Capítulo 5

Ejercicios y Problemas

P.5.1 Demuestre que, si $(x_n)_{n=1}^{\infty}$ e $(y_n)_{n=1}^{\infty}$ son dos sucesiones de Cauchy en \mathbb{R} (topología usual), entonces las sucesiones $(x_n + y_n)_{n=1}^{\infty}$ y $(x_n y_n)_{n=1}^{\infty}$ también son de Cauchy.

Indicación: En el caso de la suma puede utilizar la desigualdad triangular y que ambas sucesiones son de Cauchy; en el del producto, además, que toda sucesión de Cauchy es acotada.

Resolución: La suma: como $(x_n)_{n=1}^\infty$ e $(y_n)_{n=1}^\infty$ son de Cauchy, dado $\varepsilon>0$ existe n_0 tal que si $n,m>n_0$, entonces $|x_m-x_n|<\varepsilon/2$ y $|y_m-y_n|<\varepsilon/2$. Entonces se cumple

$$|(x_m + y_m) - (x_n + y_n)| \le |x_m - x_n| + |y_m - y_n| < \varepsilon/2 + \varepsilon/2 = \varepsilon;$$

por tanto $(x_n + y_n)_n$ es de Cauchy.

El producto: Como $(x_n)_{n=1}^\infty$ y $(y_n)_{n=1}^\infty$ son de Cauchy, también son acotadas, lo que significa que, para todo $n\in\mathbb{N}, |x_n|\leq M$ y $|y_n|\leq N$ para ciertas constantes positivas M y N. Por otra parte, al ser ambas de Cauchy, dado $\varepsilon>0$ existe n_0 tal que si $n,m>n_0$, entonces $|x_m-x_n|<\varepsilon/N$ y $|y_m-y_n|<\varepsilon/M$; de modo que

$$|x_{m}y_{m}-x_{n}y_{n}| = |x_{m}y_{m}-x_{m}y_{n}+x_{m}y_{n}-x_{n}y_{n}| = |x_{m}(y_{m}-y_{n})+y_{n}(x_{m}-x_{n})|$$

$$\leq |x_{m}(y_{m}-y_{n})| + |y_{n}(x_{m}-x_{n})| = |x_{m}||y_{m}-y_{n}| + |y_{n}||x_{m}-x_{n}|$$

$$< M(\varepsilon/M) + N(\varepsilon/N) = \varepsilon;$$

de donde se deduce que el producto es de Cauchy.

P.5.2 Sea (X, d) un espacio métrico y $(x_n)_{n=1}^{\infty} \subset X$ una sucesión de Cauchy que posee un punto de acumulación x; entonces la sucesión converge a x.

Indicación: Puede usar la Proposición 5.1.5.

Resolución: Si $(x_n)_{n=1}^{\infty}$ tiene un punto de acumulación x, entonces en $(x_n)_{n=1}^{\infty}$ hay una sucesión, es decir, una subsucesión convergente a x, y según la Proposición 5.1.5, $(x_n)_{n=1}^{\infty}$ converge a x.

P.5.3 Sean d y d' dos distancias definidas sobre un mismo conjunto X. Demuestre que si d y d' son equivalentes, entonces toda sucesión de Cauchy en (X, d) es también de Cauchy en (X, d') y viceversa.

Indicación: Puede usar la Proposición 1.4.2.

Resolución: Si $(x_n)_{n=1}^{\infty}$ es de Cauchy en (X,d), entonces, dado $\varepsilon > 0$, existe n_0 tal que si $n > n_0$, entonces $d(x_n, x_{n_0+1}) < \varepsilon$, es decir, $x_n \in$

 $B_d(x_{n_0+1}, \varepsilon)$. Veamos que es de Cauchy en (X, d'), sea r>0, al ser ambas distancias equivalentes, existe $\varepsilon>0$ tal que $B_d(x_{bn_0+1}, \varepsilon)\subset B_{d'}(x_{n_0+1}, r)$. Sólo hay que combinar esto con que $(x_n)_{n=1}^\infty$ es de Cauchy en (X, d) tal y como lo hemos puesto antes.

P.5.4 Demuestre que, en \mathbb{R} con la distancia usual, una sucesión es de Cauchy si, y sólo si, es convergente.

Indicación: En la implicación directa, puede usar el Problema **P.4.24** y la Proposición 5.1.5.

P.5.5 Demuestre que toda sucesión de Cauchy en un espacio métrico es totalmente acotada.

Sea $\varepsilon>0$, entonces existe n_0 tal que si $n>n_0$ se tiene que $x_n\in B(x_{n_0+1},\varepsilon)$, por tanto $(x_n)_{n=1}^\infty\subset B(x_1,\varepsilon)\cup\cdots\cup B(x_{n_0},\varepsilon)\cup B(x_{n_0+1},\varepsilon)$.

P.5.6 El teorema de encaje de Cantor necesita de todas las hipótesis:

- (a) El espacio métrico ha de ser completo. El espacio (0,1) con la distancia inducida por la usual de $\mathbb R$ no es un espacio completo y además $\{(0,1/n]\}_{n=2}^\infty$ es una familia de cerrados que verifican las hipótesis del teorema cuya intersección es vacía.
- (b) Los conjuntos han de ser cerrados. Demuestre que $\{(0,\frac{1}{n})\}_{n=1}^{\infty}$ es una familia de conjuntos "no cerrados" en \mathbb{R} (que es completo) que verifica el resto de las hipótesis del teorema y, sin embargo, su intersección es vacía.
- (c) La sucesión de los diámetros ha de ser convergente a 0. $\{[n,\infty)\}_{n=1}^{\infty}$ es una familia decreciente de conjuntos cerrados en \mathbb{R} cuya sucesión de diámetros no converge a 0 y tiene intersección vacía.
- **P.5.7** (*Teorema del punto fijo de Banach*) Si (X,d) es un espacio métrico, una aplicación $f:X\to X$ se dice que es una *contracción* si existe un número $\alpha<1$ tal que

$$d(f(x), f(y)) \le \alpha d(x, y),$$

para todos $x, y \in X$. Demuestre que si f es una contracción de un espacio métrico completo, entonces existe un único punto $x \in X$ tal que f(x) = x.

Consideremos un punto cualquiera $x_0 \in X$ y llamemos $x_1 = f(x_0)$, $x_2 = f(x_1) = f(f(x_0)) = f^2(x_0)$, así sucesivamente $x_n = f(x_{n-1}) = f^n(x_0)$, etc. hemos construido una sucesión $(x_n)_{n=1}^{\infty}$ en X

 $(x_n)_{n=1}^{\infty}$ es de Cauchy. En efecto, si m > n

$$d(f^{m+n}(x_0), f^n(x_0)) \le \alpha d(f^{m+n-1}(x_0), f^{n-1}(x_0))$$

$$\le \alpha^2 d(f^{m+n-2}(x_0), f^{n-2}(x_0)) \le \dots \le \alpha^n d(f^m(x_0), x_0))(*)$$

si aplicamos la desigualdad triangular

$$(*) \le \alpha^m [d(f^n(x_0), f^{n-1}(x_0)) + \dots + d(f(x_0), x_0)]$$

Por otra parte, observemos que, para cada $k \in \mathbb{N}$

$$d(f^{k+1}(x_0), f^k(x_0) \le \alpha^k d(f(x_0), x_0);$$

de modo que haciendo esto en la desigualdad anterior tenemos

$$d(f^{m+n}(x_0), f^n(x_0))$$

$$\leq \alpha^m [\alpha^{n-1} d(f(x_0), x_0) + \alpha^{n-2} d(f(x_0), x_0) + \dots + d(f(x_0), x_0)]$$

$$= \alpha^m d(f(x_0), x_0)(\alpha^{n-1} + \dots + \alpha + 1) \leq \alpha^m d(f(x_0), x_0)(1/(1 - \alpha), \alpha + 1)$$

puesto que se trata de una progresión geométrica de razón menor que 1.

En definitiva $d(x_{m+n},x_n) \leq \alpha^m/(1-\alpha)d(x_1,x_0)$. De donde se deduce que la sucesión $(x_n)_{n=1}^\infty$ es una sucesión de Cauchy y por tanto convergente a un punto $x \in X$. Veamos, para finalizar que f(x) = x. Como f es continua por se de Lipschitz, tenemos que $f(x_n) \longrightarrow f(x)$, es decir $x_{n+1} \in f(x)$, luego f(x) = x.

- **P.5.8** Sea $(x_n)_{n=1}^{\infty}$ una sucesión de Cauchy en un espacio métrico (X,d) y sea $(y_n)_{n=1}^{\infty}$ una sucesión tal que $d(x_n,y_n)<1/n$ para todo $n\in\mathbb{N}$. Demuestre:
 - (a) $(y_n)_{n=1}^{\infty}$ es también una sucesión de Cauchy.
 - (b) $(y_n)_{n=1}^{\infty}$ converge a un punto $y \in X$ si, y sólo si, $(x_n)_{n=1}^{\infty}$ converge al punto y.
 - (a) $d(y_m,y_n) \leq d(y_m,x_m) + d(x_m,x_n) + d(x_n,y_n)$ y sólo queda aplica que $(x_n)_{n=1}^\infty$ es de Cauchy y que $d(x_n,y_n) < 1/n$. Para (b), " \Rightarrow " $d(x_n,y) \leq d(x_n,y_n) + d(y_n,y)$ y se aplican las hipótesis.
- **P.5.9** Sean (X, d) e (Y, d') dos espacios métricos; considere el espacio $X \times Y$ con cualquiera de las distancias del Ejemplo **Ej.1.9.** $(d_{\infty}$ sin ir más lejos). Demuestre:
 - (a) Una sucesión $(x_n, y_n)_{n=1}^{\infty}$ es de Cauchy en $X \times Y$ si, y sólo si, las sucesiones $(x_n)_{n=1}^{\infty}$ y $(y_n)_{n=1}^{\infty}$ son de Cauchy en X e Y respectivamente.
 - (b) X e Y son completos si, y sólo si, $X \times Y$ es completo.
- **P.5.10** Sea (X, d) un espacio métrico en el que toda bola cerrada es compacta. Demuestre que X es completo y que los subconjuntos compactos de X son los cerrados y acotados.

Sea $(x_n)_{n=1}^\infty$ una sucesión de Cauchy en X, entonces dado $\varepsilon>0$ existe n_0 tal que $n>n_0$, entonces $x_n\in \overline{B}(x_{n_0+1},\varepsilon)$ y esta bola es compacta, luego completa, lo que significa que la sucesión converge y, por tanto, que X es completo.

Si $A\subset X$ es cerrado y acotado, está contenido en una bola cerrada que es compacta. Como A es cerrado contenido en un compacto, también es compacto.