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1.    ABSTRACT /KEYWORDS  

ABSTRACT 

The analyses of water isotopic composition serve to investigate plant water sources under the 

assumption that root water uptake does not entail isotopic fractionation, i.e. the isotopic 

composition of the plant water reflects that of the root-accessed sources. However, a growing 

number of studies challenge this assumption by reporting plant-source offsets in water isotopic 

composition, for a wide range of ecosystems. We conducted a meta-analysis to quantify the 

magnitude of this plant-source offset in water isotopic composition world-wide and its potential 

explanatory factors. We compiled 77 studies reporting dual water isotopic composition (δ2H and 

δ18O) and extracted plant and source (soil) δ2H and δ18O for 141 species. To calculate the offset, 

first, we fit a soil water isotopic evaporation line (δ2H vs. δ18O) for each study and sampling 

campaign. Then, we calculated our offset with respect to this line (SW-excess) as the difference 

between the observed and predicted δ2H plant values. Effects of climate and plant functional 

traits on SW-excess were assessed using linear mixed models. Overall SW-excess was 

significantly negative: plant water was systematically more depleted in the heavier water 

isotopes than soil water, for δ2H. The sign and magnitude of the SW-excess differed among plant 

functional types: SW-excess was. more negative in angiosperms, deciduous and broadleaved 

species.  The SW-excess increased with mean annual precipitation.  Additionally, ~90% of cases 

where SW-excess was negative, the estimated offset with respect to alternative water sources 

(precipitation and groundwater) was also negative. Thus, we conclude that this overall 

significant soil-plant offset in water isotopic composition cannot be attributed to alternative 

water sources. A consistent negative offset between plant and potential water sources could 

introduce biases when estimating water sources accessed by the vegetation, particularly in 

broadleaved forests in temperate and humid regions. So, isotopic analyses to estimate water 

use should be revisited 

 

KEYWORDS 

Meta-analysis, ecohydrology, water isotopic composition, soil water line, water cycle, stable 

isotopes. 
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RESUMEN 

Los análisis de composición la isotópica del agua sirven para investigar fuentes hídricas de la 

vegetación, suponiendo que no existe fraccionamiento isotópico durante la absorción radicular 

de agua, es decir, la composición isotópica de la planta refleja la de sus fuentes. Sin embargo, 

un creciente número de estudios contradicen este supuesto, al reportar divergencias entre la 

composición isotópica de la planta y sus fuentes en diferentes ecosistemas. Realizamos un meta-

análisis para ver la magnitud de esta divergencia a escala global, compilando 77 estudios que 

recogen la composición isotópica (δ2H and δ18O) del agua extraída de plantas (141 especies) y 

del suelo. Primero se estimó la recta de regresión de la composición isotópica (δ2H vs. δ18O) del 

suelo para cada campaña de muestreo y después se calculó la divergencia respecto de esta línea 

(SW-excess) como la diferencia ente los valores observados y predichos de δ2H de la planta. Los 

efectos del clima y de las características de las plantas fueron evaluadas mediante modelos 

lineares mixtos. En general, el SW-excess fue significativamente negativo: el agua de las plantas 

está más empobrecida en δ2H que el suelo. El signo y la magnitud del SW-excess varió entre 

tipos funcionales, siendo más negativo en especies angiospermas, caducifolias y de hoja ancha, 

e incrementa con la precipitación media anual. Además, ~90% de casos donde la SW-excess 

resultó negativa, la divergencia isotópica entre plantas y fuentes alternativas (lluvia o agua 

subterránea) también fue negativa. Entonces, concluimos que la divergencia generalizada entre 

la composición isotópica del suelo y planta no puede ser atribuida a fuentes alternativas de agua. 

Esta divergencia, consistentemente negativa, puede introducir sesgos importantes en la 

estimación de fuente hídricas de la vegetación, particularmente en bosques de hoja ancha y 

regiones templadas y húmedas. Es necesario entonces revisar los análisis isotópicos para estimar 

uso de agua. 

 

PALABRAS CLAVE 

Meta-análisis, ecohidrología, composición isotópica del agua, recta isotópica del suelo, ciclo del 

agua, isótopos estables. 
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2.    INTRODUCTION 

1. BACKGROUND 

Freshwater is a key limiting resource for terrestrial ecosystems and their inhabitants. 

Limited access to freshwater is widespread across the globe: one third of the world 

largest groundwater systems are already in distress (Voss et al., 2015); over 2 billion 

people live in areas experiencing severe water stress (UN, 2018) and about 4 billion 

people, representing nearly two-thirds of the world population, experience severe 

water scarcity during at least one month per year (Mekonnen and Hoekstra, 2016). 

Current climate change scenario further challenges freshwater access. In dry areas, 

desertification risk is quickly escalating, reducing the resilience of dryland ecosystems 

and the provisioning of ecosystem services (Mirzabaev et al., 2019). Besides direct 

human consumption, terrestrial vegetation has a fundamental role in the water cycle, 

as it is responsible for 60-80% of the total evaporation fluxes in land (Schlaepfer et al., 

2014; Schlesinger and Jasechko, 2014). Plants lose water via transpiration and take up 

water through their roots from the soil, mainly. Plants deploy a great variety of 

strategies and morphological adaptations to warrant a steady water supply to meet the 

demand of the transpiration stream under varying climatic conditions. Hence, terrestrial 

ecosystems vary greatly in the hydrological niches they harbour depending on their 

species community composition. Moreover, the terrestrial vegetation also affects the 

storage and flow of groundwater and surface, providing important hydrologic services, 

e.g. in situ water supply or water damage mitigation (Brauman, 2015). Hence, to handle 

the water scarcity problem and manage such an important and endangered resource as 

freshwater, future management plans of freshwater resources require a profound 

understanding of the role of the vegetation in the hydrological cycle and its 

disturbances.  

The analysis of the isotopic composition of water is a widespread tool in the study of the 

water cycle. In water molecules, the most abundant naturally occurring stable isotopes 

are 1H and 2H (or D, deuterium) for hydrogen, and 16O and 18O for oxygen (Sprenger 
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et al., 2016 cites therein). Water isotopologues, molecules with the same chemical 

formula but different isotopic composition, differ slightly in the physical properties 

depending on their mass. The heavier isotopologues (2H2O and H2
18O) have a lower 

vibration frequency and potential energy (Dawson and Simonin, 2011). Therefore, 

processes that involve phase change of the molecules are subject to isotopic 

fractionation. This means that during the phase change (e.g. from liquid to vapor), the 

lighter isotopologues (1H2O and H2
16O) will evaporate preferentially, leading to a 

decompensation on the isotopic signature between the two phases. 

Natural abundances of the heavier water isotopes are very low (<0.1%), therefore water 

isotopic composition is usually expressed in delta (δ) notation in relation to an 

international standard (McKinney et al., 1950):  

Eq. 1: 

𝛿𝑥𝐸 = (
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1) × 1000 

 

In Eq. 1, E is the chemical species (H or O), x is its atomic mass and RSample and Rstandard 

are the sample and standard ratios of the heavy (rare) to the light (abundant) isotope 

(e.g. 18O/16O and 2H/1H) . The international standard for water is the Vienna Standard 

Mean Ocean Water (VSMOW) (Craig, 1961)  

Meteoric water, i.e. water derived from precipitation in any physical state (e.g. rain, 

snow, fog or hail) and surface freshwater bodies have an isotopic composition that is 

the result of the water body from which it originally evaporated from and then 

condense, resulting from evaporation and mixing processes occurring in the 

atmosphere. During phase changes, water pools are subject to kinetic fractionation: 

during evaporation, the lighter isotopologues evaporate more easily, but heavier 

isotopologues present in the evaporated water will condensate faster. Hence, 

atmospheric water vapour has a lower fraction of heavy isotopes, i.e. it is depleted in 

the heavy isotopes, compared to the water body from which it evaporated. Analogously, 

precipitation following condensation from a humid air mass has a higher ratio of the 
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heavy isotopes, i.e. it is enriched in the heavy isotopes compared to the water vapor 

that remains in the atmosphere (Barbeta et al., 2018). In addition, this kinetic 

fractionation is temperature dependent. Under warmer temperatures, heavier isotopes 

are more easily evaporated and thus atmospheric water in either phase (i.e. the source 

of all precipitation) becomes more enriched than during cold conditions. Importantly, 

this temperature-related fractionation does not affect H and O to a similar extent 

because O is heavier than H and hence water molecules with 18O are even less likely to 

perform a phase change than those with 2H. Still, the fractionation ratio of 2H relative to 

18O during condensation of atmospheric water is nearly constant. This relationship is 

expressed as a linear equation for meteoric waters, known as global meteoric water line 

(GMWL, see Figure 1) that describes the relationship between δ2H and δ18O (Dansgaard, 

1964) with: 

 

Eq. 2:  

𝛿2𝐻 = 8 × 𝛿18𝑂 + 10 

 

Other climatic processes affecting the relationship between δ2H and δ18O can be 

assessed by calculating the deviations from the GMWL, also known as deuterium-excess 

or D-excess, from Eq. 2 and according Dansgaard (1964): 

 

Eq. 3: 

𝐷 − 𝑒𝑥𝑐𝑒𝑠𝑠 = 𝛿2𝐻 − 8 × 𝛿18𝑂 
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Figure 1. Theoretical dual isotopic plot representing the global meteoric water line 
(GMWL, black line), local meteoric water line (LMWL, dotted line) and soil water 
evaporation line (SWL, green line). Samples below or above the GMWL are enriched or 
depleted in heavier isotopologues compared to the GMWL, respectively. The 
environmental variables presented influence the isotopic composition of a sample in the 
direction indicated by the plus and minus symbols. Based on Sprenger (2016) and 
Barbeta (2018) 

In addition, δ2H and δ18O of local meteoric waters for a certain region can differ from 

the GMWL because of the complex dynamics of water evaporation and condensation, 

which depend not only on air temperature, but also on air relative humidity, and hence 

vary with seasonality, latitude, altitude and continentality (Dansgaard, 1964; Barbeta 

et al., 2018). The relationship between δ2H and δ18O at the regional scale, is described 

by the local meteoric water line (LMWL, Figure 1.), which is established by analysing the 

meteoric waters of a location periodically.  

The deviation from the relationship between δ2H and δ18O of any given water sample 

from the LMWL can be expressed as the line conditioned excess (LC-excess) following 

(Landwehr and Reston, 2006) 
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Eq. 4:  

𝐿𝐶 − 𝑒𝑥𝑐𝑒𝑠𝑠 = 𝛿2𝐻 − 𝑎𝐿 × 𝛿18𝑂 − 𝑏𝐿 

 

Where aL and bL are the slope and intercept of the LMWL  

The isotopic composition of soil water depends mainly on precipitation events. Then, it 

is further modified by soil water evaporation that produces an isotopic enrichment, 

stronger for oxygen isotopes (Sprenger et al., 2016). Therefore, the isotopic composition 

of soil water results from a mix of the successive precipitation events in the soil plus the 

soil evaporative enrichment of preceding soil water (Dawson and Simonin, 2011). This 

evaporative enrichment occurs generally in the first 30cm of soil, but it can reach deeper 

horizons in dry and/or warm climates (Sprenger et al., 2016). Meanwhile, deep soil 

water is expected to depict an isotopic composition reflecting a mixture of the water 

percolating over time, which is presumed to not have been subject to evaporative 

enrichment. Usually, these processes result in an isotopic differentiation along the soil 

profile encompassing isotopically heavier water in the surface soil, compared to water 

in the deep horizons, as it is reflected in Figure 2 

For concurrent soil water samples, the relationship between δ2H and δ18O is given by 

the soil water line (SWL, see Figure 1), also known as soil evaporation line (Barbeta et al., 

2018): 

Eq. 5:  

𝑆𝑊𝐿: 𝛿2𝐻 = 𝑎𝑠 × 𝛿18𝑂 − 𝑏𝑠 

 

Where as and bs are the slope and intercept of the SWL. 
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Figure 2. Theoretical scheme of soil evaporation enrichment. A) Common isotopic profile 
of a soil in depth. The black line represents the change in LC-excess (Eq. 4), is an estimate 
of the isotopic enrichment, along the depth profile. In the upper soil, water is usually 
isotopically enriched (LC-excess more negative) due to evaporation. B) Theoretical 
relative fractionation of the heavier (1H2

18O and 2H2
16O) and lighter (1H2

16O) water 
isotopologues during soil evaporation. Longer and wider arrows represent more 
likelihood to perform a liquid-vapor phase change. Based on Barbeta (2018) and Benettin 
(2018). 

 The slope of the SWL (as) is typically less steep than that of the LMWL (aL), and it varies 

across climates depending on the evaporative fractionation and the isotopic 

composition of precipitation. The SWL is generally shallower in dry and warm regions 

because of the strong evaporation enrichment. A proper characterization of the SWL is 

necessary in any field study to understand water transport or biological processes 

(Barbeta et al., 2018).  

To feed the constant water demand resulting from transpiration (see Annex 1 for more 

basic information about this and other processes), plants take up water from the soil 

through their roots. Root water uptake is assumed to be a non-fractionating process 

(Poca et al., 2019 and cites therein) and thus, the isotopic composition of plant water 

should match that of the source of water. Therefore, the combined isotopic analyses of 

plant water together with analyses of its potential sources, mainly soil water, but also 

groundwater and other mobile water pools such as stream water, can inform about the 
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relative contribution of the different water pools to global transpiration (Barbeta and 

Peñuelas, 2017; Evaristo and McDonnell, 2017).  

The applications of these isotopic tools is diverse and it grows as new measurement 

methodologies are developed, such as the capacity of in-situ sampling of soil and xylem 

water isotopic composition or the possibility of tracing source’s isotopic signatures with 

high temporal resolution(Marshall et al., 2020).  

The analysis of water stable isotopes is frequently applied to study the water utilization 

of tree plantations and agriculture (Zhang et al., 2011; Liu et al., 2019a; Muñoz-Villers 

et al., 2020) to determine local aquifer recharge ratio and its sources (Liu and Yamanaka, 

2012), to determine the different sources of water in forests and its variability in 

response to drought episodes (Anderegg et al., 2013) or to predict the tolerance to 

varying climatic conditions. Also, stable isotopes of water are used to assess risks like 

saltwater intrusion on groundwater or to trace the movement of a pollutant (Schlosser 

et al., 1999). Another remarkable application of using stable isotopes of waters is in 

scientific research: from the study of our past climate (Sturm et al., 2010) and the 

current atmospheric disturbances (Breitenbach et al., 2010), to the pharmacology area 

(Schellekens et al., 2011)  

In the field of ecosystem restoration, analyses of water stable isotopes can be applied 

to characterise the vegetation water requirements and hydrological fluxes. In addition, 

these techniques can be helpful for selecting the appropriate plant species in 

revegetation actions or other active restoration practices, enhancing plant survival and 

restoration success. For example, Clinton (2004) examined the relative uptake of surface 

water vs. groundwater of Populus deltoides to assess the effectiveness of using this 

species as a phytoremediation agent for groundwater pollution. Also this techniques 

give more information of the ecohydrological changes occurring with human 

disturbances e.g. damming (Zhao et al., 2020)  

The studies and applications mentioned above rely on the assumption that the isotopic 

composition of plant water faithfully mirrors that of its source. Early experiments with 

hydroponic cultures indeed demonstrated that that there is no isotopic fractionation 

during root water uptake (Washburn and Smith, 1934; Zimmermann et al., 1967). 
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Nonetheless, this absence of fractionation may not be a valid assumption for halophytic 

(Lin and Sternberg, 1993; Ellsworth y Williams, 2007) and xerophytic species (Ellsworth 

y Williams, 2007; Poca et al., 2019). The explanation of this phenomenon was 

hypothesized to be related to the particular anatomy of these species adapted to salty 

and/or dry conditions. Xylem root cells of some species adapted to saline and/or dry 

environments have root adaptations (e.g. highly developed Casparian bands in their root 

cells) that force water to move via symplastic transport, which may cause fractionation 

(Lin and Strenberg, 1993; Ellsworth y Williams, 2007; Poca et al., 2019). Results from a 

recent study also suggest that biological interactions, specifically associations with 

mycorrhizal fungi, could produce discrimination against the heavier hydrogen isotopes 

of water during root water uptake. Poca (2019) suggested that preferential 

transmembrane transport mediated by aquaporins would be causing this observed 

fractionation but this has not been demonstrated. Still, beyond species dwelling in saline 

or dry environments, it appears that the mismatch between the isotopic composition of 

plant and source waters could be more widespread than previously believed (Brooks 

et al., 2010; Geris et al., 2015; Evaristo et al., 2016; Evaristo and McDonnell, 2017; 

Vargas et al., 2017; Wang et al., 2017; De Deurwaerder et al., 2018; Barbeta et al., 2019; 

Brum et al., 2019; Carrière et al., 2020) 

(Barbeta, Gimeno, et al., 2020) performed a glasshouse experiment with Fagus sylvatica 

in order to reproduce this offset under controlled conditions and manipulated soil 

texture and water availability. They found that regardless of substrate, stem water was 

consistently more depleted in δ2H than its source water. Their results confirmed that 

soil-plant isotopic offset is not exclusive of halophytes and xerophytes, and cannot be 

solely attributed to a missing water source, since in such a glasshouse experiment the 

source water isotopic composition was always known. Instead, the authors suggested 

that the mechanism behind this offset may not be a discrimination process during root 

water uptake. Instead, these authors suggested that this offset would be driven by the 

relative depletion in δ2H of stored stem water, which would cause isotopic 

heterogeneity among pools within the plant: water in the conductive xylem tissues and 

stored water in the non-conductive tissues. Interestingly, this mechanism is consistent 
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with the findings (Zhao et al., 2016; Barbeta, Burlett, et al., 2020), that observed a more 

depleted δ2H in water in non-conductive xylem tissues, compared to xylem sap. 

Hence, although scattered evidence across the literature strongly suggests that the 

mismatch in isotopic composition between plant and source waters would not be 

restricted to saline or arid environments, we still lack a systematic analysis of such 

mismatch in the literature. A global analysis of the magnitude of this offset and its 

distribution across biomes, climates and plant functional types is key for unveiling a 

mechanistic explanation for this phenomenon. 

 

2. AIM AND HYPOTHESES OF THE STUDY 

The aim of this study is to compile a database of all plant and source water isotopic 

compositions available in the literature, encompassing different biomes and a wide 

range of plant functional types, to perform a global meta-analysis of the magnitude of 

the soil-plant isotopic offset and also test the effect of climatic and plant related 

variables. We aimed to test the following hypotheses: 

1) The slope of the SWL (Eq. 5), incorporated in the calculation of the soil-plant 

isotopic offset, should be steeper in more humid climates. 

 

2) Under the assumption of the absence of isotopic fractionation during root water 

uptake and plant water transport, the isotopic composition of plant water 

reflects that of its sources. Hence, if soil water is the main water source, the SW-

excess should not be significantly different from cero, whereas when 

precipitation and/or groundwater constitute the main water source, the LC-

excess should not be significantly different from cero. 

 

3) The absence of systematic soil-plant water isotopic offsets is consistent across 

different climates and plant functional types. 
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3. MATERIALS AND METHODS 

1. DATA COMPILATION 

To create the database, we extracted all studies cited on three previous meta-analyses 

(Barbeta and Peñuelas, 2017; Evaristo and McDonnell, 2017; Amin et al., 2020) and then 

selected only those that reported both δ18O and δ2H. Next, we updated our selection by 

performing a bibliographic search of papers published between 2016 and 2020 on 

Scopus, Web of Science and Google Scholar. The search was performed in April 2020 

using the following terms: (water AND isotop*) AND (dual OR (hydrogen AND oxygen)) 

AND (plant OR tree OR vegetat*) AND source AND NOT nitrogen. After removing 

duplicated studies, title and abstract screening, we retained studies that reported: 1) 

plant and source (soil) water isotopic composition, 2) both δ18O and δ2H for both source 

and plant waters; 3) sufficient data to calculate the soil water line, i.e. at least 3 dual 

isotope data extracted from the soil profile and 4) bulk source (soil) and plant water δ2H 

δ18O, i.e. waters extracted following cryogenic vacuum distillation or similar procedures 

(e.g. Orlowski et al., 2013).  

In order to collect the data from the selected papers, we created a database where we 

compiled the following information: 

Data related to the publication: name of first author, year of publication, journal name, 

title of the study and DOI. 

Geographic data: country; geographic area within country; latitude; longitude; elevation 

and ecosystem type, a factor variable with four levels: natural, agricultural, urban 

garden and controlled conditions (glasshouse studies). 

Climatic data: mean annual precipitation (MAP, in mm/year), mean annual temperature 

(MAT, in ˚C), Lang aridity index (IL = MAP/MAT), climate class adapted from the Köppen-

Geiger classification (Kottek et al., 2006), with four classes, namely: arid (BS and BW), 

tropical (A), warm (C) and cold (E and D); season, a categorical variable with three values: 

dry, wet or not-applicable, for studies where either there is no dry or wet season, or 

data for multiple seasons were pooled together and slope and intercept of the LMWL of 

the study site. For those studies where MAP and MAT were not reported, these were 
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extracted from the Worldclim database (Fick and Hijmans, 2017). For those studies 

where MAP and MAT were reported, we compared the MAP and MAP extracted from 

Worldclim with the reported values and we found a high significant correlation for both 

(R2 > 87), so for further analyses we used only MAP and MAT extracted from Worldclim 

data. For those studies where the LMWL was not reported, the slope and intercept of 

the LMWL were extracted from a repository of global isotopic data (Wateriso, 2020). 

  

Plant functional type data: plant species, plant group (angiosperm or gymnosperm), leaf 

habit (deciduous, semi-deciduous or evergreen), leaf shape (broadleaf or narrow leaved) 

and growth form (trees, shrubs and non-woody). 

Isotopic composition of plant water: δ18O and δ2H (in ‰) and tissue sampled, water 

extraction and analysis method. 

Isotopic composition of sources: δ18O and δ2H composition of soil samples, date and 

season of the sampling and isotopic composition of other possible sources such as rain, 

stream water and groundwater. For soil samples, we also recorded the sampling depth 

(when provided), as well as the water extraction and analysis method. 

The isotopic composition data (δ18O and δ2H) was extracted from tables or figures of the 

article, or obtained directly from the author’s database, when provided. Data from 

figures was extracted using WebPlotDigitizer (Rohatgi, 2020). 

In addition, for those studies where multiple samplings were performed, we also 

recorded the sampling date (year and month). Finally, we also recorded the sampling 

plot for studies where data from ecologically distinct plots (e.g. high and low elevation 

plots as in Berry et al., 2014) were sampled. We grouped all the data from a specific 

sampling date and plot, within a study and hereafter, we refer to these groups as 

campaigns. 

 

2. SOIL WATER LINE AND OFFSET CALCULATION  

The database was processed in R (R Core Team, 2020), using the tidyverse package 

(Wickham et al., 2019). 
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For each study, we established different campaigns considering 1) the study, 2) the 

sampling date (using year and month) and 3) the sampling plot, when they were 

ecologically meaningful. For each campaign, we calculated the soil water line according 

to Eq. 5. Significant regression lines were selected according to p-values (P < 0.05), R2 

(R2 > 0.5) and sample size (n ≥ 3).  

Since the main water source for plants is the soil, we can calculate the isotopic offset 

between a plant water sample and the soil. Here, we refer to this offset as soil water 

[line conditioned] excess (SW-excess hereafter), according to the definition of Barbeta 

(2019). This SW-excess is a measure of the deviation of a given plant water sample and 

its soil water line. This variable is calculated for each plant dual isotope data pair (δ2Hp 

& δ18Op) and its corresponding SWL, according to: 

Eq. 6: 

𝑆𝑊 − 𝑒𝑥𝑐𝑒𝑠𝑠 = 𝛿2𝐻𝑝 − 𝑎𝑠 × 𝛿18𝑂𝑝 − 𝑏𝑠 

 

In Eq. 6, aS and bs are the slope and intercept of the corresponding SWL. Positive SW-

excess values indicate enrichment in δ2H of plant samples with respect to their 

corresponding SWL and are positioned above soil water in the dual isotopic plot, while 

negative SW-excess values indicate depletion in δ2H compared to the SWL and are 

positioned below the SWL in the dual isotopic plot). We calculated the SW-excess value 

for each plant sample and then we calculated the mean SW-excess for each species and 

campaign.  

Also, we calculated the LC-excess for each plant sample according to Eq. 4, using the 

slope and intercept of the corresponding LMWL, and then averaged these values per 

species and campaign. Plant samples with positive LC-excess values indicate 

enrichment in δ2H with respect to the LMWL and negative LC-excess values indicate 

depletion in δ2H with respect to the LMWL.  
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1. STATISTICAL ANALYSES  

For the statistical analysis, we used the following R packages: lme4 (Bates et al., 2015) 

lmerTest  (Kuznetsova et al., 2017), MuMin (Barton, 2009), and performance ( 

Dominique et al., 2020). We assessed the effects of climate and plant type on the slope 

of the SWL and calculated SW-excess using hierarchical linear mixed models (LMMs). 

For our LMMs we used the following structure: our random factors were the study and 

sampling season, nested within study and our fixed factors were climatic variables 

(climate class, MAP, MAT and Lang index, which we tested individually and also 

combining MAP and MAT) for both SWL slope and SW-excess, and plant functional type 

variables (leaf shape, leaf habit, growth form and plant group, tested individually), only 

for SW-excess. Season was not included in the fixed part of the model because it could 

not be assigned to >30% of the campaigns. In addition, to assess the global value of the 

calculated variables (SWL slope and SW-excess), we also performed our LMMs without 

the fixed effects (null models). Finally, to assess differences among categories, within 

groups, we used post-hoc tests. 

The size of the database (and hence the degrees of freedom) used in each LMMs 

depended on the fixed variables included: null models included all campaigns; but to 

assess climatic effects, we discarded those campaigns where the hydrological regime 

was managed, i.e. glasshouse studies, irrigated crops or urban gardens. Finally, to assess 

the effect of certain functional traits such as leaf shape, leaf habit or plant group, we 

only selected woody species (trees or shrubs). We did so, to avoid large differences in 

sample size among categories, as all non-woody species were angiosperms, and the vast 

majority were broad-leaved deciduous species.  

Models were generated with different and biologically meaningful combinations of the 

response variables, avoiding collinearity among fixed factors. We compared our models 

based on the Akaike information criterion (AIC, citation) and chose the ones with the 

smallest AIC, and when two or more models had similar AIC’s (±2), we selected the one 

with less degrees of freedom. All models were tested for normality, heteroscedasticity, 

linearity and covariance. 
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4. RESULTS 

1. DATA EXTRACTION 

The process of paper selection for data extraction is summarized in Figure 3. Our initial 

selection rendered 194 studies, after title and abstract screening of the outcomes of 

each bibliographical search and duplicates removing. Then, we rejected papers based 

on our defined selection criteria (see Materials and methods), retaining 100 studies. 

Finally,77 of those were included in the quantitative analysis, rejecting 23 studies due 

to a non-significant or poor fit of the SWL. 

 

Figure 3. Flow information scheme of the systematic review phases based on PRISMA 
Statement (Moher et al., 2009).  

The studies finally included in the quantitative analysis are shown in Table 1: 
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Table 1. Authors, year of publication, journal, country of the study and the title of the 
77 articles present in the quantitative analysis. 

Author and 
year 

Journal County Title 

Anderegg et al. 
(2013) 

Global Change 
Biology  

USA Drought characteristics' role in widespread aspen forest mortality 
across Colorado. USA  

Barbeta et al. 
(2015) 

Global Change 
Biology  

Spain The combined effects of a long-term experimental drought and an 
extreme drought on the use of plant-water sources in a 

Mediterranean forest  

Barbeta et al. 
(2020) 

New Phytologist  France An explanation for the isotopic offset between soil and stem water in 
a temperate tree species  

Barbeta et al. 
(2019) 

Hydrology and 
Earth System 

Sciences  

France Unexplained hydrogen isotope offsets complicate the identification 
and quantification of tree water sources in a riparian forest  

Berry et al. 
(2014) 

Oecologia  USA Cloud immersion: an important water source for spruce and fir 
saplings in the southern Appalachian Mountains  

Beyer et al.  
(2016) 

Journal of 
Hydrology  

Namibia A deuterium-based labeling technique for the investigation of 
rooting depths. water uptake dynamics and unsaturated zone water 

transport in semiarid environments  

Bijoor et al.  
(2012) 

Urban 
Ecosystems  

USA Water sources of urban trees in the Los Angeles metropolitan area  

Bode et al.  
(2020) 

Ecohydrology  Tanzania Water-isotope ecohydrology of Mount Kilimanjaro  

Bowling et al. 
(2017)  

Ecohydrology  USA Revisiting streamside trees that do not use stream water: can the 
two water worlds hypothesis and snowpack isotopic effects explain a 

missing water source?  

Brandes et al. 
(2007) 

Plant. Cell and 
Environment  

Germany Assessing environmental and physiological controls over water 
relations in a Scots pine (Pinus sylvestris L.) stand through analyses of 

stable isotope composition of water and organic matter  

Brinkmann et al. 
(2018) 

New phytologist  Switzerland Employing stable isotopes to determine the residence times of soil 
water and the temporal origin of water taken up by Fagus 

sylvatica and Picea abies in a temperate forest  

Brooks et al. 
(2010) 

Nature 
Geoscience 

USA Ecohydrologic separation of water between trees and streams in a 
Mediterranean climate  

Cao et al.  
(2018) 

Agricultural 
Water 

Management  

China The effects of rainfall and irrigation on cherry root water uptake 
under drip irrigation  

Chi et al.  
(2019) 

Ecology and 
evolution  

China Increased snowfall weakens complementarity of summer water use 
by different plant functional groups  

Cramer et al. 
(1999) 

Agricultural 
Water 

Management  

Australia Transpiration and groundwater uptake from farm forest plots of 
Casuarina glauca and Eucalyptus camaldulensis in saline areas of 

southeast Queensland, Australia  

De Deurwaerder 
et al.(2018) 

Tree Physiology  French 
Guiana 

Liana and tree below-ground water competition-evidence for water 
resource partitioning during the dry season  

Dong et al.  
(2020) 

Journal of Arid 
Land  

China Stable oxygen-hydrogen isotopes reveal water use strategies of 
Tamarix taklamakanensis in the Taklimakan Desert, China  

Dubbert et al. New Phytologist  Portugal A pool-weighted perspective on the two-water-worlds hypothesis  
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(2019) 

Dudley et al. 
(2018) 

Ecohydrology  New Zealand Water sources for woody shrubs on hillslopes: An investigation using 
isotopic and sap flow methods  

Dwivedi et al. 
(2020)  

Ecohydrology  USA Vegetation source water identification using isotopic and 
hydrometric observations from a subhumid mountain catchment  

Estrada-Medina 
et al. (2013)  

Trees - Structure 
and Function  

Mexico Source water phenology and growth of two tropical dry forest tree 
species growing on shallow karst soils  

Evaristo et al. 
(2016) 

Hydrological 
Processes  

Puerto Rico Insights into plant water uptake from xylem-water isotope 
measurements in two tropical catchments with contrasting moisture  

conditions  

Feikema et al. 
(2010) 

Plant and soil  Australia The water balance and water sources of a Eucalyptus plantation over 
shallow saline groundwater  

Gaines et al. 
(2016) 

Tree Physiology  USA Reliance on shallow soil water in a mixed-hardwood forest in central 
Pennsylvania  

Geris et al.  
(2015) 

Hydrological 
Processes  

United 
Kingdom 

Ecohydrological separation in wet northern environments? A 
preliminary assessment using different soil water extraction 

techniques  

Geris et al.  
(2017) 

Science of the 
Total 

Environment  

United 
Kingdom 

Spatial and temporal patterns of soil water storage and vegetation 
water use in humid northern catchments  

Gierke et al. 
(2016) 

Hydrogeology 
Journal  

USA Soil-water dynamics and tree water uptake in the Sacramento 
Mountains of New Mexico (USA): a stable isotope study  

Goldsmith et al. 
(2012) 

Ecohydrology  Mexico Stable isotopes reveal linkages among ecohydrological processes in a 
seasonally dry tropical montane cloud forest  

Gómez-Navarro 
et al. (2019) 

Ecohydrology  USA Spatiotemporal variability in water sources of urban soils and trees in 
the semiarid, irrigated Salt Lake Valley  

Hartsough et al. 
(2008) 

Arctic, Antarctic, 
and Alpine 
Research  

Mexico Stable isotope characterization of the ecohydrological cycle at a 
tropical treeline site  

Herve et al.  
(2016) 

Hydrological 
Processes  

Chile Assessing the two water world hypothesis and water sources for 
native and exotic evergreen species in south-central Chile  

Holland et al. 
(2006) 

Australian Journal 
of Botany  

Australia Tree water sources over shallow. saline groundwater in the lower 
River Murray. south-eastern Australia: Implications for groundwater 

recharge mechanisms  

Jia et al. 
(2018) 

Fresenius 
Environmental  

China The seasonal water use patterns of Populus pseudo-simmonii Kitag in 
the Otindag Sandy Land  

Jones et al.  
(2020) 

Hydrogeology 
Journal  

Australia Field investigation of potential terrestrial groundwater-dependent 
ecosystems within Australia Great Artesian Basin  

Knighton et al. 
(2020)  

Ecohydrology  USA Using isotopes to incorporate tree water storage and mixing 
dynamics into a distributed ecohydrologic modelling framework  

Kulmatiski et al. 
(2006) 

Plant and Soil  USA Exotic plant communities shift water-use timing in a shrub-steppe 
ecosystem  

Leng et al.  
(2013)  

Vegetation 
Science  

China Differential water uptake among plant species in humid alpine 
meadows  

Liu et al.  
(2014) 

Ecohydrology  China Dry-season water utilization by trees growing on thin karst soils in a 
seasonal tropical rainforest of Xishuangbanna, Southwest China  
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Liu et al.  
(2019) 

Forests  China The depth of water taken up by Walnut trees during different 
phenological stages in an irrigated arid hilly area in the Taihang 

Mountains  

Liu et al.  
(2011) 

European Journal 
of Soil Biology  

China Analyzing relationships among water uptake patterns, rootlet 
biomass distribution and soil water content profile in a subalpine 

shrubland using water isotopes  

Luo et al.  
(2019)  

Journal of 
Hydrology  

China Examination of the ecohydrological separation hypothesis in a humid 
subtropical area: Comparison of three methods  

Ma et al.  
(2016) 

Science of the 
Total 

Environment  

China Using stable isotopes to determine seasonal variations in water 
uptake of summer maize under different fertilization treatments  

Marttila et al. 
(2018) 

Ecohydrology  New Zealand Does transpiration from invasive stream side willows dominate low-
flow conditions? An investigation using hydrometric and isotopic 

methods in a headwater catchment  

McCole et al. 
(2007) 

Journal of 
Hydrology  

USA Seasonal water use patterns of Juniperus ashei on the Edwards 
Plateau, Texas, based on stable isotopes in water  

McCutcheon et 
al. (2017) 

Hydrological 
Processes  

USA An evaluation of the ecohydrological separation hypothesis in a 
semiarid catchment  

Moore et al. 
(2016) 

Ecohydrology  USA Flood water legacy as a persistent source for riparian vegetation 
during prolonged drought: an isotopic study of Arundo donax on the 

Rio Grande  

Muñoz-Villers  
et al. (2020) 

Hydrology and 
Earth System 

Sciences  

Mexico Coffee and shade trees show complementary use of soil water in a 
traditional agroforestry ecosystem  

Muñoz-Villers et 
al. (2018) 

Oecologia  Mexico Reduced dry season transpiration is coupled with shallow soil water 
use in tropical montane forest trees  

Nehemy et al. 
(2019) 

Hydrology and 
Earth System 

Sciences 
Discussions  

Switzerland How plant water status drives tree source water partitioning  

Newberry et al. 
(2017)  

Ecohydrology  Switzerland Cryogenic vacuum artifacts do not affect plant water-uptake studies 
using stable isotope analysis  

Nie et al.  
(2011) 

Plant and soil  China Seasonal water use patterns of woody species growing on the 
continuous dolostone outcrops and nearby thin soils in subtropical 

China  

Ohte et al.  
(2003) 

Ecological 
Applications  

China Water utilization of natural and planted trees in the semiarid desert 
of Inner Mongolia, China  

Poca et al.  
(2019) 

Plant and Soil  Argentina Isotope fractionation during root water uptake by Acacia caven is 
enhanced by arbuscular mycorrhizas  

Qian et al.  
(2017)  

Journal of 
Hydrology  

China Assessing the ecohydrological separation hypothesis and seasonal 
variations in water use by Ginkgo biloba L. in a subtropical riparian 

area  

Qian et al.  
(2017)  

Chemical 
speciation and 
bioavailability 

China Water sources of riparian plants during a rainy season in Taihu Lake 
Basin, China: a stable isotope study  

Ripullone et al. 
(2020) 

Tree physiology  Italy Variation in the access to deep soil water pools explains tree-to-tree 
differences in drought-triggered dieback of Mediterranean oaks  

Rong et al.  
(2011) 

Hydrological 
Processes  

China Isotopic analysis of water sources of mountainous plant uptake in a 
karst plateau of southwest China  
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Rose et al.  
(2003) 

Oecologia  USA Water source utilization by Pinus jeffreyi and Arctostaphylos patula 
on thin soils over bedrock  

Rossatto et al. 
(2012) 

Environmental 
and Experimental 

Botany  

Brasil Depth of water uptake in woody plants relates to groundwater level 
and vegetation structure along a topographic gradient in a 

neotropical savanna  

Schwendenmann
(2019) 

- Indonesia Data: H and O isotope signatures of soil and xylem samples, cacao 
agroforest, Indonesia.  

Schwendenmann 
and Jost (2019) 

- Panama Data: Water stable isotope signature of soil and xylem samples under 
different land use systems, Panama.  

Simonin et al. 
(2014) 

Ecohydrology  USA Vegetation induced changes in the stable isotope composition of 
near surface humidity  

Song et al. 
(2016) 

Environmental 
and Experimental 

Botany  

China Water use patterns of Pinus sylvestris var. mongolica trees of 
different ages in a semiarid sandy lands of Northeast China  

Song et al. 
(2014) 

Trees - Structure 
and Function  

China Water utilization of Pinus sylvestris var. mongolica in a sparse wood 
grassland in the semiarid sandy region of Northeast China  

Sun et al.  
(2019) 

Hydrology 
Research  

China Short-term changing patterns of stem water isotopes in shallow soils 
underlain by fractured bedrock  

Swaffer et al. 
(2014) 

Hydrological 
Processes  

Australia Water use strategies of two co-occurring tree species in a semi-arid 
karst environment  

Wang et al.  
(2019) 

Science of the 
Total 

Environment  

China Inter-comparison of stable isotope mixing models for determining 
plant water source partitioning  

Wei et al.  
(2013) 

Trees - Structure 
and Function  

China Stable isotopic observation of water use sources of Pinus sylvestris 
var. mongolica in Horqin Sandy Land, China  

West et al. 
(2007) 

Oecologia  USA Seasonal variations in moisture use in a piñon-juniper woodland  

Wu et al.  
(2016)  

Science of the 
Total 

Environment  

China Contrasting water use pattern of introduced and native plants in an 
alpine desert ecosystem, Tibet Plateau, China  

Wu et al.  
(2016)  

Environmental 
Earth Sciences  

China Differential soil moisture pulse uptake by coexisting plants in an 
alpine Achnatherum splendens grassland community  

Yang et al.  
(2015) 

Agricultural and 
Forest 

Meteorology  

China Seasonal variations in depth of water uptake for a subtropical 
coniferous plantation subjected to drought in an East Asian monsoon 

region  

Zhang et al.  
(2011) 

Field Crops 
Research  

China Coupling a two-tip linear mixing model with a δD-δ18O plot to 
determine water sources consumed by maize during different 

growth stages  

Zhao et al.  
(2020)  

Land Degradation 
and Development  

China Does damming streams alter the water use strategies of riparian 
trees? A case study in a subtropic climate  

Zhou et al.  
(2019)  

Journal of 
Hydrology  

China Variation in depth of water uptake for Pinus sylvestris var. mongolica 
along a precipitation gradient in sandy regions  

Zhu et al.  
(2016) 

PLoS ONE  China Seasonal Dynamics of Water Use Strategy of Two Salix Shrubs in 
Alpine Sandy Land, Tibetan Plateau  
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The data of the quantitative analysis presents 94 different geographic locations, as seen 

in Figure 4. Most sites belonged to warm climates (43 observations) followed by arid (29 

observations) and tropical and cold climates (11 observations each one) 

 

 

Figure 4. World map showing each sampling location. Colours depict climate classes. 

 

The resulting databases included more than 5.000 observations of dual isotopic 

measurements for plants and more than 7.000 for soil samples. The 77 selected studies 

included 196 different campaigns. We calculated one SWL for each campaign, and then 

we calculated a mean SW-excess and LC-excess for each species within each campaign. 

This rendered a database with 361 observations. More information about the different 

characteristics of the database are found in Table 2. 
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Table 2. Total number of observations (Obs.), studies, campaigns and species for each 
climatic class and plant type. Mean ± Sd values of the slope of the SWL line (unitless) 
and SW-excess (in ‰) are provided for each group. 

 Obs. Studies Campaigns Species  SWL slope  SW-excess  

 

TOTAL* 361 77 196 141 5.49±2.30 -1.79±7.88 

Climate   

Tropical 49 8 21 17 6.68±1.20 -3.27±3.47 

Warm 196 32 83 60 4.91±1.88 -1.88±8.15 

Arid 71 21 48 28 5.39±2.66 -1.01±9.56 

Cold 39 11 29 20 7.34±2.95 -0.41±7.938 

Plant group  

Angiosperm 205 - - 93 - -1.63±8.10 

Gymnosperm 69 - - 21 - 0.17±6.20 

Growth form  

Tree 209 - - 75 - -1.93±8.00 

Shrub 44 - - 17 - 1.16±6.46 

Non-woody 41 - - 23 - -2.06±6.45 

Leaf habit  

Evergreen 195 - - 66 - -0.57±7.29 

Deciduous 65 - - 32 - -3.47±9.29 

Semi- 

deciduous 

3 - - 3 - -9.67±0.96 

Leaf form  

Broadleaved 153 - - 67 - -1.44±8.67 

Narrow 

leaved 

81 - - 26 - -0.12±6.19 

 *Note that the sum of observations for climatic classes differs from the overall number of observations. because 

glasshouse studies have been excluded for the climatic classification. Also, the sum of observations from plant 

groups does not match the total number of observations because species identity was not always reported. For 

example, some studies reported the isotopic composition of plant water from a list of species without distinguishing 

the specific species; in the case where this list consisted of a mix of trees from different plant groups, we could use 

this study for assessing the effect of growth form (tree, shrub or non-woody), but not of plant group (angiosperms 

or gymnosperms). 
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2. WORLDWIDE PATTERNS OF THE SOIL WATER LINE 

The mean slope of the SWL across all studies was 5.49±2.30 (unitless), lower than that of the 

GMWL. According to the results of the null model, this value was significantly positive (Table 3). 

Following model selection based on the AIC, the best model for predicting the effects of climate 

on the slope of the SWL, included MAP (in mm/year) alone as fixed factor, whereas models 

including other climatic variables; such as climate class, MAT or the Lang aridity index; were 

assigned higher AIC values. MAP had a positive significant effect on the slope of the SWL (Table 

3, Figure 5). The slope of the SWL increased by 1 unit per each 500 mm of MAP ( Figure 5).  

 

Figure 5. Prediction of the slope of the soil water evaporation line (SWL slope, unitless) 
with mean annual precipitation (MAP). Each point is the slope of the SWL from a study 
campaign (see main text for definition of study campaign). Colours depict different 
climate classes. The  black line is the linear fit of the main effect of the linear mixed model 
and the blue dotted line represent the standard error (see Table 3). 
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Table 3. Results from the null and best models for the slope of the soil water line. The 
random factors of these linear mixed models were study and sampling season, nested 
within study 

PREDICTORS ESTIMATE STD ERROR DEGREE 

FREEDOM 
T-VALUE P-VALUE 

SWL SLOPE (NULL) 

INTERCEPT 5.545 0.2270 82.48 24.22 <0.001 

SWL (CLIMATE: PRECIPITATION, MAP IN MM/YEAR) 

INTERCEPT 4.449 

 

0.3840 

 

80.51 

 

11.69 <0.001 
 

MAP 0.002 

 

0.0003 

 

83.89 

 

3.58 <0.001 
 

*Significant (P < 0.05) P-values are indicated in bold font.  

3. WORLDWIDE PATTERNS OF THE PLANT-SOIL ISOTOPIC OFFSET 
The results of the null model for the SW-excess showed that the overall SW-excess was 

significantly negative after considering the random variability among studies and climatic season 

(Table 4). The mean overall SW-excess was -1.508 ± 0.705‰. When analysing the effects of 

climate, we found that the best model (lowest AIC value) included MAP, instead of other climatic 

variables such as climate class, MAT or the Lang aridity index. We found that MAP had a 

significant negative effect on the SW-excess (Table 4), meaning that the magnitude of the soil-

plant isotopic offset increased (became more negative) as MAP increased (Figure 6) 

Regarding the effects of plant functional traits and plant groups, we analysed these on separate 

models (Figure 6). Plant group (angiosperm vs. gymnosperm) only had a marginally significant 

effect (P = 0.076) on SW-excess (Table 4). We found that angiosperms had a marginally (see 

Table 4) larger (more negative) SW-excess than gymnosperms. Regarding the effect of leaf 

morphology (broadleaf vs. narrowleaf), we found that species with broad leaves (mostly 

angiosperms) had a larger (more negative) SW-excess than those with narrow leaves (mostly 

gymnosperms, see Table 4, Figure 7). These results were consistent with the effects observed 

for leaf habit. Deciduous species (mostly angiosperms with broad leaves) had a larger (more 

negative) SW-excess than evergreen species (mostly gymnosperms with narrow leaves, Table 4). 

Deciduous species had a larger (more negative) SW-excess than evergreen species (Figure 7). 

Finally, we did not find significant differences among growth forms (trees, shrubs and non-

woody species, Table 4, Figure 7).  
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Figure 6. Four boxplots of the SW-excess [‰] for different plant functional type and 
groups: A) plant group, B) leaf habit, C) leaf shape, D) growth form. Asterisks (*) and dots 
(.) indicate significant (P < 0.05) and marginally significant (P < 0.1) differences between 
groups according to the results of the linear mixed models (Table 4). 
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When analysing together the effects of climate and plant type on the SW-excess, we found that 

the best model was the one that included MAP and plant group (angiosperm and gymnosperm), 

but not their interaction. Mean annual precipitation (MAP) had a negative significant overall 

effect on the SW-excess (Table 4), whereas there were no significant differences between plant 

groups (Figure 8). 

 

Figure 7. Predicted SW-excess [‰] with mean annual precipitation (MAP, [mm/year]). 
Each point is the mean SW-excess of a species from a study campaign (see main text for 
definition of study campaign). Colours and shapes depict different climate classes and 
plant groups, respectively. The line is a linear fit of the main effect of the linear mixed 
and the dotted blue line is the standard error (see general model, Table 3). 
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Table 4. Results from the null and best models for the SW-excess [‰]. Predictor 
variables included climatic values, plant functional traits (or groups) or both. The 
random factors of these linear mixed models were study and sampling season, nested 
within study 

PREDICTORS ESTIMATE STD ERROR DEGREE 

FREEDOM 
T-VALUE P-VALUE 

 SW-EXCESS (NULL MODEL) 

INTERCEPT -1.508 0.705 64.07 -2.13 0.036 

SW-EXCESS (CLIMATE: PRECIPITATION) 

INTERCEPT 1.011 1.350 56.08 0.75 0.451 

MAP -0.002 0.001 52.40 -2.34 0.022 

SW-EXCESS (PLANT GROUP) 

INTERCEPT 
 (ANGIOSPERM AS 

REFERENCE) 

-1.545 1.094 55.60 -1.41 0.160 

GYMNOSPERM 2.378 1.334 2.06 1.74 0.071 

SW-EXCESS (LEAF SHAPE) 

INTERCEPT  
(BROADLEAF AS 

REFERENCE) 

-1.859 1.128 58.04 -1.64 0.104 

NARROW LEAF 2.865 1.339 195.51 2.14 0.037 

SW-EXCESS (GROWTH FORM) 

INTERCEPT  
(NON-WOODY AS 

REFERENCE) 

-0.846 1.610 134.07 -0.52 0.602 

SHRUB -0.343 1.96 203.22 -0.17 0.861 

TREE -0.823 1.69 174.76 -0.48 0.628 

SW-EXCESS (GENERAL MODEL: PRECIPITATION AND PLANT GROUP)  

INTERCEPT 
(ANGIOSPERM AS 

REFERENCE) 

2.260 
 

2.010 53.30 
 

1.11 
 

0.260 

GYMNOSPERM 1.680 1.380 160.50 1.21 0.230 

MAP -0.004 0.001 45.40 -2.50 0.029 

*Significant (P < 0.05) and marginally significant (P < 0.1) are indicated in bold and italic font, respectively. 
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Also, we studied the relation of the LC-excess and the SW-excess of each species and  campaign, 

and we found that 60% of the samples had both negative SW-excess and LC-excess, being the 

LC-excess negative in almost 90% of the negative SW-excess samples. Also 28% of the samples 

with positive SW-excess have negative LC-excess values (as seen in Figure 8).  

 

Figure 8. SW-excess plotted against LC-excess. Each point represents the mean of 
species sampled in a specific campaign. Colours indicate mean annual precipitation 
(MAP, in mm/year) according to the indicated colour scale.  
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5. DISCUSSION 

1. GLOBAL PATTERNS OF THE PLANT-SOIL ISOTOPIC OFFSET  

Our global analysis of the dual isotopic composition of plant and source waters revealed that 

there is a significant mismatch in δ2H between plant water and its source. We analysed plant 

and soil water isotopic composition for  a total of 196 sampling campaigns and 141 species, and 

for 60% of our observations, we found both negative values for the line conditioned excess (LC-

excess), which indicates a mismatch in isotopic composition between the plant water and 

precipitation and groundwater, and for the soil water excess (SW-excess), which indicates a 

mismatch in isotopic composition between soil and plant water. This result indicates that the 

mismatch between plant and soil water in isotopic composition cannot be solely attributed to 

the fact that plants would be accessing alternative water sources, such as precipitation and/or 

groundwater. Our results are in line with the growing number of studies that reported relevant 

source-plant water isotopic offsets (Barbeta et al., 2019; Poca et al., 2019; Barbeta, Gimeno, 

et al., 2020; Carrière et al., 2020a). Importantly, the fact that at the global scale the isotopic 

composition of plant water was significantly more depleted in the dual-isotope space may 

challenge the general assumption that root water uptake and plant water transport are non-

fractionating processes (Washburn and Smith, 1934; Zimmermann et al., 1967; Dawson and 

Simonin, 2011). Even though our broad-scale analysis does not allow us to unravel the 

mechanisms underlying these source-plant water isotopic offsets, they still provide some 

suggestions on the hypotheses that would be worth exploring to explain such offsets (Lin and 

Sternberg, 1993; Ellsworth and Williams, 2007; Zhao et al., 2016; Poca et al., 2019; Barbeta, 

Burlett, et al., 2020; Barbeta, Gimeno, et al., 2020). We argue so because our dataset indicates 

that soil-plant water isotopic offsets vary with climate and depending on the plant functional 

type or certain plant traits. Still, regardless of the specific underlying mechanisms, our results 

show that these mismatches between source and plant water isotopic composition may be more 

common than previously expected.  

 

The SW-excess differed with plant traits (Figure 6). We found that the species with broad and 

deciduous leaves and angiosperms depicted larger SW-excess values than species with narrow 

and evergreen leaves and gymnosperms. These results suggest that physiological and 

anatomical traits are involved in the mechanisms driving source-plant water isotopic offsets. 

Angiosperms and gymnosperms have different wood anatomy and associated density, which for 
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instance, result in a different water storage capacity (Köcher et al., 2013; Matheny et al., 2015; 

Oliva-Carrasco et al., 2015). Our results partially agree with previous findings such as those of 

Zhao et al. (2016) who found significant differences in the δ2H of sap and the bulk stem water 

in poplar and hypothesised that stem water in non-conducting tissues (i.e. outside  xylem 

vessels) was depleted in δ2H relative to sap water and suggested that this was a result of 

aquaporin-facilitated water transport in woody living cells. Similarly, water transport through 

aquaporins has also been hypothesized to underlay previously observed source-plant isotopic 

water offsets in plants forming mycorrhizal associations (Poca et al., 2019). Regardless of the 

mechanism, it seems that water in non-conducting xylem tissues would be isotopically-depleted 

compared to sap and source water (Barbeta, Burlett, et al., 2020; Barbeta, Gimeno, et al., 2020). 

Our finding that the SW-excess was different among plant groups; with contrasting water 

storage capacity, and parenchyma fraction (living cells); supports this explanation. 

The sign and magnitude of the SW-excess was not only associated with biological traits, but also 

with the climate of the field sites included in the analysis. First, we found that mean annual 

precipitation (MAP) was positively correlated with the slope of the soil water evaporation line 

(SWL). As expected, in wetter sites, the slope of the SWL was steeper and closer to that of the 

global meteoric water line (GMWL) (Figure 5). In wet climates, soil evaporative losses are 

compensated by frequent rain events that refill soil water storage. As a consequence, the 

evaporative enrichment of the surface soil produced by the kinetic fractionation is frequently 

compensated by the water inputs of rain events that shift the soil water line closer to the local 

meteoric water line (LMWL) (Benettin et al., 2018). In the case of the SW-excess, MAP had a 

significantly negative effect on both the climate-only and the combined (climate and plant group 

or plant trait) models (figure 7). The SW-excess was more negative as MAP increased, which 

implies that plant water was more isotopically-depleted in δ2H compared to its source (soil 

water), in wetter places. One possible explanations is that in wetter climates, woody plants store 

larger amounts of water in their non-conducting woody tissues (Hartzell et al., 2017). This 

explanation is concurrent with previous observations, where sap water was found to be 

depleted in δ2H relative to the source of root water uptake. This would cause apparent isotopic 

fractionation as plant samples would fall below their corresponding soil water line (SW-excess 

significantly negative), when soil water was actually the most likely source. However, plants may 

access alternative water sources, which could be more depleted in heavy isotopes than the soil 

water. For example, plants that accessed groundwater, stream water or rainfall; with a lighter 

isotopic composition; may also plot below the SWL and hence depict a negative SW-excess. In 

such cases, we would then expect a LC-excess (relative to the LMWL, Eq. 4) close to cero, as 
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these mobile water pools would fall on the LMWL (Barbeta et al., 2018). Nonetheless, when 

combining the analyses of the SW-excess and the LC-excess we found that almost 90% of our 

negative SW-excess cases exhibited also a negative LC-excess. Simultaneous negative LC-excess 

and SW-excess cannot be explained by the use of mobile waters with an isotopic composition 

similar to that of the waters falling within the LMWL. Other nonexclusive processes, such as 

heterogeneities in within the soil matrix in water isotopic composition (Orlowski et al., 2013) or 

root discrimination (Lin and Sternberg, 1993; Ellsworth and Williams, 2007; Poca et al., 2019), 

may also be simultaneously driving these negative source-plant water isotopic offsets, but 

previous empirical evidence suggests that heterogeneities in isotopic composition among pools 

within the plant tissue is a more likely underlying cause. 

2. LIMITATIONS OF THE STUDY 

Our results challenge the general assumption that plant water isotopic composition should 

match that of its source. Instead, we show that plant water appears to be consistently more 

depleted in δ2H with respect to its source, whether it is soil water or meteoric waters. 

Nonetheless, we cannot provide a detailed mechanistic explanation for the underlying causes of 

these patterns. Yet, in this discussion, we provide some plausible explanations for the observed 

negative SW-excess, supported by the observed LC-excess. When the calculated LC-excess is 

close to cero, but the SW-excess is negative, this would mean that the plant is accessing another 

source of water (precipitation or groundwater) different to the soil and more depleted in 

isotopic composition. Still, when both the LC-excess and SW-excess are negative and not close 

to cero, then the plant is not reflecting faithfully the water source accessed. Previous studies 

(Zhao et al., 2016; Barbeta, Burlett, et al., 2020) explained observed source-plant isotopic offsets 

with the storage water hypothesis, meaning that the measured isotopic depletion on plants is 

due to the sampling of δ2H depleted storage water together with the sap water (which should 

resemble its source composition). Our study cannot confirm this hypothesis, but our results 

suggest do not discard it as our different patterns of source-plant isotopic offsets for different 

plant groups differing in certain traits could be explained by this hypothesis. Still, even if our 

results did not disagree with the hypothesis of the plant-soil isotopic offset being caused by 

storage waters, it these are not sufficient to fully infer that depleted stem storage water would 

be fully responsible for these observed offsets, as there are numerous functional traits related 

to anatomy that affect the water storage capacity within groups that were not included in our 

analyses, e.g wood density or vessel lumen area (Zanne et al., 2010). It is necessary to explore 

other possibilities beyond the stem water storage hypothesis. To do so, additional plant traits 
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should be incorporated to our analyses, as these could be simultaneously driving the observed 

source-plant isotopic offsets  

Another limitation of our study is the unbalanced number of observations across plant groups 

and geographical regions in our database. First, our database was largely dominated by 

observations from angiosperms (205 data in contrast to 69 of gymnosperm, see Table 2 for more 

information about the data distribution), evergreen species, trees and broadleaved species. 

Second, some regions of the world are overrepresented in our database, while we lack 

observations in many regions of the word. Most of our studies collected data from sampling 

sites between 0o and 50oN latitudes. The USA and China are the countries that rendered more 

studies and hence the distribution of the studies is biased towards shrub and tree communities 

in warm and arid (and semi-arid) regions. As a result, in our database the distribution of climate 

classes is decompensated, with temperate ecosystems (warm) being the most represented. 

3. IMPLICATIONS FOR RESOURCE MANAGEMENT AND ECOSYSTEM RESTORATION 

Our results provide evidence that the assumption that plant water resembles isotopically its 

belowground source needs to be reconsidered. In many cases, this may not prevent the 

identification of plant water sources using the isotopic composition of water. However, it may 

lead to biases in the estimation of plant water sources in the not so rare cases where the SW-

excess is of notable magnitude. As such, the existence of this significant soil-plant water isotopic 

does not deny the validity of plant water source studies using the isotopic composition of water. 

Rather, it is a reminder that there is a need to fully understand the isotopic processes behind 

the observed source-plant offsets to minimize the uncertainty associate to the use of stable 

isotope techniques in ecohydrology. 

Our results call for caution when inferring water use from analyses of water isotopic 

composition, but they should not discourage researchers, resource managers and restoration 

practitioners to apply this methodology to assess the local water fluxes and groundwater 

recharge ratios, learn about the water use patterns of the vegetation or test water efficiency of 

crops and plantations, to develop better plans of water use towards sustainability. Water used 

by the vegetation, inferred from the analyses of water stable isotopic composition can provide 

very valuable information to enhance the survival and resilience of ecosystem restoration 

plantations and the effectiveness and success of revegetation actions. Nevertheless, it is 

important to be aware of pitfalls when assessing water use patterns by the vegetation, when 

source-plant isotopic offsets would be non-negligible. This would be particularly relevant in 

broadleaved deciduous forest, and in very humid and wet climates. We suggest that measuring 
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both δ2H and δ18O across various layers of the soil profile within a given date and occasional 

sampling of sap and storage water separately (e.g. as done on Magh et al., 2020) or Barbeta, 

Burlett, et al., 2020) could be a good option to assess the potential effect of source-plant isotopic 

offsets. Alternatively, a reliable modelling frame derived from our study could serve to  estimate 

the expected magnitude of the source-plant offset from climatic water-availability and 

incorporate it into the calculations to  infer the water sources, as sampling only sap water may 

be inaccessible for most projects. Nevertheless, further field research is needed to clarify 

whether the suggested mechanistic explanations actually hold.  

 

6. CONCLUSIONS  

 The slope of the SWL is globally controlled by mean annual precipitation. The wetter the 

climate of a given location, the closer the soil water evaporation line is to the local 

meteoric water line. 

 We found a significant and negative source-plant water offset in isotopic composition: 

plant water had a more depleted isotopic composition in δ2H than its sources. This result 

challenges the long-standing assumption that plant water isotopic composition 

faithfully reflects that of its sources.  

 Access to alternative water sources of meteoric origin could not explain the observed 

soil-plant isotopic offsets 

 Mean annual precipitation was the best predictor of the observed source-plant water 

isotopic offsets compared to mean annual temperature or their effect combined  

 

 Soil-plant water isotopic offsets vary with plant traits, which hints to the biological role 

in driving apparent isotopic fractionation processes along the soil-plant-atmosphere 

hydraulic continuum.  
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ANNEX 1: OTHER SOIL-PLANT-ATMOSPHERE ISOTOPIC INTERACTIONS 

For this study, the plant-soil-atmosphere interaction we focus more on are the root 

water uptake and evaporation (and also precipitation). But we wanted to provide basic 

information of other interactions to help the reader to understand the whole isotopic 

cycle (Figure A.1). 

 

Figure A.1. Scheme of the isotopic interactions between soil, plants and atmosphere on 
tree species. Based on Sprenger (2016) 

In the plant-atmosphere interaction, water on the leaves (and photosynthetic tissues) 

remain enriched in δ2H and δ18O because lighter isotopologues change phase 

preferentially during transpiration, while vapor water gets depleted (Dubbert and 

Werner, 2019). The isotopic composition of water vapor transpired from plant is the 

result of the transpiration process buts depends on the plants source isotopic 
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composition (assuming that there is no fractionation during root water uptake and sap 

flow). 

Another plant-atmosphere interaction involucrate vegetations aerial architecture, 

(canopy and trunk for trees) which participate in the isotopic fractionation process as 

the throughfall is an input of isotopic enriched waters, because the thin layer of water 

accumulated in the vegetation’s surface after a precipitation event is subject to 

evaporation enrichment (Sprenger et al., 2016).  

 At the soil-plant level, the dynamic processes are not still well defined (Dubbert and 

Werner, 2019). The root interface interacts with soil in the root water uptake, but also 

participates in the hydraulic redistribution process: a passive transport of soil water by 

roots in a hydraulic gradient (from wet to dry). This process doesn't involve fractionation 

but can alter the isotopic signature of the depth profile (Sprenger et al., 2016).   

All these processes has to be taken into account to understand the fluxes of isotopes 

through the soil-plant-atmosphere continuum. 

 

 


