

Taller no 2

[1] Sea F un subconjunto cerrado en un espacio métrico (X, d) y $a \notin F$ un punto. Demuestre que existen dos abiertos disjuntos A y B tales que $F \subset B$ y $a \in A$. Muestre con un ejemplo que si F no es cerrado la afirmación anterior puede no ser cierta.

Solución: Si $F=\varnothing$ no hay nada que probar. Sea pues F no vacío y cerrado y $a\notin F$. Entonces, al ser F cerrado tenemos que d(a,F)=r>0 y además, lo que significa que d(a,x)>r para cada $x\in F$ consideremos los conjuntos abiertos A=B(a,r/3) y $B=\cup_{x\in F}B(x,r/3)$; observemos que $F\subset B$ y veamos que $A\cap B=\varnothing$. En primer lugar si $z\in B$, entonces $z\in B(x,r/3)$ para algún $x\in F$ y como $d(a,x)\leq d(a,z)+d(z,x)$ tenemos que

$$d(a,z) \ge d(a,x) - d(z,x) > r - \frac{r}{3} = 2\frac{r}{3}$$

por tanto $z \notin A$.

Si F no es cerrado, por ejemplo F=(1,2) y a=1, entonces $1\in\overline{(1,2)}=[1,2]$ y no se cumple la propiedad anterior.

- [2] En \mathbb{R}^2 con la distancia usual, sean los conjuntos $A_n = \{(x,y) : x^2 + y^2 = 1/n^2\}$ para cada $n \in \mathbb{N}$. Sea $A = \bigcup_{n=1}^{\infty} A_n$.
 - a) Encuentre, con las justificaciones adecuadas \overline{A} , $\overset{\circ}{A}$ y Fr A.

Solución: $A \subset \overline{A}$. $0 \in \overline{A}$ pues para todo r > 0, $B(0,r) \cap A \neq \emptyset$ pues existe n_r con $1/n_r < r$ y por tanto $B(0,1/n_r) \subset B(0,r)$. Por último, no hay más puntos adherentes pues si $(x,y) \notin A_n$, entonces d((x,y),(0,0))0r > 0 con $r \neq 1/n$; entonces existe n_r tal que $r > 1/n_r$, luego (x,y) está en el exterior de la bola $B((0,0),1/n_r)$ lo que significa que está en el interior del complementario.

El interior de A, es vacío pues si $(x,y) \in A_n$ y tomamos una bola B(x,y),r), el punto $(x,y+\varepsilon)$ no está en A_{n-1} tomando $\varepsilon > 0$ tal que $x^2 + (y+\varepsilon)^2 \neq 1/(n-1)^2$.

Por último, como $\overset{\circ}{A} = \varnothing$, Fr $A = \overline{A}$.

b) Considere el conjunto $F=\{(x,y)\in\mathbb{R}^2:y=x,x>0\}.$ Demuestre que $A\cap F$ es una sucesión que converge a (0,0).

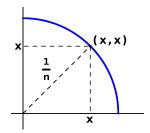
Solución: Si x=y con x>0, entonces los puntos son, para cada n, $2x^2=1/n^2$, es decir

$$A\cap F=\left\{\frac{1}{\sqrt{2}}\left(\frac{1}{n},\frac{1}{n}\right)\right\}_{n\in\mathbb{N}} \text{ vea la Figura}.$$

Es evidente que esta sucesión converge a cero puesto que cada coordenada converge a cero.

 $\boxed{3}$ Demuestre que, si M es un subconjunto de un espacio métrico (X,d), entonces

$$\operatorname{Fr} M = (M \cap \overline{X - M}) \cup (\overline{M} - M).$$



- a) $x\in M.$ Como x es un punto frontera, se tiene $B(x,r)\cap (X-M)\neq \varnothing$, para cada r>0, de donde se deduce que $x\in M\cap \overline{X-M}.$
- b) $x \notin M$. Como $x \in \operatorname{Fr} M$, entonces $x \in \overline{M}$, luego $x \in \overline{M} M$.

Si lo que ocurre es que $x\in \overline{M}-M$, entonces $B(x,r)\cap M\neq\varnothing$ para todo r>0 y, como $x\notin M$, también es $B(x,r)\cap (X-M)\neq\varnothing$, por tanto $x\in\operatorname{Fr} M$.