Campos de vectores y campos de tensores EJERCICIOS

2.1. Se consideran los siguientes tres campos de vectores sobre \mathbb{R}^3 :

$$X = \partial_x,$$

$$Y = \partial_x + \partial_y,$$

$$Z = \partial_x + \partial_y + (1 + x^2)\partial_z,$$

siendo (x, y, z) el sistema rectangular usual de coordenadas de \mathbb{R}^3 . Justifica que forman una base global de $\mathfrak{X}(\mathbb{R}^3)$.

- **2.2.** (a) ¿Qué condición geométrica verifican los campos tangentes a la esfera $\mathbb{S}^n \subset \mathbb{R}^{n+1}$? Utiliza dicha caracterización para construir una base del tangente a \mathbb{S}^2 en un punto genérico $(x,y,z) \in \mathbb{S}^2$.
 - **(b)** Prueba que el campo de vectores X sobre \mathbb{R}^{2n} definido por

$$X = x^{2} \frac{\partial}{\partial x^{1}} - x^{1} \frac{\partial}{\partial x^{2}} + \dots + x^{2n} \frac{\partial}{\partial x^{2n-1}} - x^{2n-1} \frac{\partial}{\partial x^{2n}}$$

es un campo de vectores diferenciable no nulo cuando lo restringimos a la esfera \mathbb{S}^{2n-1} .

2.3. Consideremos en \mathbb{S}^2 el atlas obtenido mediante las proyecciones estereográficas $x=(x^1,x^2),\ y=(y^1,y^2)$. Prueba que los campos

$$X = x^{1} \frac{\partial}{\partial x^{1}} + x^{2} \frac{\partial}{\partial x^{2}}$$
 e $Y = -y^{1} \frac{\partial}{\partial y^{1}} - y^{2} \frac{\partial}{\partial y^{2}}$

coinciden en la intersección de sus dominios y, por tanto, juntos definen un campo de vectores sobre \mathbb{S}^2 .

2.4. Sean $x = (x_1, x_2)$ e $y = (y_1, y_2)$ las cartas de las proyecciones estereográficas sobre \mathbb{S}^2 desde los polos N y S. Si $a, b \in \mathbb{R}$, se consideran los campos

$$(ax_1 - bx_2)\frac{\partial}{\partial x_1} + (bx_1 + ax_2)\frac{\partial}{\partial x_2}$$
$$(-ay_1 - by_2)\frac{\partial}{\partial y_1} + (by_1 - ay_2)\frac{\partial}{\partial y_2}$$

¿Definen juntos un campo de vectores global sobre \mathbb{S}^2 ?

2.5. Sean $\phi_1: U_1 = \mathbb{S}^n \setminus \{N\} \longrightarrow \mathbb{R}^n$ y $\phi_2: U_2 = \mathbb{S}^n \setminus \{S\} \longrightarrow \mathbb{R}^n$ las cartas estereográficas para \mathbb{S}^n . Sean X_1 y X_2 dos campos de vectores sobre \mathbb{R}^n . ¿Qué condición deben satisfacer X_1 y X_2 para representar en las cartas ϕ_1 y ϕ_2 , respectivamente, el mismo campo de vectores X sobre \mathbb{S}^n ?

- **2.6.** (a) En el toro $T \subset \mathbb{R}^3$ se considera el campo vectorial W definido como sigue. Se parametrizan los meridianos de T por la longitud de arco y para cada punto p de T, W(p) es el vector velocidad del meridiano que pasa por p. Prueba que W es un campo de vectores diferenciable.
 - (b) Siguiendo el mismo procedimiento que en el apartado anterior, esta vez sobre la esfera \mathbb{S}^2 y utilizando los semimeridianos, construye un campo vectorial W definido en la esfera menos los dos polos N y S.
 - (c) Reparametriza todos los semimeridianos de la esfera \mathbb{S}^2 mediante el mismo parámetro t, -1 < t < 1, y define $V(p) = (1 t^2)W(p)$, para $p \neq N$ y $p \neq S$. En los polos, hacemos V(N) = V(S) = 0. Prueba que V es un campo de vectores diferenciable en \mathbb{S}^2 .
- **2.7.** Sea $\phi : \mathbb{R}^2 \longrightarrow T^2$ la parametrización del toro definida por $\phi(\theta, \theta') = (e^{i\theta}, e^{i\theta'})$ y sea Y un campo de vectores sobre \mathbb{R}^2 . ¿Bajo qué condiciones Y representa, con respecto a la parametrización ϕ , un campo de vectores X sobre T^2 ?
- **2.8.** Los campos de vectores X_i (i = 1, ..., r) definidos en un subconjunto U de una variedad diferenciable M de dimensión n son *linealmente independientes* si los vectores $X_i(p)$ son linealmente independientes en cada punto p de U. Entonces, un conjunto ordenado de n campos de vectores linealmente independientes $X_1, ..., X_n$ sobre U se llama una *paralelización de U*. Si M admite una paralelización global, entonces diremos que M es *paralelizable*. Prueba:
 - (a) Toda variedad con una carta global es paralelizable. En consecuencia, los espacios euclídeos son paralelizables.
 - (b) Las esferas \mathbb{S}^1 y \mathbb{S}^3 son paralelizables. La esfera \mathbb{S}^2 no es paralelizable.
 - (c) Si M y M' son variedades paralelizables, entonces $M \times M'$ también lo es. Prueba, con un ejemplo, que el recíproco no siempre es cierto.
- **2.9.** Sean (x,y) las coordenadas naturales de \mathbb{R}^2 y consideremos los campos de vectores

$$V = \frac{\partial}{\partial x} + y^2 \frac{\partial}{\partial y}, \qquad W = (x^2 + y) \frac{\partial}{\partial y}.$$

Calcula el corchete de Lie [V, W].

- **2.10.** Sea X un campo de vectores sobre \mathbb{S}^n y lo extendemos a $\mathbb{R}^{n+1} \{0\}$ por $\tilde{X}(x) = \|x\| X\left(\frac{x}{\|x\|}\right)$. Sean los campos de vectores sobre $\mathbb{R}^{n+1} \{0\}$ definidos por $Y(x) = \frac{x}{\|x\|}$ y $X_1(x) = \tilde{X}\left(\frac{x}{\|x\|}\right)$. Calcula los corchetes de Lie $[\tilde{X}, Y], [X_1, Y]$.
- **2.11.** Sea la aplicación diferenciable $f: \mathbb{R} \longrightarrow \mathbb{S}^1$ dada por $f(t) = (\cos(2\pi t), \sin(2\pi t))$ y consideremos el campo de vectores $X \in \mathfrak{X}(\mathbb{R})$ definido por $X(t) = t\partial_t$. ¿Existe un campo de vectores $Y \in \mathfrak{X}(\mathbb{S}^1)$ tal que X está f-relacionado con Y?
- **2.12.** Sea $j: \mathbb{S}^{n-1} \longrightarrow \mathbb{R}^n$ la inclusión canónica y consideremos $Y \in \mathfrak{X}(\mathbb{S}^{n-1})$ un campo de vectores diferenciable sobre la esfera \mathbb{S}^{n-1} . ¿Existe un campo $X \in \mathfrak{X}(\mathbb{R}^n)$ tal que $Y \sim_j X$, es decir, Y está j-relacionado con X?
- **2.13.** Sea t la carta identidad sobre \mathbb{R} y consideremos el campo de vectores $X \in \mathfrak{X}(\mathbb{R})$ dado por $X(t) = e^t \partial_t$. ¿Es X un campo de vectores completo?
- **2.14.** (a) Prueba que el campo de vectores sobre $\mathbb{R}^2 \setminus \{0\}$ definido por

$$X = \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2}$$

no es completo.

(b) Prueba que los campos de vectores definidos sobre \mathbb{R}^2 en términos de la carta identidad por

$$X = x_2 \frac{\partial}{\partial x_1}$$
 e $Y = \frac{x_1^2}{2} \frac{\partial}{\partial x_2}$

son completos y, sin embargo, su corchete de Lie [X,Y] no es completo.

2.15. Encuentra las curvas integrales de los campos de vectores sobre \mathbb{R}^2 definidos en términos de la carta identidad por:

(a)
$$\frac{1}{e^{x_1}} \frac{\partial}{\partial x_1}$$
 (b) $x_2 \frac{\partial}{\partial x_1} - (x_2)^3 \frac{\partial}{\partial x_2}$

En cada caso encuentra los puntos críticos y determina si el campo de vectores es completo.

- **2.16.** Sean los campos $X,Y \in \mathfrak{X}(\mathbb{R}^2)$ definidos por $X = y^2 \partial_x$, $Y = x^2 \partial_y$, donde (x,y) representa la carta identidad. ¿Cuáles de los campos X,Y,X+Y son completos?
- 2.17. Se considera la aplicación

$$\Phi: \mathbb{R} \times \mathbb{R}^2 \longrightarrow \mathbb{R}^2
(t, x, y) \longrightarrow (t + x, y).$$

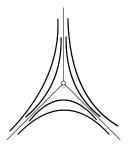
Encuentra un campo $X \in \mathfrak{X}(\mathbb{R}^2)$ tal que Φ sea su flujo.

2.18. Sea $M = \mathbb{R}^2$ y consideremos $\phi : \mathbb{R} \times M \longrightarrow M$ definida por

$$\phi(t, x_1, x_2) = (x_1 \cos t - x_2 \sin t, x_1 \sin t + x_2 \cos t).$$

- (a) Prueba que ϕ es un grupo uniparamétrico de difeomorfismos.
- **(b)** Halla un campo $X \in \mathfrak{X}(M)$ tal que ϕ sea el flujo de X.

2.19. En $\mathbb{R}^2\setminus\{0\}$, ¿existe algún campo de vectores cuyas curvas integrales sean las de la siguiente figura?



2.20. Se considera el campo $X \in \mathfrak{X}(\mathbb{R}^3)$ definido en la carta identidad (x_1, x_2, x_3) por:

$$X = (-x_1 + x_2 - 2x_3)\frac{\partial}{\partial x_1} + (-x_2 + 4x_3)\frac{\partial}{\partial x_2} + x_3\frac{\partial}{\partial x_3}.$$

Encuentra el flujo de X.

2.21. Sean X, Y, Z los campos de vectores definidos en \mathbb{R}^3 por

$$X = z \frac{\partial}{\partial y} - y \frac{\partial}{\partial z},$$

$$Y = x \frac{\partial}{\partial z} - z \frac{\partial}{\partial x},$$

$$Z = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}.$$

- (a) Prueba que la aplicación $(a,b,c) \longrightarrow aX + bY + cZ$ es un isomorfismo de \mathbb{R}^3 en un subespacio de $\mathfrak{X}(\mathbb{R}^3)$.
- (b) Obtén el flujo del campo X + Y + Z.
- **2.22.** Sean $x = (x_1, x_2)$ e $y = (y_1, y_2)$ las proyecciones estereográficas de \mathbb{S}^2 . Consideremos el campo de vectores X en \mathbb{S}^2 definido por los campos de vectores:

$$(x_1-x_2)\frac{\partial}{\partial x_1}+(x_1+x_2)\frac{\partial}{\partial x_2},$$

$$(-y_1-y_2)\frac{\partial}{\partial y_1}+(y_1-y_2)\frac{\partial}{\partial y_2}.$$

- (a) Prueba que X es, efectivamente, un campo de vectores diferenciable sobre \mathbb{S}^2 y halla sus puntos críticos.
- (b) Encuentra sus curvas integrales y determina si es un campo completo.
- **2.23.** Sea $M = GL(2, \mathbb{R})$ el grupo lineal de orden 2 y definamos la aplicación

$$\Phi: \mathbb{R} \times M \longrightarrow M$$

$$(t,A) \longrightarrow \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \cdot A$$

donde el punto \cdot indica la multiplicación de matrices. Encuentra un campo $X \in \mathfrak{X}(M)$ tal que Φ sea su flujo.

- 2.24. Encuentra ejemplos de campos de vectores con las siguientes condiciones:
 - I) sobre \mathbb{S}^1 con exactamente k puntos críticos; generalizar a \mathbb{T}^n .
 - II) sobre \mathbb{R}^2 con exactamente un punto crítico y todas las demás órbitas cerradas.
 - III) sobre \mathbb{R}^2 con exactamente un punto crítico y todas las demás órbitas no cerradas.
 - IV) sobre \mathbb{S}^2 con exactamente dos puntos críticos.
- **2.25.** Sean X e Y dos campos de vectores diferenciables sobre variedades diferenciables M y N, respectivamente, y sea $F: M \to N$ una aplicación diferenciable. Sean θ y σ los flujos generados por X e Y, respectivamente. ¿Qué deben satisfacer θ y σ para que los campos X e Y estén F-relacionados?
- **2.26.** Prueba que el flujo del campo de vectores X definido en \mathbb{R}^n por

$$\sum_{i=1}^{n} x_i \frac{\partial}{\partial x_i}$$

es $\Phi(t,x) = e^t x$. Deduce de esto el teorema de Euler para funciones homogéneas.

Nota. Sea Ω un abierto de \mathbb{R}^n y consideremos una función $f:\Omega\to\mathbb{R}$. Se dice que f es *homogénea de grado p* si $f(\lambda x)=\lambda^p f(x)$, para cada λ real y cada $x\in\Omega$ para el que $\lambda x\in\Omega$. El teorema de Euler para funciones homogéneas afirma que si f es una función diferenciable homogénea de grado p, entonces

$$\sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i} = pf(x).$$

También es posible demostrar el recíproco.

2.27. (a) Prueba que existe un $\mathscr{C}^{\infty}(M)$ -isomorfismo entre $\mathfrak{X}^*(M)$ y $\mathscr{T}^0_1(M)$, donde $\mathfrak{X}^*(M)$ denota el módulo dual de $\mathfrak{X}(M)$.

- (b) Prueba que existe un $\mathscr{C}^{\infty}(M)$ -isomorfismo entre $\mathfrak{X}(M)$ y $\mathscr{T}_0^1(M)$.
- (c) Deduce que $\mathfrak{X}(M)$ se identifica de modo natural con su módulo bidual.
- **2.28.** Sean A y B dos campos tensoriales de tipo (1,1) sobre una variedad diferenciable M. Pongamos

$$S(X,Y) = [AX,BY] + [BX,AY] + AB[X,Y] + BA[X,Y] -A[X,BY] - A[BX,Y] - B[X,AY] - B[AX,Y],$$

con $X,Y \in \mathfrak{X}(M)$. Entonces la aplicación $S:\mathfrak{X}(M) \times \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M)$ define un tensor de tipo (1,2) sobre M tal que S(X,Y) = -S(Y,X).

2.29. Sea A un campo tensorial de tipo (1,2). Sean $\xi = (x_1, \dots, x_n)$ y $\eta = (y_1, \dots, y_n)$ sistemas coordenados sobre $U \subset M$. Prueba que las componentes de A relativas a η están determinadas como sigue por las componentes de A relativas a ξ :

$${}^{\eta}A^{c}_{ab} = \sum_{i,j,k} \frac{\partial y_{c}}{\partial x_{k}} \frac{\partial x_{i}}{\partial y_{a}} \frac{\partial x_{j}}{\partial y_{b}} {}^{\xi}A^{k}_{ij}.$$

2.30. Sea x la carta identidad de \mathbb{R}^n y consideremos $g:\mathfrak{X}(\mathbb{R}^n)\times\mathfrak{X}(\mathbb{R}^n)\longrightarrow\mathscr{C}^\infty(\mathbb{R}^n)$ definido por

$$g(X,Y): \mathbb{R}^n \longrightarrow \mathbb{R}$$

 $p \longrightarrow g(X,Y)(p) = \sum_{i=1}^n a_i(p)b_i(p),$

donde
$$X = \sum_{i} a_{i} \frac{\partial}{\partial x_{i}}, Y = \sum_{i} b_{i} \frac{\partial}{\partial x_{i}}.$$

- (a) Verifica que g es un tensor de tipo (0,2).
- **(b)** Obtén las componentes de g relativas a x.
- (c) Sea $y = (y_1, \dots, y_n)$ la aplicación definida por:

$$y_1 = x_1,$$

$$y_2 = x_1 + x_2,$$

$$\vdots$$

$$y_n = x_1 + \dots + x_n.$$

Prueba que y es una carta en \mathbb{R}^n y calcula las componentes de g relativas a y.

- **2.31.** Sea *M* una variedad diferenciable.
 - (a) Interpreta $A \in \mathcal{T}_1^1(M)$ como una aplicación diferenciable que asigna a cada punto $p \in M$ un operador lineal A_p sobre T_pM .
 - **(b)** Prueba que $(CA)(p) = \text{traza}(A_p)$, C es el operador *Contracción*.
 - (c) Si $A, B \in \mathcal{T}_1^1(M)$, expresa la aplicación $p \longrightarrow A_p \circ B_p$ como un elemento de $\mathcal{T}_1^1(M)$.
- **2.32.** 1) Sea $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ la aplicación diferenciable definida por $\varphi(x,y) = (x+2y,y)$ y sea $T = 3x\partial_x \otimes dy + \partial_y \otimes dy \in \mathcal{T}_1^1(\mathbb{R}^2)$. Calcula el pullback $\varphi^*(T)$ y el pushforward $\varphi_*(T)$ del tensor T.
 - **2**) Sean los tensores $A = T \otimes \varphi^*(T)$ y $B = \varphi_*(T) \otimes T$. Calcula $C_2^1 A C_1^2 B$.
- **2.33.** En \mathbb{R}^2 , con las coordenadas usuales (x_1, x_2) , consideramos el tensor $T \in \mathscr{T}^2_1(\mathbb{R}^2)$ dado por $T = xy\partial_x \otimes \partial_x \otimes dy y^2\partial_x \otimes \partial_y \otimes dy + 3x^2y\partial_y \otimes \partial_x \otimes dx$. ¿Cuánto vale la contracción $C_1^2(T)$?
- **2.34.** Sea $F: M \longrightarrow N$ una aplicación diferenciable.

- (a) Si $i: M \longrightarrow M$ es la identidad, entonces i^* es la identidad sobre $\mathscr{T}_s^0(M)$.
- (b) Para tensores covariantes A y B de tipo (0,s) y (0,t), respectivamente, se verifica:

$$F^*(A \otimes B) = F^*(A) \otimes F^*(B).$$

(c) Si $G: N \longrightarrow P$ es también una aplicación diferenciable:

$$(G \circ F)^* = F^* \circ G^* : \mathscr{T}_s^0(M) \longrightarrow \mathscr{T}_s^0(M),$$

para todo $s \ge 0$.

- **2.35.** Sea $F: M \longrightarrow N$ un difeomorfismo.
 - (a) Entonces cada campo tensorial $\Phi \in \mathscr{T}_s^r(M)$ determina un campo tensorial $F_*\Phi \in \mathscr{T}_s^r(N)$, llamado el *pushforward* de Φ mediante F, por la fórmula

$$(F_*\Phi)(\omega^1,\ldots,\omega^r,X_1,\ldots,X_s)(p) = \Phi_{F^{-1}(p)}(F_p^*(\omega_p^1),\ldots,F_p^*(\omega_p^r),dF_p^{-1}(X_{1p}),\ldots,dF_p^{-1}(X_{sp})),$$

donde F_p^* denota la aplicación transpuesta de dF_p , es decir, $F_p^*: T_pN^* \longrightarrow T_{F^{-1}(p)}M^*, F_p^*(\omega)(v) = \omega(dF_{F^{-1}(p)}(v)), v \in T_{F^{-1}(p)}M, \ \omega \in T_pN^*.$

- **(b)** Si $i: M \longrightarrow M$ es la identidad, entonces i_* es la identidad de $\mathscr{T}_s^r(M)$.
- (c) Si $A \in \mathscr{T}_s^r(M)$ y $B \in \mathscr{T}_{s'}^{r'}(M)$, entonces

$$F_*(A\otimes B)=F_*(A)\otimes F_*(B).$$

(d) Si $G: N \longrightarrow P$ es también un difeomorfismo, entonces

$$(G \circ F)_* = G_* \circ F_*$$
.

2.36. Sea $\phi: M^m \longrightarrow N^n$ una aplicación diferenciable que aplica el sistema coordenado $\xi = (x_1, \dots, x_m)$ en un sistema coordenado $\eta = (y_1, \dots, y_n)$ en N. Si B es un campo tensorial covariante, de tipo (0,2), prueba que sobre el entorno coordenado de ξ se satisface:

$$(\phi^*B)\left(\frac{\partial}{\partial x_i},\frac{\partial}{\partial x_j}\right) = \sum_{a,b=1}^n \frac{\partial(y_a \circ \phi)}{\partial x_i} \frac{\partial(y_b \circ \phi)}{\partial x_j} B\left(\frac{\partial}{\partial y_a},\frac{\partial}{\partial y_b}\right) \circ \phi$$

2.37. Sobre \mathbb{R}^2 con las coordenadas usuales (x_1,x_2) , sea $\phi \in \mathscr{L}(\mathbb{R}^2)$ la aplicación lineal con matriz

$$A = \left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array}\right).$$

- (a) Sea $T \in \mathscr{T}_2^0(\mathbb{R}^2)$ dado por $T = dx^1 \otimes dx^1 + 2dx^1 \otimes dx^2 dx^2 \otimes dx^1 + 3dx^2 \otimes dx^2$. Obten ϕ^*T .
- **(b)** Sea $T \in \mathcal{T}_1^1(\mathbb{R}^2)$ definido por $T = e_1 \otimes e^2 2e_2 \otimes e^2$. Calcula las componentes de ϕ_*T .
- **2.38.** Sea $\phi : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ dado por $\phi(x,y,z) = (2x+z,xyz)$ y $T \in \mathscr{T}_2^0(\mathbb{R}^2)$ definido por $T = (u+2v)du \otimes du + u^2du \otimes dv$. Calcula ϕ^*T .
- **2.39.** Sea $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $\varphi(x,y) = (x+2y,y)$ y sea el tensor $T \in \mathscr{T}_2^0(\mathbb{R}^2)$ dado por $T = 3xdx \otimes dy + dy \otimes dy$. ¿Cuánto valen $C_2^1(\varphi_*T \otimes \varphi^*T)$ y $C_1^2(\varphi_*T \otimes \varphi^*T)$?

2.40. Sea $\phi : \mathbb{R}^2 \setminus \{(0,y) \mid y \in \mathbb{R}\} \longrightarrow \mathbb{R}^2 \setminus \{(x,x) \mid x \in \mathbb{R}\}$ definida por $\phi(x,y) = (x^3 + y,y)$ y sea el tensor T de tipo (2,1) dado por

$$T = x \frac{\partial}{\partial x} \otimes dx \otimes dy + y \frac{\partial}{\partial y} \otimes dy \otimes dy.$$

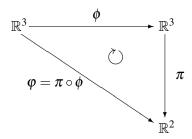
Prueba que ϕ es un difeomorfismo y calcula:

- (a) El pushforward ϕ_*T .
- **(b)** Las contracciones (1,1) y (1,2) de T.
- **2.41.** Sea $T \in \mathscr{T}_1^1(\mathbb{R}^2)$ definido por

$$T = xy \frac{\partial}{\partial x} \otimes dx + y \frac{\partial}{\partial y} \otimes dx + \frac{\partial}{\partial x} \otimes dy.$$

Definimos la aplicación ϕ como sigue: $\phi : \{(x,y) \mid y > 0\} \longrightarrow \{(x,y) \mid x > 0, x^2 < y\}$ mediante $\phi(x,y) = (ye^x, y^2e^{2x} + y)$. Prueba que ϕ es un difeomorfismo y calcula:

- (a) La traza de T.
- **(b)** El *push-forward* de T, ϕ_*T .
- 2.42. Consideremos el siguiente diagrama:



donde las aplicaciones ϕ y π están definidas como sigue:

$$\phi(x, y, z) = (x, 3y + 11z, 2x + y + 4z),$$

$$\pi(u, v, w) = (u, v).$$

Sean los tensores $T \in \mathscr{T}_1^1(\mathbb{R}^3)$ y $A \in \mathscr{T}_1^0(\mathbb{R}^2)$ definidos por

$$T = x \frac{\partial}{\partial y} \otimes dz + y \frac{\partial}{\partial z} \otimes dx,$$

$$A = u du + y dv.$$

Calcula los siguientes tensores:

- 1) El pushforward de T, $\phi_*(T)$.
- **2)** El pullback de A, $\pi^*(A)$.
- 3) $\omega = C_2^1(\phi_*(T) \otimes \pi^*(A)).$
- 4) $\phi^*\omega C_2^1(T \otimes \phi^*A)$
- **2.43.** (a) Sea $T \in \mathscr{T}_2^0(\mathbb{R}^2)$ un tensor no nulo. Encuentra una caracterización para que T se pueda escribir en la forma $T = A \otimes B$, con $A, B \in \mathscr{T}_1^0(\mathbb{R}^2)$.

- **(b)** Sea $A \in \mathscr{T}_2^0(M)$ un tensor simétrico y $B \in \mathscr{T}_0^2(M)$ un tensor antisimétrico. Calcula $\sum_{i,j} a_{ij} b^{ij}$.
- (c) Sean $A, B \in \mathscr{T}_2^0(M)$ dos tensores simétricos de componentes respectivas a_{ij}, b_{kl} , verificando la igualdad:

$$a_{ij}b_{kl} - a_{il}b_{kj} + a_{jk}b_{il} - a_{kl}b_{ij} = 0.$$

Prueba que $a_{ij} = \lambda b_{ij}$.