

Completar un Espacio Métrico

Un procedimiento, digamos estandar, permite "completar" un espacio métrico cualquiera. En este apéndice vamos a desarrollar dicho procedimiento.

Sea (X, d) un espacio métrico. En el conjunto \mathcal{C} de todas las sucesiones de Cauchy en X, definimos la siguiente relación:

$$(x_n)_{n=1}^{\infty} \sim (y_n)_{n=1}^{\infty}$$
 si $\lim_{n} d(x_n, y_n) = 0$.

Lema A.0.5. La relación "~" es una relación de equivalencia.

DEMOSTRACIÓN. -

La relación es, claramente, reflexiva; es simétrica como consecuencia de la simetría de la distancia; y se comprueba, fácilmente, que es transitiva aplicando la desigualdad triangular. En efecto, si $(x_n)_{n=1}^\infty \sim (y_n)_{n=1}^\infty$ e $(y_n)_{n=1}^\infty \sim (z_n)_{n=1}^\infty$, se tiene $\lim_n d(x_n,y_n)=\lim_n d(y_n,z_n)=0$; aplicando la desigualdad triangular

$$d(x_n, z_n) \le d(x_n, y_n) + d(y_n, z_n)$$
, para todo $n \in \mathbb{N}$.

Como los términos que forman las sucesiones de las distancias son positivos, se tiene $\lim_n d(x_n, z_n) = 0$, lo que implica que $(x_n)_{n=1}^{\infty} \sim (z_n)_{n=1}^{\infty}$ y, en consecuencia, la relación es transitiva.

Consideremos el conjunto cociente $\hat{X} = \mathcal{C}/\!\!\sim$, cuyos elementos denotaremos por $[x_n]$, indicando la clase de equivalencia de la sucesión $(x_n)_{n=1}^{\infty}$; y definamos la aplicación $\rho: \hat{X} \times \hat{X} \longrightarrow \mathbb{R}$ mediante

$$\rho([x_n], [y_n]) = \lim_n d(x_n, y_n).$$

Lema A.0.6. La aplicación ρ está bien definida y es una distancia sobre \hat{X} .

DEMOSTRACIÓN. -

En primer lugar, señalemos que este límite siempre existe, puesto que dado $\varepsilon > 0$, como $(x_n)_{n=1}^{\infty}$ e $(y_n)_{n=1}^{\infty}$ son de Cauchy, existe n_0 (podemos tomar el mismo para las dos sucesiones) tal que si $m, n \geq n_0$ se tiene

$$d(x_n, x_m) \le \frac{\varepsilon}{2}$$
 y $d(y_n, y_m) \le \frac{\varepsilon}{2}$.

Por tanto, si tomamos $n, m \ge n_0$ y aplicamos una propiedad conocida de la distancia, se tiene

$$|d(x_n, y_n) - d(x_m, y_m)| \le d(x_n, x_m) + d(y_n, y_m) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

lo que nos permite concluir que $(d(x_n, y_n))_{n=1}^{\infty}$ es una sucesión de Cauchy en \mathbb{R} . La completitud de \mathbb{R} nos garantiza que dicha sucesión es convergente.

Para terminar de comprobar que la definición es consistente, queda demostrar que no depende de los representantes elegidos. Supongamos que $[x_n] = [x'_n]$, $[y_n] = [y'_n]$ y veamos que $\lim_n d(x_n, y_n) = \lim_n d(x'_n, y'_n)$. Podemos poner

$$d(x_n, y_n) \le d(x_n, x'_n) + d(x'_n, y'_n) + d(y'_n, y_n),$$

y como $\lim_n d(x_n, x'_n) = \lim_n d(y_n, y'_n) = 0$ tenemos que

$$\lim_{n} d(x_n, y_n) \le \lim_{n} d(x'_n, y'_n).$$

De la misma forma

$$d(x'_n, y'_n) \le d(x'_n, x_n) + d(x_n, y_n) + d(y_n, y'_n),$$

lo nos lleva a que

$$\lim_{n} d(x'_n, y'_n) \le \lim_{n} d(x_n, y_n).$$

De las dos desigualdades podemos concluir que

$$\lim_{n} d(x'_n, y'_n) = \lim_{n} d(x_n, y_n).$$

Por último, tal y como se ha definido ρ , es claro que ρ es una función no negativa y simétrica: $\rho([x_n],[y_n]) \geq 0$ y $\rho([x_n],[y_n]) = \rho([y_n],[x_n])$. La desigualdad triangular es una mera comprobación a partir de la desigualdad triangular de la distancia d.

Proposición A.0.7. (X,d) es isométrico a un subespacio Y de (\hat{X},ρ) .

DEMOSTRACIÓN. - Tomemos Y como el subconjunto de \hat{X} formado por los elementos que tienen por representante una sucesión constante y definimos la aplicación $f: X \longrightarrow Y$ como f(x) = [x], donde [x] denota la clase de equivalencia que tiene por representante la sucesión constante cuyos términos son iguales a x. f es claramente una biyección y la siguiente igualdad

$$\rho([x], [y]) = \lim_{n} d(x, y) = d(x, y)$$

implica que también es una isometría.

Observación A.0.8. A partir de aquí podemos identificar X con Y.

Proposición A.0.9. Se verifican:

- (a) Toda sucesión $(x_n)_{n=1}^{\infty}$ de Cauchy en X es convergente en \hat{X} y su límite es, precisamente, $x = [x_n]$, es decir, la clase de equivalencia determinada por $(x_n)_{n=1}^{\infty}$.
- (b) X es denso en \hat{X} .

DEMOSTRACIÓN. -

(a) Podemos identificar la sucesión $(x_n)_{n=1}^{\infty}$ con la sucesión $(\hat{x}_n)_{n=1}^{\infty}$ en \hat{X} , donde cada \hat{x}_n es la sucesión constante cuyos términos son todos iguales a x_n . Si probamos que para todo $\varepsilon > 0$, existe n_0 tal que si $n > n_0$ entonces $\rho(\hat{x}_n, x) < \varepsilon$, habremos probado que la sucesión $(\hat{x}_n)_{n=1}^{\infty}$ converge a x en \hat{X} y, mediante la identificación de la Observación A.0.8 anterior, habremos probado (a).

En efecto, como $(x_n)_{n=1}^\infty$ es de Cauchy en X, existe n_0 tal que si $m,n\geq n_0$ entonces $d(x_n,x_m)<\varepsilon/2$. Tengamos en cuenta que, tal y como se ha definido la relación, la clase de equivalencia de $(x_n)_{n=1}^\infty$ es la misma que la sucesión $(x_n)_{n=m}^\infty$ que resulta de suprimir los m-1 primeros términos. Por tanto, fijado $n\geq n_0$, tenemos

$$\rho(\hat{x}_n,x) = \lim_m d(x_n,x_m) \leq \frac{\varepsilon}{2} < \varepsilon, \qquad \text{para todo} \quad n \geq n_0,$$

luego $(\hat{x}_n)_{n=1}^{\infty}$ converge a x.

(b) Según el apartado (a) anterior, para todo $x = [x_n] \in \hat{X}$, la sucesión $(x_n)_{n=1}^{\infty}$ es de Cauchy en X y converge a x. Entonces x es un punto adherente a X y, por tanto, X es denso $(\overline{X} = \hat{X})$.

Teorema A.0.10. (\hat{X}, ρ) es un espacio métrico completo.

DEMOSTRACIÓN. -

Tenemos que demostrar que toda sucesión de Cauchy en \hat{X} es convergente en \hat{X} . Sea $(\hat{x}_n)_{n=1}^{\infty}$ una sucesión de Cauchy en \hat{X} , de modo que para todo $\varepsilon > 0$ existe

 n_0 tal que si $n,m \ge n_0$, se tiene que $\rho(\hat{x}_n,\hat{x}_m) < \varepsilon/3$. Observemos que podemos tomar $n_0 > 3/\varepsilon$ para que se cumpla

$$\frac{1}{n} < \frac{\varepsilon}{3}$$
 y $\frac{1}{m} < \frac{\varepsilon}{3}$.

Como X es denso en \hat{X} , para cada \hat{x}_n existe un elemento $x_n \in X$ tal que $\rho(\hat{x}_n,x_n)<\frac{1}{n}$ (identificando x_n , una vez más, con la clase de equivalencia determinada por la sucesión constante cuyos términos son todos iguales a x_n). De este modo obtenemos una sucesión $(x_n)_{n=1}^\infty$ en X que es de Cauchy; en efecto, si $n,m\geq n_0$ tenemos

$$d(x_n, x_m) = \rho(x_n, x_m) \le \rho(x_n, \hat{x}_n) + \rho(\hat{x}_n, \hat{x}_m) + \rho(\hat{x}_m, x_m) \le \frac{1}{n} + \frac{\varepsilon}{3} + \frac{1}{m} < \varepsilon.$$

Entonces $(x_n)_{n=1}^{\infty}$ converge a un punto $x \in \hat{X}$ que es precisamente $x = [x_n]$. Veamos que $\lim_n \hat{x}_n = x$, con lo que habrá terminado la demostración. Como $(x_n)_{n=1}^{\infty}$ converge a x, existe m_0 , que podemos tomar mayor o igual que n_0 , tal que si $n \ge m_0$ se tiene $\rho(x_n, x) < \varepsilon/3$. Entonces tomando $n, m \ge m_0$ tendremos

$$\rho(\hat{x}_n, x) \le \rho(\hat{x}_n, x_n) + \rho(x_n, x_m) + \rho(x_m, x) < \frac{1}{n} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon,$$

con lo que $\lim_n \hat{x}_n = x$, concluyendo la demostración.

Teorema A.0.11. Sea (X,d) un espacio métrico y (\hat{X},ρ) el completado de X. Entonces cualquier otro espacio (Y,δ) completado de X es isométrico a \hat{X} .

DEMOSTRACIÓN. -

Podemos contemplar X como un subespacio de Y, $\overline{X} = Y$, luego para todo $y \in Y$ existe una sucesión $(x_n)_{n=1}^{\infty} \subset X$ convergente a y que es, por tanto, de Cauchy. Definimos entonces la aplicación $f: Y \longrightarrow \hat{X}$ como $f(y) = [x_n]$, la clase de equivalencia determinada por la sucesión $(x_n)_{n=1}^{\infty}$. La aplicación f está bien definida pues si $(z_n)_{n=1}^{\infty}$ es otra sucesión en X que converge a y, se tiene $\lim_n d(x_n, z_n) = 0$ por lo que $[x_n] = [z_n]$.

Por otra parte, f es sobreyectiva pues si $[z_n] \in \hat{X}$, entonces $(z_n)_{n=1}^{\infty}$ es una sucesión de Cauchy en $X \subset Y$ que, por la completitud de Y, converge a algún punto $z \in Y$, de modo que $f(z) = [z_n]$. Por último, veamos que f es una isometría. Sean $y, z \in Y$, que serán límites de dos sucesiones en X, $(y_n)_{n=1}^{\infty}$ y $(z_n)_{n=1}^{\infty}$ respectivamente; entonces

$$\rho(f(y), f(z)) = \rho([y_n], [z_n]) = \lim_{n} d(x_n, y_n) = \lim_{n} \delta(y_n, z_n)$$
$$= \delta(\lim_{n} y_n, \lim_{n} z_n) = \delta(y, z),$$

con lo que concluye la prueba.