b ∈ {±1}n. It follows that (4.34) is

equivalent to

a ? a+ b ? b = (2n,−2,−2, . . . ,−2),

176 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

and thus (iii) holds. Furthermore, as a direct consequence of Proposition 4.23, one has

α2 + β2 =

(
n−1∑
s=0

as

)2

+

(
n−1∑
s=0

bs

)2

= 2,

from which (i)-(ii) follows, and thus the result is proved.

Example 4.37 (A Hadamard matrix with two circulant cores of small order).

The vectors

a = (1,−1,−1, 1,−1, 1, 1, 1,−1) and b = (−1,−1, 1, 1,−1, 1, 1, 1,−1)

define a double core circulant Hadamard matrix design. Indeed, note that
∑8

s=0 as = 1,∑8
s=0 bs = 1 and a ? a+ b ? b = (18,−2,−2,−2,−2,−2,−2,−2,−2).

4.2.3 Computational Results

In this section, we report the results of some numerical experiments which demonstrate

the performance of DR for solving (4.24). As that feasibility problem involves three

constraint sets, we implement the Douglas–Rachford algorithm in the product space as

described in (2.17). We used the same stopping criteria stated in (4.10). All codes were

written in Python 2.7 and runs were performed on Intelr Xeonr X5650 @ 2.67 GHz

with 99 GB RAM, under Debian 4.9. In order to run DR, the full amount of RAM was

not used nor required; our experiments could have easily been performed on a standard

desktop computer.

Computational results for CW matrices are summarized in Figure 4.34, while more

detailed results are included at the end of the section in Table 4.13. Results for D-optimal

designs of circulant type and Hadamard matrices with two circulant cores, respectively,

can be found in Tables 4.11 and 4.12.

4.2.3.1 New circulant weighing matrices

We now state and prove our main result regarding the existence of two circulant weighing

matrices. Our approach makes use of the following construction which is a consequence

of [22, Theorem 2.3]. Since this result appears without a proof in [21, Section 2], we show

next how to derive it and give an explicit expression of the components of the constructed

matrix in terms of the components of the original matrices.

4.2. Combinatorial designs of circulant type 177

0 5 10 15 20 25 30 35 40 45 50 55 60

Order

12

22

32

42

52

62

72

W
ei

g
h
t

0 1 2 3 4 5 6 7 8 9 10

Instances solved (out of 10)

Figure 4.34: Results for CW matrices (10 random initialization, 3600s time limit).

n (α, β) Solved instances Average time (s) Average iterations

3 (1,3) 10 0.00 3.4
5 (3,3) 10 0.00 6.6
7 (1,5) 9 0.01 12.7
9 (3,5) 10 0.19 398.3
13 (1,7) 7 0.13 349.7
13 (5,5) 7 0.16 403.6
15 (3,7) 10 0.24 591.8
19 (5,7) 10 0.81 1,999.1
21 (1,9) 8 1.36 3,424.9
23 (3,9) 8 2.02 5,097.1
25 (7,7) 10 4.64 11,668.6
27 (5,9) 9 116.50 297,617.0
31 (1,11) 10 187.63 460,501.0
33 (3,11) 8 553.44 1,380,160.0
33 (7,9) 8 810.97 2,025,880.0
37 (5,11) 3 1,885.47 4,399,507.0
41 (9,9) 1 586.87 1,352,777.0
43 (1,13) 0 – –
43 (7,11) 1 1,207.20 2,737,865.0

Table 4.11: Experimental results for D-optimal designs with parameters (n, α, β) given by
Proposition 4.33 (10 random initialization, 3600s time limit).

178 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

n Solved instances Average time (s) Average iterations

1 10 0.00 1.7
3 10 0.01 33.6
5 10 0.00 5.9
7 8 0.01 35.8
9 10 0.01 35.2
11 10 0.04 89.2
13 9 0.10 222.2
15 10 0.10 241.8
17 10 0.22 549.3
19 10 1.68 4,162.5
21 10 1.97 4,764.0
23 10 2.26 5,533.2
25 9 16.08 40,468.1
27 10 76.10 192,706.0
29 10 91.82 223,875.0
31 10 428.61 1,028,850.0
33 10 849.84 2,070,120.0
35 4 2,354.52 5,864,880.0
37 2 1,883.67 4,603,068.0
39 1 2,536.40 5,916,197.0

Table 4.12: Experimental results for DCHM designs with parameters (n, α = 1, β = 1) given
by Proposition 4.36 (10 random initialization, 3600s time limit).

Theorem 4.38. Let n, k ∈ N with n odd. Let A and B be two CW (n, k2) whose re-

spective first rows, a and b, have disjoint support6. Then the circulant matrix c(w) is a

CW (2n, 4k2) where w = (w0, w1, . . . , w2n−1) ∈ R2n is given component-wise by

ws :=

a s

2
+ b s

2
, if s is even,

a s+n
2
− b s+n

2
, if s is odd and s ≤ n− 2,

a s−n
2
− b s−n

2
, if s is odd and s > n− 2.

(4.35)

Proof. Let G = 〈x〉 = {1, x, . . . , x2n−1} be a cyclic group of order 2n generated by x,

where x2n = 1. Clearly, the element xn of the group G has order 2.

Let a, b ∈ Rn denote the first rows of A and B, respectively, and consider the generating

functions given by the expressions

A(x) :=
n−1∑
s=0

asx
s and B(x) :=

n−1∑
s=0

bsx
s.

6The support of c = (c0, c1, . . . , cn−1) ∈ Rn is the set {i ∈ {0, . . . , n− 1} : ci 6= 0}.

4.2. Combinatorial designs of circulant type 179

Then A(x2),B(x2) ∈ Z[G] where Z[G] denotes the group ring of G over Z. Let â, b̂ ∈ R2n

denote the vectors associated with A(x2) and B(x2), respectively; that is,

â := (a0, 0, a1, 0, . . . , an−1, 0) and b̂ := (b0, 0, b1, 0, . . . , bn−1, 0). (4.36)

Since A and B are CW (n, k2), a direct verification using Proposition 4.30 shows that the

circulant matrices defined by â and b̂, namely Â := c(â) and B̂ := c(̂b), are CW (2n, k2).

Let ã, b̃ ∈ Rn be the vectors associated with the formal sums xnA(x2) and xnB(x2),

respectively. Since

xnA(x2) =
n−1∑
s=0

asx
2s+n =

n−1
2∑

s=0

asx
2s+n +

n−1∑
s=n+1

2

asx
2s−n,

it follows that

ã =
(

0, an+1
2
, 0, an+3

2
, 0, . . . , an−1, 0, a0, 0, a1, 0, . . . , 0, an−1

2

)
. (4.37)

The analogous expression holds for b̃.

Consider now the circulant matrices Ã = c(ã) and B̃ = c(̃b) associated with the formal

sums xnA(x2) and xnB(x2), respectively. Since a and b have disjoint support and n is

odd, one can easily check that â, ã, b̂, b̃ have pairwise disjoint support. Therefore, all the

assumptions of [22, Theorem 2.3] hold, and we deduce that the vector w ∈ R2n associated

with the formal sum W(x) given by

W(x) := (1 + xn)A(x2) + (1− xn)B(x2) ∈ Z[G]

is such that the circulant matrix c(w) is CW (2n, 4k2).

To conclude the proof, we just need to check that the components of w are given

by (4.35). Indeed, since

w = â+ ã+ b̂− b̃,

the expression given by (4.35) follows from (4.36) and (4.37).

Theorem 4.39. Both CW (126, 82) and CW (198, 102) exist.

Proof. Using DR, the following CW (63, 42) was found

a = [1,-1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0,-1, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0,

180 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

1, 0, 1,-1, 0, 0, 1, 0, 0, 0,-1, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1].

It has disjoint support with its cyclic permutation, b, given by

b = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1,-1, 0,

0, 0, 0, 0, 1, 1, 0, 1, 0,-1, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,

-1, 0, 0, 1, 0, 0, 0,-1, 0, 0, 0, 0, 0,-1, 0].

The construction in Theorem 4.38 applied to a and b yields

w = [1, 0,-1, 1, 0,-1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1,-1, 0, 0, 1, 0, 1, 0,

-1, 0, 0,-1, 0, 0,-1,-1, 1, 1, 0, 0, 0, 0, 0,-1, 1, 0, 1, 1,-1, 0, 0, 1,

1, 0, 0, 0, 1, 1,-1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0,-1,-1, 0,-1, 0, 0, 0,

-1, 0, 0, 0, 0, 1, 0, 1,-1, 0, 0, 1, 0,-1, 0,-1, 0, 0, 1, 0, 0,-1, 1,-1,

-1, 0, 0, 0, 0, 0, 1,-1, 0,-1, 1, 1, 0, 0,-1, 1, 0, 0, 0, 1, 1,-1, 0,-1,

0,-1,-1, 1, 1,-1],

and, consequently, the vector w defines a CW (126, 82).

Similarly, using DR, the following CW (99, 52) was found

a = [-1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,-1, 0, 0, 1, 0, 0, 0, 0, 0,

-1, 0, 0, 1, 0, 0, 1, 0, 0,-1, 0, 0,-1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,

1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,-1, 0, 0, 1, 0, 0,-1, 0, 0,

1, 0, 0, 0, 0, 0, 1, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0,

-1, 0, 0]

It has disjoint support with its cyclic permutation, b, given by

b = [0,-1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,-1, 0, 0, 1, 0, 0, 0, 0,

0,-1, 0, 0, 1, 0, 0, 1, 0, 0,-1, 0, 0,-1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,

0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,-1, 0, 0, 1, 0, 0,-1, 0,

0, 1, 0, 0, 0, 0, 0, 1, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0,

0,-1, 0].

The construction in Theorem 4.38 applied to a and b yields

w = [-1, 0,-1, 1, 0,-1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0,-1, 1, 0, 1, 1, 0,-1,

0, 0, 0,-1, 0, 1,-1, 0,-1, 1, 0,-1, 1, 0, 1,-1, 0, 1, 0, 0, 0, 1, 0,-1,

-1, 0,-1, 0, 0, 0, 1, 0, 1, 1, 0,-1, 1, 0, 1,-1, 0, 1,-1, 0,-1, 0, 0, 0,

-1, 0,-1, 0, 0, 0, 0, 0, 0,-1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1,-1, 0, 1,

1, 0, 1,-1, 0, 1, 1, 0, 1, 1, 0,-1, 0, 0, 0, 1, 0,-1, 1, 0, 1, 1, 0,-1,

1, 0, 1, 0, 0, 0,-1, 0,-1,-1, 0, 1, 1, 0, 1, 1, 0,-1,-1, 0,-1, 0, 0, 0,

4.2. Combinatorial designs of circulant type 181

1, 0, 1,-1, 0, 1, 0, 0, 0, 1, 0,-1, 1, 0, 1, 1, 0,-1,-1, 0,-1,-1, 0, 1,

0, 0, 0,-1, 0, 1, 0, 0, 0, 0, 0, 0,-1, 0,-1, 1, 0,-1, 0, 0, 0, 1, 0,-1,

-1, 0,-1, 1, 0,-1],

and, consequently, the vector w defines a CW (198, 102).

Remark 4.40. Both constructions in Theorem 4.39 were marked as open cases in the

update of Strassler’s Table appearing in the 2016 preprint version of [169]7. We also note

that a previous version of Strassler’s Table published in [20, Table 3] also listed these two

cases as open. Despite the fact that these two cases have remained unresolved in multiple

updates of Strassler’s table, we discovered (after independently proving Theorem 4.39)

that existence can actually be deduced by combining either of the aforementioned ver-

sions of Strassler’s table with a much older result [18, Theorem 2.2] which appeared in

1999. Specifically, the existence of CW (126, 82) and CW (198, 102) follows by respectively

applying this result to CW (21, 42) and CW (33, 52), with m = 3. In fact, the existence

of CW (198, 102) was already claimed in [18]. After pointing out the errors to the author,

Strassler’s Table has been correctly updated in the final published version of [169].

Remark 4.41. Although Strassler’s original table [165] correctly states that CW (196, 42)

exist, in both of updates, [20, Table 3] and the one in the preliminary version of [169], its

status is incorrectly shown as not existing. The same error appears in [111, §5] and [170,

p. 144]. Indeed, we obtained the following CW (28, 42) with DR

a = [1, 0, 1, -1, -1, 1, 0, 1, -1, 0, 0, 1, 0, 0, -1, 0, -1, -1, 1, 1, 0, 1,

1, 0, 0, 1, 0, 0],

from which a CW (196, 42) can be deduced by appending 06 after each component

w = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,-1, 0, 0,

0, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0,-1,

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0].

The status of CW (196, 42) has also been corrected in the published work [169, Table 3]

after notifying the author.

7Tan M.M.: Group Invariant Weighing Matrices. Preprint (2016). ArXiv: 1610.01914

https://arxiv.org/abs/1610.01914

182 Chapter 4. Solving combinatorial problems with the Douglas–Rachford algorithm

(n, k) Solved Av. time (s) Av. iterations

(1,1) 10 0.00 1.5
(2,1) 10 0.00 1.4
(3,1) 8 0.00 3.1
(4,1) 10 0.00 5.6
(5,1) 9 0.00 4.0
(6,1) 10 0.00 4.1
(7,1) 10 0.00 3.3
(8,1) 10 0.00 3.5
(9,1) 10 0.00 4.0
(10,1) 10 0.00 4.5
(11,1) 10 0.00 4.0
(12,1) 10 0.00 3.8
(13,1) 10 0.00 4.7
(14,1) 10 0.00 3.8
(15,1) 10 0.00 5.7
(16,1) 10 0.00 6.0
(17,1) 10 0.00 5.7
(18,1) 10 0.00 4.6
(19,1) 10 0.00 7.0
(20,1) 10 0.00 6.2
(21,1) 10 0.00 6.3
(22,1) 10 0.00 8.2
(23,1) 10 0.00 6.9
(24,1) 10 0.00 6.2
(25,1) 10 0.00 4.8
(26,1) 10 0.00 5.2
(27,1) 10 0.00 6.1
(28,1) 10 0.00 6.7
(29,1) 10 0.00 8.7
(30,1) 10 0.00 7.9
(4,2) 9 0.00 5.1
(6,2) 10 0.00 8.1
(7,2) 10 0.09 328.9
(8,2) 7 0.02 81.4
(10,2) 10 0.04 180.5
(12,2) 10 0.05 211.7
(14,2) 10 0.16 649.2
(16,2) 7 0.09 373.0
(18,2) 6 0.03 110.5
(20,2) 7 0.30 1,213.9
(21,2) 10 0.32 1,165.9
(22,2) 3 0.02 67.7
(24,2) 8 0.13 506.5
(26,2) 2 0.03 101.0
(28,2) 9 0.19 703.3
(30,2) 5 0.07 232.6
(13,3) 10 0.05 172.0
(24,3) 2 10.93 42,967.5
(26,3) 10 1.89 7,162.3
(21,4) 10 11.47 45,012.3
(28,4) 10 15.89 60,377.3
(31,1) 10 0.00 9.0
(32,1) 10 0.00 9.8
(33,1) 10 0.00 9.4
(34,1) 10 0.00 9.7

(n, k) Solved Av. time (s) Av. iterations

(35,1) 10 0.00 8.5
(36,1) 10 0.00 8.3
(37,1) 10 0.00 11.7
(38,1) 10 0.00 6.2
(39,1) 10 0.00 9.9
(40,1) 10 0.00 10.5
(41,1) 10 0.00 11.8
(42,1) 10 0.00 11.8
(43,1) 10 0.00 9.1
(44,1) 10 0.00 8.7
(45,1) 10 0.00 9.7
(46,1) 10 0.00 14.5
(47,1) 10 0.00 9.3
(48,1) 10 0.00 10.9
(49,1) 10 0.00 11.9
(50,1) 10 0.00 13.4
(51,1) 10 0.00 11.7
(52,1) 10 0.00 16.3
(53,1) 10 0.01 17.8
(54,1) 10 0.00 16.2
(55,1) 10 0.00 14.7
(56,1) 10 0.00 10.4
(57,1) 10 0.00 15.9
(58,1) 10 0.00 11.6
(59,1) 10 0.00 12.4
(60,1) 10 0.00 16.1
(32,2) 9 0.25 984.3
(34,2) 4 0.06 211.8
(35,2) 6 0.14 516.3
(36,2) 5 0.09 359.4
(38,2) 2 0.11 398.0
(40,2) 7 0.34 1,287.3
(42,2) 10 0.60 2,265.0
(44,2) 2 0.06 241.0
(46,2) 1 0.02 65.0
(48,2) 8 0.21 798.0
(49,2) 10 1.36 5,031.0
(50,2) 2 0.05 201.5
(52,2) 0 - -
(54,2) 3 0.14 491.7
(56,2) 8 0.29 1,098.4
(58,2) 3 0.01 44.3
(60,2) 3 0.28 1,082.0
(39,3) 10 5.72 22,158.7
(48,3) 1 13.29 52,189.0
(52,3) 10 3.92 14,888.2
(31,4) 10 422.45 1,652,410.0
(42,4) 10 132.12 504,622.0
(56,4) 10 59.63 225,106.0
(31,5) 10 23.10 90,731.5
(33,5) 10 334.83 1,306,620.0
(48,6) 8 607.04 2,365,024.0
(52,6) 3 2,314.49 8,309,650.0
(57,7) 2 482.54 1,812,060.0

Table 4.13: Detailed results for CW matrices (10 random initialization, 3600s time limit).

Conclusions and future research

This dissertation contributes to the family of projection algorithms, both from the the-

oretical perspective and also from the point of view of the applications. All the results

in Chapters 3 and 4 are new and the content therein is based on the author’s joint

works [11, 14, 16], and the submitted manuscripts [12, 13, 15]. Detailed contributions, as

well as some possible directions of future research, are summarized hereunder.

Theoretical contributions

A new projection algorithm, the averaged alternating modified reflections (AAMR) met-

hod, has been introduced and studied in Chapter 3. Even though each iteration of AAMR

is very similar to the one of the classical Douglas–Rachford (DR) method, the new scheme

yields a solution to the best approximation problem, unlike DR, which only gives a point

in the intersection of the sets. Under a constraint qualification, the method was proved

to be strongly convergent to the solution of the best approximation problem.

Motivated by the promising results of some numerical experiments, we have computed

the rate of linear convergence of the AAMR method for the case of two subspaces in

a Euclidean space. We have additionally found the optimal selection of the parameters

defining the scheme that minimizes this rate, in terms of the Friedrichs angle. The rate

with optimal parameters coincides with the one of the generalized alternating projections

(GAP) method, which is the best among all known rates of projection methods. The

sharpness of these theoretical results was additionally demonstrated with two computati-

onal experiments.

The AAMR algorithm has been extended to deal with monotone operators. Such

an extension has been naturally derived by replacing projectors onto convex sets with

resolvents of maximally monotone operators. The new splitting method can be applied

to compute the resolvent of the sum of the operators, a generalized version of the best

approximation problem within this context. This generalization of the method has allowed

us to derive two different parallelized variants for dealing with finitely many operators.

183

184 Conclusions and future research

� The fixed points of the AAMR operator are responsible for the AAMR algorithm

to be able to solve best approximation problems. The existence of such fixed points

has been proved equivalent to a constraint qualification to be held. However, the set

itself has only been characterized for the case of two subspaces (Proposition 3.15).

A precise description of the set of fixed points for arbitrary convex sets appears

mandatory, since it implies a better understanding of the algorithm that may lead

to new results.

� The AAMR algorithm is defined by two parameters α and β, which have a big effect

in the convergence rate of the method (see Figure 3.11). Although α is allowed to

vary along the iterations, nothing has been stated for β. It would be useful to derive

a version of the algorithm where β can be updated at each step, with the purpose

of developing some acceleration technique for the AAMR scheme.

� All the results have been done assuming the convexity of the sets. Because of

the similarity of the AAMR scheme and the Douglas–Rachford method, and the

effectiveness of the latter in some highly nonconvex settings, it would be interesting

to explore whether it would be possible to use the AAMR method as heuristic in

nonconvex feasibility problems, either alone, or combined with DR to avoid possible

cycles.

� The analysis of the rate of convergence of the AAMR algorithm was done for the

case of linear subspaces in a finite-dimensional space. It would be interesting to

investigate whether the results can be extended to infinite-dimensional spaces; or

even more, to study the rate of convergence of the method when it is applied to two

arbitrary convex sets.

� The extension of AAMR for monotone operators has been analyzed by rewriting

the iteration as the one generated by DR for a modification of the operators. This

may give rise to the possibility of using some known results on Douglas–Rachford

to derive new results for the AAMR algorithm.

Contributed applications

In Chapter 4, we have presented feasibility formulations for various known combinatorial

problems, and we have showed that the Douglas–Rachford method can be used as a

successful heuristic for solving them. This extends the list of nonconvex problems for

which DR was already known to be a satisfactory solver.

Conclusions and future research 185

We have first considered the graph coloring problem, for which two different formula-

tions in the form of feasibility problem has been provided: one relying on binary indicator

variables and another based on a semidefinite programming representation. On the one

hand, the binary formulation has been shown to be easily adaptive and could success-

fully address other variants of the problem such as precoloring and list coloring problems

(including Sudoku puzzles), 8-queens puzzles and generalizations, and Hamiltonian path

problems (as the knight’s tour problem). On the other hand, we have only been able

to adapt the rank formulation for dealing with precoloring problems. Nonetheless, an

extensive numerical experimentation over a wide spectrum of instances, demonstrates the

superiority of the rank formulation over the binary one for those problems which can be

tackled by both formulations.

The main reason of failure of projection-based heuristic algorithms is that the iteration

stays trapped on limit cycles. Our experiments indicate that the rank-constrained matrix

formulation appears to be immune to this problem, achieving a 100% success rate in most

of the problems tested. The experiments performed with the binary formulation also

demonstrate a good behavior of DR, but the success rates and the computing time results

are far from those achieved by the rank formulation. Most notable is the experiment on

the so-called ‘nasty’ Sudoku (treated as a graph pre-coloring instance, see Figure 4.33),

on which the binary formulation only had a 20% success rate, while the rank formulation

solved every single instance. Even more, the rank-constrained approach does not come

at a great cost in implementation, and is able to solve graph coloring instances from the

DIMACS benchmark collection with hundreds of vertices and thousands of edges, often

in much less than an hour (see Table 4.10).

� In the emerging field of projection-based heuristic algorithms for solving combina-

torially hard problems, the competition is usually framed to be about the choice of

the operator (DR, ADMM, etc.). In our study we have shown that the choice of

constraint formulation has a very significant effect, and in the end, it may prove to

be even more important than the choice of operator.

� In the convex setting, for infeasible problems, the sequence generated by Douglas–

Rachford provably tends to infinity (in norm). In our experiments with the binary

formulation, we obtained some similar results for some particular graphs (see Fi-

gure 4.18), a behavior that seems to be strongly influenced by the formulation of

the feasibility problem. This motivates us to further analyze the detection of infea-

sibility in nonconvex settings with this algorithm.

186 Conclusions and future research

� We speculate that the good performance of the rank-constrained matrix formulation

may be linked to the elimination of the high symmetry-based solution multiplicity of

competing formulations (see Remark 4.13). This is strictly an empirical observation,

and we have no proposal on how solution multiplicity might be linked to limit cycle

behavior. Our results are offered as motivation for pursuing this direction in future

research on projection based algorithms.

Finally, we have developed a feasibility problem which allows to construct any class

of combinatorial designs of circulant type with the Douglas–Rachford algorithm. The

approach is illustrated on three different classes of such designs: circulant weighing ma-

trices, D-optimal matrices, and Hadamard matrices with two circulant cores. Further-

more, we have explicitly constructed two circulant weighing matrices, a CW (126, 64) and

a CW (198, 100), whose existence was previously marked as an open question (see Re-

mark 4.40).

� The latest update of Strassler’s Table [169, Table 3] still contains various cases

marked as open. It would be worthwhile to study if some of these cases can be

solved with the proposed approach, if we allow more time to the DR algorithm.

� There exists some approaches in the literature, where the construction of combina-

torial designs is addressed by first reducing the problem to a simpler one (see [85]).

Once the latter is solved, the challenge is then to reconstruct a solution to the ori-

ginal problem. It would be interesting to study whether the DR algorithm can be

used for this purpose.

Bibliography

[1] D. Achlioptas and E. Friedgut: A sharp threshold for k-colorability. Random Struct.

Alg., 14:67–70, 1990.

[2] D. Achlioptas and M. Molloy: Almost all graphs with 2.522n edges are not 3-

colorable. Elec. Jour. Of Comb., 6(1):R29, 1999.

[3] S. Adly, L. Bourdin, and F. Caubet: On the proximity operator of the sum of two

convex functions, 2017. arXiv: 1707.08509.

[4] S. Agmon: The relaxation method for linear inequalities. Canad. J. Math.,

6(3):382–392, 1954.

[5] S. Alwadani, H. H. Bauschke, W. M. Moursi, and X. Wang: On the asymptotic

behaviour of the Aragón Artacho–Campoy algorithm, 2018. arXiv: 1805.11165.

[6] F. J. Aragón Artacho and J. M. Borwein: Global convergence of a non-convex

Douglas–Rachford iteration. J. Glob. Optim., 57(3):753–769, 2013.

[7] F. J. Aragón Artacho, J. M. Borwein, V. Mart́ın-Márquez, and L. Yao: Applications

of convex analysis within mathematics. Math. Program. Ser. B, 148(1–2):49–88,

2014.

[8] F. J. Aragón Artacho, J. M. Borwein, and M. K. Tam: Douglas–Rachford feasibility

methods for matrix completion problems. ANZIAM J., 55(4):299–326, 2014.

[9] F. J. Aragón Artacho, J. M. Borwein, and M. K. Tam: Global behavior of the

Douglas–Rachford method for a nonconvex feasibility problem. J. Glob. Optim.,

65(2):309–327, 2016.

[10] F. J. Aragón Artacho, J. M. Borwein, and M. K. Tam: Recent results on Douglas–

Rachford methods for combinatorial optimization problem. J. Optim. Theory.

Appl., 163(1):1–30, 2014.

[11] F. J. Aragón Artacho and R. Campoy: A new projection method for finding the

closest point in the intersection of convex sets. Comput. Optim. Appl., 69(1):99–

132, 2018.

187

https://arxiv.org/abs/1707.08509
https://arxiv.org/abs/1805.11165

188 Bibliography

[12] F. J. Aragón Artacho and R. Campoy: Computing the resolvent of the sum of

maximally monotone operators with the averaged alternating modified reflections

algorithm, 2018. arXiv: 1805.09720.

[13] F. J. Aragón Artacho and R. Campoy: Optimal rates of linear convergence of the

averaged alternating modified reflections method for two subspaces, 2017. arXiv:

1711.06521.

[14] F. J. Aragón Artacho and R. Campoy: Solving graph coloring problems with the

Douglas–Rachford algorithm. Set-Valued Var. Anal., 26(2):277–304, 2018.

[15] F. J. Aragón Artacho, R. Campoy, and V. Elser: An enhanced formulation for

successfully solving graph coloring problems with the Douglas–Rachford algorithm,

2018. arXiv: 1808.01022.

[16] F. J. Aragón Artacho, R. Campoy, I. S. Kotsireas, and M. K. Tam: A feasibility ap-

proach for constructing combinatorial designs of circulant type. J. Comb. Optim.,

35(4):1061–1085, 2018.

[17] F. J. Aragón Artacho, Y. Censor, and A. Gibali: The cyclic Douglas–Rachford

algorithm with r-sets-Douglas–Rachford operators. Optim. Methods Softw., 2018.

doi: 10.1080/10556788.2018.1504049.

[18] K. T. Arasu and J. F. Dillon: Perfect ternary arrays. In Difference Sets, Sequen-

ces and their Correlation Properties. A. Pott, P. V. Kumar, T. Helleseth, and D.

Jungnickel, editors. Springer Netherlands, Dordrecht, 1999, pages 1–15.

[19] K. T. Arasu and T. A. Gulliver: Self-dual codes over Fp and weighing matrices.

IEEE Trans. Inform. Theory, 47(5):2051–2055, 2001.

[20] K. T. Arasu and A. J. Gutman: Circulant weighing matrices. Cryptogr. Commun.,

2(2):155–171, 2010.

[21] K. T. Arasu, I. S. Kotsireas, C. Koukouvinos, and J. Seberry: On circulant and

two-circulant weighing matrices. Australas. J. Combin., 48:43–51, 2010.

[22] K. T. Arasu, K. H. Leung, S. L. Ma, A. Nabavi, and D. K. Ray-Chaudhuri: Circulant

weighing matrices of weight 22t. Des. Codes Cryptogr., 41(1):111–123, 2006.

[23] L. Aronszajn: Theory of reproducing kernels. Trans. Amer. Math. Soc., 68(3):337–

404, 1950.

[24] J. B. Baillon, R. E. Bruck, and S. Reich: On the asymptotic behavior of nonex-

pansive mappings and semigroups in Banach spaces. Houston J. Math., 4(1):1–9,

1978.

https://arxiv.org/abs/1805.09720
https://arxiv.org/abs/1711.06521
https://arxiv.org/abs/1808.01022
https://doi.org/10.1080/10556788.2018.1504049

Bibliography 189

[25] H. H. Bauschke: The approximation of fixed points of compositions of nonexpansive

mappings in Hilbert space. J. Math. Anal. Appl., 202(1):150–159, 1996.

[26] H. H. Bauschke, J. Y. Bello Cruz, T. T. Nghia, H. M. Phan, and X. Wang: Opti-

mal rates of linear convergence of relaxed alternating projections and generalized

Douglas–Rachford methods for two subspaces. Numer. Algor., 73(1):33–76, 2016.

[27] H. H. Bauschke, J. Y. Bello Cruz, T. T. Nghia, H. M. Phan, and X. Wang: The

rate of linear convergence of the Douglas–Rachford algorithm for subspaces is the

cosine of the Friedrichs angle. J. Approx. Theory, 185:63–79, 2014.

[28] H. H. Bauschke and J. M. Borwein: Dykstra’s alternating projection algorithm for

two sets. J. Approx. Theory, 79(3):418–443, 1996.

[29] H. H. Bauschke and J. M. Borwein: On the convergence of von Neumann’s alterna-

ting projection algorithm for two sets. Set-Valued Anal., 1(2):185–212, 1993.

[30] H. H. Bauschke, J. M. Borwein, and A. S. Lewis: The method of cyclic projections

for closed convex sets in Hilbert space. Contemp. Math., 204:1–38, 1997.

[31] H. H. Bauschke, J. M. Borwein, and P. Tseng: Bounded linear regularity, strong

CHIP, and CHIP are distinct properties. J. Convex Anal., 7(2):395–412, 2000.

[32] H. H. Bauschke, R. S. Burachik, and C. Y. Kaya: Constraint splitting and projection

methods for optimal control of double integrator, 2018. arXiv: 1804.03767.

[33] H. H. Bauschke and P. L. Combettes: A Dykstra-like algorithm for two monotone

operators. Pacific J. Optim., 4(3):383–391, 2008.

[34] H. H. Bauschke and P. L. Combettes: A weak-to-strong convergence principle for

Fejér-monotone methods in Hilbert spaces. Math. Oper. Res., 26(2):248–264, 2001.

[35] H. H. Bauschke and P. L. Combettes: Convex Analysis and Monotone Operator

Theory in Hilbert Spaces. Springer, New York, 2nd edition, 2017.

[36] H. H. Bauschke, P. L. Combettes, and S. G. Kruk: Extrapolation algorithm for

affine-convex feasibility problems. Numer. Algor., 41(3):239–274, 2006.

[37] H. H. Bauschke, P. L. Combettes, and D. R. Luke: A strongly convergent reflection

method for finding the projection onto the intersection of two closed convex sets

in a Hilbert space. J. Approx. Theory, 141(1):63–69, 2006.

[38] H. H. Bauschke, P. L. Combettes, and D. R. Luke: Finding best approximation pairs

relative to two closed convex sets in Hilbert spaces. J. Approx. Theory, 127(2):178–

192, 2004.

https://arxiv.org/abs/1804.03767

190 Bibliography

[39] H. H. Bauschke, P. L. Combettes, and D. R. Luke: Phase retrieval, error reduction

algorithm, and fienup variants: a view from convex optimization. J. Opt. Soc. Am.

A, 19(7):1334–1345, 2002.

[40] H. H. Bauschke and M. N. Dao: On the finite convergence of the Douglas–Rachford

algorithm for solving (not necessarily convex) feasibility problems in Euclidean

spaces. SIAM J. Optim., 27(1):507–537, 2017.

[41] H. H. Bauschke, M. N. Dao, and S. B. Lindstrom: The Douglas–Rachford algorithm

for for a hyperplane and a doubleton. SIAM J. Optim., 2018. arXiv: 1804.08880.

[42] H. H. Bauschke, F. Deutsch, H. Hundal, and S.-H. Park: Accelerating the con-

vergence of the method of alternating projections. Trans. Am. Math. Soc.,

355(9):3433–3461, 2003.

[43] H. H. Bauschke and V. R. Koch: Projection methods: Swiss army knives for sol-

ving feasibility and best approximation problems with halfspaces. Contemp. Math.,

636:1–40, 2015.

[44] H. H. Bauschke, D. R. Luke, H. M. Phan, and X. Wang: Restricted normal cones

and sparsity optimization with affine constraints. Found. Comput. Math., 14(1):63–

83, 2014.

[45] H. H. Bauschke, D. R. Luke, H. M. Phan, and X. Wang: Restricted normal cones

and the method of alternating projections: applications. Set-Valued Var. Anal.,

21(3):475–501, 2013.

[46] H. H. Bauschke, D. R. Luke, H. M. Phan, and X. Wang: Restricted normal co-

nes and the method of alternating projections: theory. Set-Valued Var. Anal.,

21(3):431–473, Sept. 2013.

[47] H. H. Bauschke, B. Lukens, and W. M. Moursi: Affine nonexpansive operators,

Attouch–Théra duality and the Douglas–Rachford algorithm. Set-Valued Var.

Anal., 25(3):481–505, 2017.

[48] H. H. Bauschke and W. M. Moursi: On the Douglas–Rachford algorithm. Math.

Program., Ser. A, 164(1–2):263–284, 2017.

[49] H. H. Bauschke and D. Noll: On the local convergence of the Douglas–Rachford

algorithm. Arch. Math., 102(6):589–600, 2014.

[50] H. H. Bauschke, D. Noll, and H. M. Phan: Linear and strong convergence of algo-

rithms involving averaged nonexpansive operators. J. Math. Anal. Appl., 421(1):1–

20, 2015.

https://arxiv.org/abs/1804.08880

Bibliography 191

[51] H. H. Bauschke, H. M. Phan, and X. Wang: The method of alternating relaxed

projections for two nonconvex sets. Vietnam J. Math., 42(4):421–450, 2014.

[52] R. Behling, J. Y. Bello Cruz, and L. Santos: Circumcentering the Douglas–Rachford

method. Numer. Algor., 78(3):759–776, 2018.

[53] J. Bell and B. Stevens: A survey of known results and research areas for n-queens.

Discrete Math., 309:1–31, 2009.

[54] J. Benoist: The Douglas–Rachford algorithm for the case of the sphere and the

line. J. Global Optim., 63(2):363–380, 2015.

[55] J. M. Borwein, G. Li, and L. Yao: Analysis of the convergence rate for the cyclic

projection algorithm applied to basic semialgebraic convex sets. SIAM J. Optim.,

24(1):498–527, 2014.

[56] J. M. Borwein, S. B. Lindstrom, B. Sims, A. Schneider, and M. P. Skerritt: Dyna-

mics of the Douglas–Rachford method for ellipses and p-spheres. Set-Valued Var.

Anal., 26(2):385–403, 2018.

[57] J. M. Borwein and M. K. Tam: A cyclic Douglas–Rachford iteration scheme. J.

Optim. Theory. Appl., 160(1):1–29, 2014.

[58] J. M. Borwein and M. K. Tam: Reflection methods for inverse problems with appli-

cations to protein conformation determination. In Generalized Nash Equilibrium

Problems, Bilevel Programming and MPEC. D. Aussel and C. Lalitha, editors.

Springer Singapore, Singapore, 2017, pages 83–100.

[59] J. M. Borwein and M. K. Tam: The cyclic Douglas–Rachford method for inconsis-

tent feasibility problems. J. Nonlinear Convex Anal., 16(4):573–584, 2015.

[60] J. M. Borwein and B. Sims: The Douglas–Rachford algorithm in the absence of

convexity. In Fixed-Point Algorithms for Inverse Problems in Science and Engi-

neering. H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke,

and H. Wolkowicz, editors. Springer-Verlag, New York, 2011, pages 93–109.

[61] J. P. Boyle and R. L. Dykstra: A method for finding projections onto the inter-

section of convex sets in Hilbert spaces. In R. Dykstra, T. Robertson, and F. T.

Wright, editors, Advances in Order Restricted Statistical Inference, volume 37 of

Lecture Notes in Statistics, pages 28–47. Springer, New York, 1986.

[62] L. M. Bregman: The method of successive projection for finding a common point

of convex sets. Soviet Math. Dokl., 162(3):688–692, 1965.

192 Bibliography

[63] R. P. Brent: Finding D-optimal design by randomised decomposition and switching.

Australas. J. Combin., 55:15–30, 2013.

[64] W. L. Briggs and V. E. Henson: The DFT. An Owner’s Manual for the Discrete

Fourier Transform. Society for Industrial and Applied Mathematics (SIAM), Phi-

ladelphia, 1995.

[65] R. S. Burachik and V. Jeyakumar: A simple closure condition for the normal cone

intersection formula. Proc. Amer. Math. Soc., 133(6):1741–1748, 2005.

[66] A. Cegielski: Iterative Methods for Fixed Point Problems in Hilbert Spaces, vo-

lume 2057 of Lecture Notes in Mathematics. Springer, Heidelberg, 2012.

[67] A. Cegielski and A. Suchocka: Relaxed alternating projection methods. SIAM J.

Optim., 19(3):1093–1106, 2008.

[68] Y. Censor: Iterative methods for convex feasibility problems. Ann. Discrete Math.,

20:83–91, 1984.

[69] Y. Censor and A. Cegielski: Projection methods: an annotated bibliography of

books and reviews. Optimization, 64(11):2343–2358, 2015.

[70] G. J. Chaitin: Register allocation and spilling via graph coloring. SIGPLAN Not.,

39(4):66–74, 2004.

[71] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. W.

Markstein: Register allocation via coloring. Computer Languages, 6(1):47–57, 1981.

[72] C. K. Chui, F. Deutsch, and J. D. Ward: Constrained best approximation in Hilbert

space. Constr. Approx., 6(1):35–64, 1990.

[73] C. K. Chui, F. Deutsch, and J. D. Ward: Constrained best approximation in Hilbert

space II. J. Approx. Theory, 71(2):213–238, 1992.

[74] G. Cimmino: Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari.

La Ricerca Scientifica, II, 9:326–333, 1938.

[75] J. H. E. Cohn: On determinants with elements ±1. Bull. London Math. Soc.,

21(1):36–42, 1989.

[76] C. J. Colbourn and J. H. Dinitz, editors: Handbook of Combinatorial Designs. Chap-

man & Hall/CRC, Boca Raton, FL, 2nd edition, 2007.

[77] P. L. Combettes: Iterative construction of the resolvent of a sum of maximal mo-

notone operators. J. Convex Anal., 16(4):727–748, 2009.

Bibliography 193

[78] P. L. Combettes: Proximity for sums of composite functions. J. Math. Anal. Appl.,

380(2):680–688, 2011.

[79] M. N. Dao and M. K. Tam: A Lyapunov-type approach to convergence of the

Douglas–Rachford algorithm for a nonconvex setting. J. Glob. Optim.:1–30, 2018.

doi: 10.1007/s10898-018-0677-3.

[80] F. Deutsch: Accelerating the convergence of the method of alternating projections

via a line search: a brief survey. In D. Butnariu, Y. Censor, and S. Reich, editors,

Inherently Parallel Algorithms in Feasibility and Optimization and their Applica-

tions. Volume 8, Studies in Computational Mathematics, pages 203–217. Elsevier,

2001.

[81] F. Deutsch: Best Approximation in Inner Product Spaces, volume 7 of CMS Books

in Mathematics/Ouvrages de Mathématiques de la SMC. Springer-Verlag, New

York, 2001.

[82] F. Deutsch: Rate of convergence of the method of alternating projections. In Para-

metric Optimization and Approximation: Conference Held at the Mathematisches

Forschungsinstitut, Oberwolfach, October 16–22, 1983. B. Brosowski and F. Deut-

sch, editors. Birkhäuser, Basel, 1985, pages 96–107.

[83] F. Deutsch and H. Hundal: The rate of convergence for the method of alternating

projections, II. J. Math. Anal. Appl., 205(2):381–405, 1997.

[84] F. Deutsch, W. Li, and J. D. Ward: A dual approach to constrained interpolation

from a convex subset of Hilbert space. J. Approx. Theory, 90(3):385–414, 1997.

[85] D. Ž. Doković and I. S. Kotsireas: Compression of periodic complementary sequen-

ces and applications. Des. Codes Cryptogr., 74(2):365–377, 2015.

[86] D. Ž. Doković and I. S. Kotsireas: D-optimal matrices of orders 118, 138, 150, 154

and 174. In C. J. Colbourn, editor, Algebraic Design Theory and Hadamard Ma-

trices, pages 71–82, Cham. Springer International Publishing, 2015.

[87] D. Ž. Doković and I. S. Kotsireas: New results on D-optimal matrices. J. Combin.

Des., 20(6):278–289, 2012.

[88] E. D. Dolan and J. J. Moré: Benchmarking optimization software with performance

profiles. Math. Program. Ser. A, 91(2):201–213, 2002.

[89] J. Douglas and H. H. Rachford: On the numerical solution of heat conduction

problems in two and three space variables. Trans. Amer. Math. Soc., 82:421–439,

1956.

https://doi.org/10.1007/s10898-018-0677-3

194 Bibliography

[90] R. L. Dykstra: An algorithm for restricted least squares regression. J. Amer. Statist.

Assoc., 78(384):837–842, 1983.

[91] J. Eckstein and D. P. Bertsekas: On the Douglas–Rachford splitting method and

the proximal point algorithm for maximal monotone operators. Math. Program.,

55(1):293–318, 1992.

[92] H. Ehlich: Determinantenabschätzungen für binäre matrizen. Math. Zeitschr.,

83:123–132, 1964.

[93] V. Elser: Phase retrieval by iterated projections. J. Opt. Soc. Am. A, 20(1):40–55,

2003.

[94] V. Elser, I. Rankenburg, and P. Thibault: Searching with iterated maps. Proc.

Natl. Acad. Sci., 104(2):418–423, 2007.

[95] V. Elser: The complexity of bit retrieval. IEEE Transactions on Information The-

ory, 64(1):412–428, 2018.

[96] P. Erdős and A. Rényi: On random graphs I. Publ. Math. Debrecen, 6:290–297,

1959.

[97] P. Erdős, A. L. Rubin, and H. Taylor: Choosability in graphs. In Proc. West Coast

Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium,

volume 26, pages 125–157, 1979.

[98] R. Escalante and M. Raydan: Alternating Projection Methods, volume 8 of Funda-

mentals of Algorithms. Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, 2011.

[99] M. Fält and P. Giselsson: Line search for generalized alternating projections. In

2017 American Control Conference (ACC), pages 4637–4642. IEEE, 2017.

[100] M. Fält and P. Giselsson: Optimal convergence rates for generalized alterna-

ting projections. In 2017 IEEE 56th Annual Conference on Decision and Control

(CDC), pages 2268–2274. IEEE, 2017.

[101] S. T. Flammia and S. Severini: Weighing matrices and optical quantum computing.

J. Phys. A, 42(6):065302, 2009.

[102] P. Formanowicz and K. Tanaś: A survey of graph coloring - its types, methods and

applications. Found. Comput. Decision Sci., 37(3):223–238, 2012.

[103] C. Franchetti and W. Light: On the von Neumann alternating algorithm in hilbert

space. J. Math. Anal. Appl., 114(2):305–314, 1986.

Bibliography 195

[104] K. Friedrichs: On certain inequalities and characteristic value problems for analytic

functions and for functions of two variables. Trans. Amer. Math. Soc., 41(3):321–

364, 1937.

[105] N. Gaffke and R. Mathar: A cyclic projection algorithm via duality. Metrika,

36(1):29–54, 1989.

[106] M. R. Garey, D. S. Johnson, and H. C. So: An application of graph coloring to

printed circuit testing. IEEE Transactions on circuits and systems, 23(10):591–

599, 1976.

[107] M. R. Garey, D. S. Johnson, and L. Stockmeyer: Some simplified NP-complete

graph problems. Theoret. Comput. Sci., 1(3):237–267, 1976.

[108] W. B. Gearhart and M. Koshy: Acceleration schemes for the method of alternating

projections. J. Comput. Appl. Math., 26(3):235–249, 1989.

[109] S. W. Golomb and G. Gong: Signal Design for Good Correlation. Cambridge Uni-

versity Press, New York, 2004.

[110] L. G. Gubin, B. T. Polyak, and E. V. Raik: The method of projections for finding

the common point of convex sets. USSR Comp. Math. Math. Phys., 7(6):1–24,

1967.

[111] A. J. Gutman: Circulant weighing matrices. Master’s Thesis, Wright State Univer-

sity, USA, 2009.

[112] W. K. Hale: Frequency assignment: theory and applications. Proceedings of the

IEEE, 68(12):1497–1514, 1980.

[113] I. Halperin: The product of projection operators. Acta Sci. Math., 23:96–99, 1962.

[114] B. Halpern: Fixed points of nonexpanding maps. Bulletin of the AMS, 73(6):957–

961, 1967.

[115] Y. Haugazeau: Sur les inequality variationnelles etla minimmization de fonction-

nelles convexes. Thèse, Université de Paris, France, 1968.

[116] R. Hesse and D. R. Luke: Nonconvex notions of regularity and convergence of

fundamental algorithms for feasibility problems. SIAM J. Optim., 23(4):2397–2419,

2013.

[117] R. Hesse, D. R. Luke, and P. Neumann: Alternating projections and Douglas–

Rachford for sparse affine feasibility. IEEE Transactions on Signal Processing,

62(18):4868–4881, 2014.

196 Bibliography

[118] K. J. Horadam: Hadamard Matrices and Their Applications. Princeton University

Press, New Jersey, 2012.

[119] R. A. Horn and C. R. Johnson: Matrix Analysis. Cambridge University Press, Cam-

bridge, 2nd edition, 2013.

[120] H. S. Hundal: An alternating projection that does not converge in norm. Nonlinear

Anal., 57(1):35–61, 2004.

[121] O. F. Inc.: The on-line encyclopedia of integer sequences (2018). url: https :

//oeis.org/A088202.

[122] A. F. Izmailov, M. V. Solodov, and E. T. Uskov: Globalizing stabilized sequential

quadratic programming method by smooth primal-dual exact penalty function. J.

Optim. Theor. Appl., 169(1):1–31, 2016.

[123] T. R. Jensen and B. Toft: Graph Coloring Problems. John Wiley & Sons, New

York, 1995.

[124] F. Johansson: mpmath, version 1.0 (2017). url: http://mpmath.org.

[125] S. Kaczmarz: Angenaherte auflosung von systemen linearer gleichungen. Bull. Int.

Acad. Sci. Pologne, A, 35:355–357, 1937. English translation: S. Kaczmarz, Ap-

proximate solution of systems of linear equations. Int. J. Contr. 57(6):1269-–1271,

1993.

[126] D. Karger, R. Motwani, and M. Sudan: Approximate graph coloring by semidefinite

programming. Journal of the ACM (JACM), 45(2):246–265, 1998.

[127] R. M. Karp: Reducibility among combinatorial problems. In M. R. and T. J.,

editors, Complexity of computer computations, pages 85–103, New York. Plenum

Press, 1972.

[128] S. Kayalar and H. L. Weinert: Error bounds for the method of alternating projecti-

ons. Math. Control Signal Systems, 1(1):43–59, 1988.

[129] E. Kopecká and S. Reich: A note on the von Neumann alternating projections

algorithm. J. Nonlinear Convex Anal., 5(3):379–386, 2004.

[130] I. S. Kotsireas: Algorithms and metaheuristics for combinatorial matrices. In Hand-

book of Combinatorial Optimization. P. M. Pardalos, D.-Z. Du, and R. L. Graham,

editors. Springer-Verlag, New York, NY, 2013, pages 283–309.

[131] I. S. Kotsireas, C. Koukouvinos, and J. Seberry: Hadamard ideals and hadamard

matrices with two circulant cores. European J. Combin., 27(5):658–668, 2006.

https://oeis.org/A088202
https://oeis.org/A088202
http://mpmath.org

Bibliography 197

[132] A. Y. Kruger, D. R. Luke, and N. H. Thao: Set regularities and feasibility problems.

Math. Program. Ser. B, 168(1–2):279–311, 2018.

[133] B. P. Lamichhane, S. B. Lindstrom, and B. Sims: Application of projection algo-

rithms to differential equations: boundary value problems, 2017. arXiv: 1705 .

11032.

[134] M. L. Lapidus: Generalization of the Trotter–Lie formula. Integral Equations Ope-

rator Theory, 4(3):366–415, 1981.

[135] F. T. Leighton: A graph coloring algorithm for large scheduling problems. J. Res.

Nat. Bur. Standard, 84(6):489–506, 1979.

[136] A. Levi and H. Stark: Image restoration by the method of generalized projections

with application to restoration from magnitude. J. Opt. Soc. Am. A, 1(9):932–943,

1984.

[137] A. S. Lewis, D. R. Luke, and J. Malick: Local linear convergence for alternating

and averaged nonconvex projections. Found. Comput. Math., 9(4):485–513, 2009.

[138] A. S. Lewis and J. Malick: Alternating projections on manifolds. Math. Oper. Res.,

33(1):216–234, 2008.

[139] R. M. R. Lewis: A Guide to Graph Colouring Algorithms and Applications. Springer

International Publishing.

[140] P. L. Lions and B. Mercier: Splitting algorithms for the sum of two nonlinear ope-

rators. SIAM J. Numer. Anal., 16(6):964–979, 1979.

[141] P.-L. Lions: Approximation de points fixes de contractions. CR Acad. Sci. Paris

Serie, AB, 284:1357–1359, 1977.

[142] D. R. Luke: Finding best approximation pairs relative to a convex and a prox-

regular set in a Hilbert space. SIAM J. Optim., 19(2):714–739, 2008.

[143] E. Matoušková and S. Reich: The Hundal example revisited. J. Nonlinear Convex

Anal., 4(3):411–427, 2003.

[144] C. D. Meyer: Matrix Analysis and Applied Linear Algebra. Society for Industrial

and Applied Mathematics (SIAM), Philadelphia, 2000.

[145] G. A. Minty: A theorem on monotone sets in Hilbert spaces. J. Math. Anal. Appl.,

14:434–439, 1967.

[146] T. S. Motzkin and I. J. Schoenberg: The relaxation method for linear inequalities.

Canad. J. Math., 6(3):393–404, 1954.

https://arxiv.org/abs/1705.11032
https://arxiv.org/abs/1705.11032

198 Bibliography

[147] D. Noll and A. Rondepierre: On local convergence of the method of alternating

projections. Found. Comput. Math., 16(2):425–455, 2016.

[148] P. M. Pardalos, T. Mavridou, and J. Xue: The graph coloring problem: a biblio-

graphic survey. In Handbook of Combinatorial Optimization. D.-Z. Du and P. M.

Pardalos, editors. Volume 1–3. Springer US, Boston, MA, 1999, pages 1077–1141.

[149] A. Pazy: Asymptotic behavior of contractions in Hilbert space. Israel J. Math.,

9:235–240, 1971.

[150] D. W. Peaceman and H. H. Rachford, Jr.: The numerical solution of parabolic and

elliptic differential equations. J. Soc. Indust. Appl. Math., 3(1):28–41, 1955.

[151] H. M. Phan: Linear convergence of the Douglas–Rachford method for two closed

sets. Optim., 65(2):369–385, 2016.

[152] G. Pierra: Decomposition through formalization in a product space. Math. Pro-

gram., 28:96–115, 1984.

[153] S. Reich: A limit theorem for projections. Linear Multilinear Algebra, 13(3):281–

290, 1983.

[154] S. Reich and R. Zalas: A modular string averaging procedure for solving the com-

mon fixed point problem for quasi-nonexpansive mappings in Hilbert space. Numer.

Algor., 72(2):297–323, 2016.

[155] S. Reich and R. Zalas: The optimal error bound for the method of simultaneous

projections. J. Approx. Theory, 223:96–107, 2017.

[156] R. T. Rockafellar: Monotone operators and the proximal point algorithm. SIAM J.

Control Optim., 14(5):877–898, 1976.

[157] R. T. Rockafellar: Convex Analysis. Princeton University Press, Princeton, N.J.,

1970.

[158] M. Sala, S. Sakata, T. Mora, C. Traverso, and L. Perret, editors: Gröbner Bases,

Coding, and Cryptography. Springer-Verlag, Berlin Heidelberg, 2009.

[159] J. Schaad: Modeling the 8-queens problem and Sudoku using an algorithm based on

projections onto nonconvex sets. Master’s thesis, University of British Columbia,

Canada, 2010.

[160] K. Schwarz: More NP completeness. Lecture notes for Mathematical Foundations

of Computing. Stanford University. url: http://web.stanford.edu/class/

archive/cs/cs103/cs103.1132/lectures/27/Small27.pdf. Accessed 29 Au-

gust 2017.

http://web.stanford.edu/class/archive/cs/cs103/cs103.1132/lectures/27/Small27.pdf
http://web.stanford.edu/class/archive/cs/cs103/cs103.1132/lectures/27/Small27.pdf

Bibliography 199

[161] J. R. Seberry: Orthogonal Designs: Hadamard Matrices, Quadratic Forms and Al-

gebras. Springer International Publishing, 2017.

[162] J. Seberry and M. Yamada: Hadamard matrices, sequences, and block designs. In

J. H. Dintz and D. R. Stinson, editors, Contemporary Design Theory: A Collection

of Surveys, pages 431–560. John Wiley & Sons, 1992.

[163] K. T. Smith, D. C. Solmon, and S. L. Wagner: Practical and mathematical aspects

of the problem of reconstructing objects from radiographs. Bull. Amer. Math. Soc.,

83:1227–1270, 1977.

[164] D. R. Stinson: Combinatorial Designs. Springer-Verlag, New York, 2004.

[165] Y. Strassler: The classification of circulant weighing matrices of weight 9. PhD

Thesis, Bar-Ilan University, Israel, 1997.

[166] B. Sturmfels: Algorithms in Invariant Theory. Springer-Verlag, Vienna, 2008.

[167] B. F. Svaiter: On weak convergence of the Douglas–Rachford method. SIAM J.

Control Optim., 49(1):280–287, 2011.

[168] M. K. Tam: Regularity properties of non-negative sparsity sets. J. Math. Anal.

Appl., 447(2):758–777, 2017.

[169] M. M. Tan: Group invariant weighing matrices. Des. Codes Cryptogr., 2018. doi:

10.1007/s10623-018-0466-5.

[170] M. M. Tan: Relative difference sets and circulant weighing matrices. PhD Thesis,

Nanyang Technological University, Singapur, 2014.

[171] N. H. Thao: A convergent relaxation of the Douglas–Rachford algorithm. Comput.

Optim. Appl., 70(3):841–863, 2018.

[172] W. Van Dam: Quantum algorithms for weighing matrices and quadratic residues.

Algorithmica, 34(4):413–428, 2002.

[173] V. G. Vizing: Coloring the vertices of a graph in prescribed colors. Diskret. Analiz.,

29:3–10, 1976.

[174] J. von Neumann: Functional Operators II: The Geometry of Orthogonal Spaces.

Princeton University Press, 1950. (Reprint of mimeographed lecture notes first

distributed in 1933).

[175] R. Wittmann: Approximation of fixed points of nonexpansive mappings. Arc.

Math., 58(5):486–491, 1992.

https://doi.org/10.1007/s10623-018-0466-5

List of Figures

1.1 Examples of projectors and reflectors onto convex and nonconvex sets. . . . 5

2.1 Behavior of the alternating projections method in three possible scenarios. 30

2.2 Failure of the method of alternating projections for solving the best ap-

proximation problem for arbitrary convex sets. 30

2.3 Ilustration of two possible generalization of AP for finitely many sets. . . . 32

2.4 One iteration of RAP, PRAP and GAP methods. 33

2.5 Geometric interpretation of the Douglas–Rachford iteration. 36

2.6 Behavior of the Douglas–Rachford algorithm in three possible scenarios. . . 38

2.7 Failure of the Douglas–Rachford method for solving the best approximation

problem for arbitrary convex sets. 38

2.8 Failure of the 3-sets Douglas–Rachford iteration. 39

2.9 Ilustration of two versions of DR for finitely many sets. 40

2.10 One iteration of GDR, RAAR and CDR methods. 42

2.11 AP and DR algorithms applied to a finite set and a halfspace. 47

2.12 Illustration of Dykstra’s algorithm. 48

2.13 Illustration of Haugazeau’s algorithm. 50

2.14 Illustration of Halpern’s algorithm. 51

2.15 Illustration of Combettes’ algorithm. 52

3.1 Geometric interpretation of the modified reflector. 58

3.2 Geometric interpretation of the AAMR operator. 59

3.3 Illustration of the AAMR iterative scheme for two sets. 70

3.4 Behavior of the AAMR algorithm in three possible scenarios. 71

3.5 Illustration of Example 3.21. 73

3.6 Asymptotic behavior of the AAMR iteration. 75

201

202 List of Figures

3.7 Illustration of the AAMR iterative scheme for many sets in Theorem 3.26. 78

3.8 Best value of α with respect to the Friedrichs angle for 1000 pairs of random

subspaces for AAMR (left) and CM (right). For each β, the average value

of the best α is represented by a dashed line. 81

3.9 Number of required iterations with respect to the value of α of GDR and

AAMR for three different values of the parameter β. 81

3.10 Behavior of the AAMR (in blue) and alternating projections (in red) algo-

rithms when applied to two lines in R2 for two different Friedrichs angles.

We see that AAMR outperforms AP for small angles, while AP is faster

for large angles. 82

3.11 Median of the required number of iterations with respect to the Friedrichs

angle of AP, DR, Haugazeau’s method, CM and AAMR for six different

values of β. 83

3.12 Standard deviation of the required number of iterations with respect to the

Friedrichs angle of AP, DR, Haugazeau’s method, CM and AAMR for six

different values of β. 84

3.13 Distance to the solution of the 100 first iterations of the monitored sequen-

ces of AP, DR, HLWB, Haugazeau’s method and AAMR for five different

values of the parameter β. 85

3.14 Median number of iterations for 10 random starting points required by the

AAMR method for different values of the parameter β with respect to the

Friedrichs angle. 86

3.15 The three possible scenarios for the function fα,β,r(c). 92

3.16 Piecewise domain of the function Γ(α, β) for three different values of the

angle. 98

3.17 Comparison of the rates of linear convergence with optimal parameters of

AP, SP, RAP, DR, AAMR and GAP. 101

3.18 Graphical representation of Theorem 3.34 for two subspaces (a) and failure

of the result for two arbitrary closed and convex sets (b). The sequence

{xk+z}∞k=0 is generated by AAMR with x0 = 0, while the sequence {zk}∞k=0

is generated by GAP with z0 = z. 104

List of Figures 203

3.19 Number of iterations required to converge for the AAMR algorithm with

α = 0.8 and five different values of the parameter β, with respect to the

Friedrichs angle. The lines correspond to the approximate upper bounds

given by (3.46) and the theoretical rates (3.32). 105

3.20 Median, difference between the maximum and the median, and coefficient

of variation of the required number of iterations with respect to the Frie-

drichs angle of AP, SP, RAP, DR and AAMR for their respective optimal

parameters. 106

3.21 Illustration of the AAMR iterative scheme for many sets in Theorem 3.48. 117

4.1 A 3-coloring of Petersen graph. 120

4.2 Gadgets of the variables and colors. 122

4.3 Gadgets of the clauses. 123

4.4 Two different formulations of the 3-SAT problem in (4.1) as a 3-coloring

problem. The same solution of the 3-SAT problem is shown for both for-

mulations. 124

4.5 List coloring reduced to graph coloring of a wheel graph of 5 nodes with

admissible colors lists L(1) = L(4) = {1, 2, 3}, L(2) = {1}, L(3) = {3}, and

L(5) = {2, 3}. Nodes c1, c2 and c3 represent colors 1, 2 and 3, respectively. 125

4.6 Graph formulation of a Sudoku, with maximal cliques highlighted. 126

4.7 Unsolved Sudoku puzzle (left) and its graph representation (right): each

complete subgraph represents a subgrid and the squared nodes correspond

to prefilled cells. The valid 9-coloring of the graph leads to a solution of

the Sudoku. 126

4.8 A solution to the 8-queens puzzle (left) and its graph representation (right).127

4.9 (a) A 16-knights puzzle with 4 colors: a solution will fill the chessboard.

(b) A 10-queens puzzle with 3 colors played in a 9 × 9 chessboard with a

hole. (c) Empty ‘π-zzle’. The goal of this puzzle is to place on the board

8 times each of the 18 letters A, B, C, D, E, F, G, H, I, J, K, L, M, N, O,

P, R and W. Ten cells have been prefilled. 128

4.10 A Hamiltonian path constructed from a coloring of the graph. 129

4.11 Hamiltonian cycle reduced to Hamiltonian path. 130

4.12 A knight’s cycle on a 12× 12 chessboard found with DR. 130

4.13 Plot of the windmill graph Wd(6, 5). 134

204 List of Figures

4.14 Number of iterations spent by DR to find a solution of a 3-coloring of Pe-

tersen graph for 100,000 random starting points. On average, each solution

was found in 0.00533 seconds. Instances were labeled as “Unsolved” after

500 iterations. 138

4.15 Proper colorings of some simple graphs. 139

4.16 Cumulated number of instances solved by DR with respect to the 300 first

iterations for some complete, cycle and wheel graphs of different sizes. . . . 139

4.17 Cumulated number of instances solved by DR (out of 10, 000 random star-

ting points) to find a solution of the windmill graph Wd(6, 5), with and

without maximal clique information, with respect to the iterations. 141

4.18 For 1,000 random starting points, we represent the iteration k in the hori-

zontal axis and ‖Zk‖ in the vertical axis for 1,000 iterations of the Douglas–

Rachford algorithm. 142

4.19 Performance profiles for the results of the 3-SAT experiment in Table 4.5. . 144

4.20 Performance profiles for the results of the Sudoku experiment in Table 4.6. 145

4.21 Time (in log10) required by DR for finding knight’s paths and cycles on

chessboards of different size. For each size, 50 random starting points were

chosen. Blue dots represent instances of the DR method applied with the

addition of the redundant constraint C̃2 = Rn×n, while red crosses represent

instances where the method was run without C̃2. The dotted lines were

obtained by linear regression. The algorithm was stopped after a maximum

time of 5,000 seconds, in which case the instance is not displayed. 146

4.22 Solution to the puzzles in Figure 4.9 computed with DR. For 10 random

starting points, the average (maximum) time spent for puzzles (a), (b) and

(c) was 0.23, 3.32 and 252.82 seconds (0.35, 11.49 and 424.67 seconds),

respectively. 147

4.23 Graphical representation of Example 4.11. 149

4.24 Graphical representation of Example 4.14 153

4.25 Results of the Queens n2 experiment for three implementations of GDR.

Each marker corresponds to the median of the solved instances among

10 random starting points. At the bottom of each graph, we show the

percentage of solved instances for each value of α. Instances were considered

as unsolved after 100,000 iterations. 157

List of Figures 205

4.26 Performance profiles of the Queens n2 experiment for three implementati-

ons of GDR. 158

4.27 Performance profiles of the Queens n2 experiment comparing the imple-

mentations TC1,C2,0.375, TC2,C1,0.25 and TD,C,0.5. 158

4.28 Comparison of the number of number of iterations and the number of digits

used in the machine precision for 10 random starting points, when TD,C,0.5

was employed to solve the Queens 62 and the Queens 72 puzzles. For every

starting point and every value of the machine precision, the algorithm found

a solution to the puzzle. 159

4.29 Comparison of the value of Error in (4.23) and the number of iterations

for different number of decimal digits used in the machine precision, when

TD,C,0.5 was employed to solve the Queens 62 and the Queens 72 puzzles. . 159

4.30 Results of the experiment on m-colorable random graphs for m = 8, 9, 10,

for GDR implemented with TC1,C2,0.375. Each marker corresponds to the

median of the solved instances among 10 random starting points, and the

lines where obtained by linear regression among all the solved instances. . . 161

4.31 Results of the experiment on m-colorable random graphs for m = 8, 9, 10,

for the implementation TC1,C2,α of GDR. Each marker corresponds to the

median of the solved instances among 10 random starting points. At the

bottom of each graph, we show the percentage of solved instances for each

value of α. Instances were considered as unsolved after 100,000 iterations. . 162

4.32 Performance profiles comparing the binary and the rank matrix formulati-

ons for solving 95 Sudoku problems. For each problem, 10 starting points

were randomly generated. Instances were considered as unsolved after 300

seconds. 164

4.33 Number of solved instances (right), among 100 random starting points, to

find the solution of the ‘nasty’ Sudoku (left) by GDR with the cubic, the

binary, and the rank formulations. For each interval of time (in seconds),

we show the number of solved instances and the cummulative proportion

of solved instances for each formulation. The algorithm was stopped after

a maximum of 300 seconds, in which case the problem was labeled as

“Unsolved”. 165

4.34 Results for CW matrices (10 random initialization, 3600s time limit). . . . 177

List of Tables

3.1 Rates of convergence with optimal parameters of AP, SP, RAP, GAP, GDR

and AAMR when they are applied to two subspaces. 101

4.1 Number of iterations spent by DR to find a solution of an n-coloring of

a complete graph with n vertices for 10,000 random starting points, with

n = 4, 5, 6. Each solution was found, on average, in 0.00215 seconds for

n = 4, 0.00371 seconds for n = 5, and 0.00569 seconds for n = 6. Instances

were labeled as “Unsolved” after 500 iterations. 140

4.2 Number of iterations spent by DR to find a solution of two wheel graphs

for 10,000 random starting points. Each solution was found, on average,

in 0.00266 seconds for wheel 5, and 0.00455 seconds for wheel 6. Instances

were labeled as “Unsolved” after 500 iterations. 140

4.3 Number of iterations spent by DR to find a solution of three cycle graphs

for 10,000 random starting points. Each solution was found, on average, in

0.0025 seconds for cycle 10, 0.00561 seconds for cycle 15, and 0.00731 se-

conds for cycle 20. Instances were labeled as “Unsolved” after 500 iterations.140

4.4 Comparison of the number of iterations spent by DR to find a solution of

the windmill graph Wd(6, 5) for 10,000 random starting points. Complete

maximal clique information was used in the right columns. Each solution

was found, on average, in 0.13347 seconds without clique information, and

0.02424 seconds with maximal clique information. Instances were labeled

as “Unsolved” after 10,000 iterations. 141

4.5 Time spent (in seconds) by DR to find a solution of 50 different 3-SAT

problems with 20 variables and 91 clauses. For each problem, 10 random

starting points were chosen. After 300 seconds without finding a solution,

instances where labeled as “Unsolved”. Two formulations of the gadgets

were considered, with 4 and 5 nodes. 143

207

208 List of Tables

4.6 Time spent (in seconds) to find the solution of 95 different Sudoku pro-

blems by DR with the graph precoloring, the cubic, and the graph coloring

formulations. For each problem, 20 starting points were randomly chosen.

We stopped the algorithm after a maximum time of 300 seconds, in which

case the problem was labeled as “Unsolved”. 145

4.7 Number of failed runs in either the cubic or the graph precoloring formu-

lation. Sudokus not listed here were solved by these two formulations for

every starting point. 146

4.8 Chromatic number χ(n) of the Queens n2 graph. 156

4.9 Summary of the results of GDR for finding proper colorings of windmill

graphs. For each formulation, we show the number of solved instances, the

averaged time (in seconds) and the averaged number of iterations. Instan-

ces were considered as unsolved after 60 seconds. 163

4.10 Summary of the results of the GDR algorithm implemented with TC1,C2,0.375

for finding proper colorings of a representative sample of DIMACS bench-

mark instances. For each problem, we show the number of solved runs, the

average time (in seconds) and the average number of iterations. We also

include the number of nodes and edges, and the chromatic number of each

graph. Runs were considered as unsolved after 3600 seconds. 166

4.11 Experimental results for D-optimal designs with parameters (n, α, β) given

by Proposition 4.33 (10 random initialization, 3600s time limit). 177

4.12 Experimental results for DCHM designs with parameters (n, α = 1, β = 1)

given by Proposition 4.36 (10 random initialization, 3600s time limit). . . . 178

4.13 Detailed results for CW matrices (10 random initialization, 3600s time limit).182

Notation and Symbols

Basic notation

H real Hillbert space

〈x, y〉 inner product of the vectors x and y

‖x‖ norm of x induced by the inner product, i.e., ‖x‖ =
√
〈x, x〉

B(x, ρ) open ball centered at x with radius ρ

xn ⇀ x the sequence (xn)∞n=1 converges weakly to the point x

xn → x the sequence (xn)∞n=1 converges strongly to the point x

Sets

C⊥ orthogonal complement of the set C

C closure of the set C

aff C affine hull of the set C

coneC cone generated by the set C

convC convex hull of the set C

coreC algebraic interior of the set C

dC distance function to the set C

iC indicator function of the set C

intC interior of the set C

PC projector onto the set C

RC reflector with respect to the set C

riC relative interior of the set C

spanC span of the set C

sriC strong relative interior of the set C

σC support function of the set C

209

210 Notation and Symbols

Functions

f : H → R ∪ {±∞} extended real-valued function

dom f domain of the function f

epi f epigraph of the function f

proxf proximity operator of the function f

∂f subdifferencial of the function f

Operators

T : D ⇒ H set-valued operator from the set D to H
T : D → H single-valued operator from the set D to H
T−1 inverse operator of T

JT resolvent of the operator T

RT reflected resolvent of the operator T

Tw inner w-perturbation of the operator T

domT domain of the operator T

FixT set of fixed points of the operator T

graT graph of the operator T

Id identity mapping

ranT range of the operator T

zerT set of zeros of the operator T

F : Cn → Cn unitary discrete Fourier transform

? : Rn × Rn → Rn periodic correlation operator

Subspaces

dimU dimension of the linear subspace U

U − U parallel linear subspace to the affine subspace U

θF Friedrichs angle between two linear subspaces

cF (U, V) cosine of the Friedrichs angle between U and V

Notation and Symbols 211

Matrices

Cn×m vector space of n×m complex matrices

Rn×m vector space of n×m real matrices

Sn subspace of symmetric matrices in Rn×n

Sn+ cone of positive semidefinite matrices in Rn×n

In n× n identity matrix

0n n× n zero matrix

0n×m n×m zero matrix

AT transpose of the matrix A

A? conjugate transpose of the matrix A

A−1 inverse of the matrix A

circ(a) circulant matrix whose first row is the vector a

detA determinant of the square matrix A

diag(a) diagonal matrix whose entries are the elements of the vector a

FixA set of fixed points of the matrix A

kerA kernel of the matrix A

ranA range of the matrix A

rankA rank of the matrix A

trA trace of the matrix A

σ(A) set of all eigenvalues (spectrum) of the matrix A

ρ(A) spectral radius of the matrix A

γ(A) modulus of the subdominant eigenvalues of the matrix A

‖A‖2 matrix 2-norm of the matrix A

‖A‖F Frobenius norm of the matrix A

Index of Topics

3-SAT, 121

8-queens, 127

affine hull, 2

alternating projections, 28

averaged, 31

cyclic, 31

generalized, 33

partial relaxed, 33

relaxed, 32

angle

Friedrichs, 17

principal, 17

averaged alternating modified reflections

(AAMR)

method, 56

operator, 59

splitting algorithm, 107

averaged mapping, 7

Banach–Picard iteration, 6

best approximation problem, 26

Chebyshev set, 4

circulant weighing matrix (CW), 172

clique, 121

cocoercive mapping, 7

Combette’s method, 52

combinatorial design of circulant type,

168

complementary sequences, 21

complete graph, 139

cone, 2

generated, 2

normal, 5

convergent matrix, 19

convex

function, 3

hull, 2

set, 1

correlation, 20

cycle graph, 139

D-optimal design of circulant type, 173

distance function, 3

domain

of a function, 3

of an operator, 2

Douglas–Rachford

algorithm, 36

circumcentered, 41

cyclic, 40

generalized, 41

operator, 36

relaxed averaged alternating

reflections, 41

splitting algorithm, 43

Dykstra’s algorithm, 47

213

214 Index of Topics

eigenvalue

semisimple, 16

subdominant, 16

epigraph, 3

feasibility problem, 26

firmly nonexpansive mapping, 7

fixed point

iteration, see Banach–Picard

iteration

of a matrix, 15

of an operator, 2

Fourier transform, 22

Frobenius norm, 16

function, 3

Gram matrix, 15

graph, 120

coloring problem, 120

partial coloring, 127

precoloring and list coloring, 124

of an operator, 2

Hadamard matrix with two circulant

cores (DCHM), 175

Hamiltonian path, 129

Haugazeau’s algorithm, 49

Hermitian matrix, 15

HLWB method, 50

identity operator, 2

indicator function, 3

induced norm, 16

inner perturbation, 13

interior, 1

algebraic, 2

relative, 2

strong relative, 2

inverse operator, 2

kernel of a matrix, 15

knight’s tour, 130

Krasnosel’skĭı–Mann iteration, 9

lower semicontinuous function, 3

matrix 2-norm, 16

maximally monotone operator, 11

modified

reflected resolvent, 108

reflector, 58

monotone operator, 10

nonexpansive

mapping, 7

matrix, 15

orthogonal complement, 2

performance profiles, 143

Petersen graph, 120

positive semidefinite matrix, 15

product-space reformulation, 27

projection mapping, 4

proper

coloring, 120

function, 3

proximal-point algorithm, 14

proximinal set, 4

proximity operator, 3

range

of a matrix, 15

of an operator, 2

rank of a matrix, 15

reflected resolvent, 12

reflector, 4

Index of Topics 215

relaxation, 8

resolvent, 12

set-valued operator, 2

single-valued mapping, 2

span, 2

spectral radius, 16

spectrum, 16

standard centered regular simplex, 148

strengthening of an operator, 108

strong CHIP, 6

strongly monotone operator, 11

subdifferential, 3

Sudoku, 125

support function, 3

unitary matrix, 15

wheel graph, 139

windmill graph, 134

zeros of an operator, 2

	Resumen (Spanish)
	Abstract
	Preliminaries
	Convex analysis and monotone operator theory
	Projection and normal cone mappings
	Nonexpansive mappings
	Monotone operators

	Matrix analysis and linear algebra
	The geometry of two subspaces
	Convergence of power of matrices
	Complementary sequences and discrete Fourier transform

	Closed-form expressions for some selected projectors

	Classical projection methods
	Feasibility and best approximation problems
	Product-space reformulation

	Fundamental algorithms
	The method of Alternating Projections
	The Douglas–Rachford algorithm

	Projection algorithms for best approximation problems
	Dykstra's algorithm
	Haugazeau-like algorithms
	Halpern's algorithm
	Combettes' method

	The averaged alternating modified reflections method
	A new best approximation algorithm
	The averaged alternating modified reflections operator
	Iterative scheme for finding the closest point in the intersection
	Finitely many sets
	Numerical experiments

	Optimal rates of linear convergence for two subspaces
	Convergence rate analysis
	Comparison with other projection methods
	Computational experiments

	Extension to monotone operator theory
	AAMR splitting algorithm for maximally monotone operators
	Parallel AAMR splitting for the resolvent of a finite sum

	Solving combinatorial problems with the Douglas–Rachford algorithm
	Graph coloring problems
	Introduction
	A feasibility model based on a binary linear program
	A feasibility model based on a low-rank constrained matrix

	Combinatorial designs of circulant type
	Introduction
	Modelling Framework
	Computational Results

	Conclusions and future research
	Bibliography
	List of Figures
	List of Tables
	Notation and Symbols
	Index of Topics

