Capítulo 3

UN PLANETA LLAMADO AGUA

Carlos Montes
Catedrático de Ecología. Universidad Autónoma. Madrid
José Ramón Antúnez
Físico. Diputación Provincial de Sevilla

Introducción

El agua es algo más que uno de los recursos naturales básicos de la civilización; es la base de la vida y sus flujos son las venas de este gran sistema ecológico que es nuestro planeta (ecosfera). Prácticamente cualquier proceso que mantiene a nuestra sociedad y a la naturaleza necesita agua. La actitud de la humanidad frente a este elemento depende de su abundancia; si es abundante, es gratuita y se emplea para cualquier uso, generalmente de un forma despilfarradora; si escasea se convierte en una mercancía valiosísima que da lugar a disputas e incluso luchas, entre quienes la utilizan.

El crecimiento y los desequilibrios demográficos unidos a la expansión de la industria y la agricultura junto con la demanda de niveles de vida más elevados han llevado, en muchos países, a cotas nunca alcanzadas en el consumo de agua por persona. Por este motivo el agua constituye, cada vez más, un recurso escaso. Un recurso del que, a diferencia de otros muchos, no tenemos ningún sustituto. El despilfarro con que se ha tratado a esta componente de la estructura de los ecosistemas acuáticos junto con la perdida de su calidad para distintos usos, debida a la acción de diferentes tipos de contaminación, está provocando y provocará importantes restricciones en el futuro. Parece claro que, si sigue imperando un modelo socioeconómico típicamente desarrollísta, como ocurre en la actualidad, la demanda de agua a escala mundial, lejos de estabilizarse, seguirá incrementándose de una forma alarmante ya que la población mundial y las tendencias del crecimiento económico siguen en aumento.
nacionales e internacionales además de un factor de cambio en la economía de muchos países. Está ocurriendo algo parecido a la situación que se creó en los años sesenta por la subida del precio del petróleo bajo la denominada crisis energética.

Parece lógico que la posición a adoptar frente a este cuadro altamente preocupante no es de indiferencia tranquila fundamentada en la confianza de una tecnología capaz de captar, embalsar y distribuir a cualquier precio el agua donde esté, ni tampoco una visión catastrofista que fácilmente degenera hacia un fuerte inmovilismo. Ni un optimismo beato ni un pesimismo exagerado parecen ser las posturas más adecuadas. Buscar un punto entre ambos extremos pasa por conocer la base de los problemas relacionados con la naturaleza y explotación de este recurso. Esto significa que tenemos que explorar los múltiples aspectos de su naturaleza fisico-química, sus rutas, su desigual distribución espacio-temporal, su papel en el funcionamiento de los ecosistemas acuáticos y terrestres, sus tramas territoriales y sus relaciones con los sistemas humanos. Por otra parte, es preciso fundamentar nuestro análisis y planificación del agua como recurso en programas de investigación básica y aplicada sobre los ecosistemas acuáticos que nos lo suministran. Desde este enfoque los problemas actuales del agua dulce no son debidos a su escasez sino a una mala gestión, por un lado por la falta de visión de conjunto de técnicos y políticos sobre como funcionan los sistemas naturales y por otro, por una ausencia de principios éticos que antepone el beneficio fácil y rápido de unos pocos al bien común.
La gestión del agua debe basarse, por tanto, en medidas bien fundadas ecologicamente, económicamente viables, factibles técnicamente y especialmente que gocen de aceptación de la sociedad para que las normas de ahorro, reciclado y uso racional del recurso formen parte de su comportamiento habitual. El problema reside en que el modelo de vida actual de los países industrializados, claramente consumista, separa cada vez más al ser humano y a su sociedad del medio natural con el que interacciona de una manera interdependiente, al comportarse como si no formara parte de el. De esta forma se gestionan los servicios naturales, incluido el suministro de agua de calidad, sin tener en cuenta el conocimiento que se posee sobre cómo se organizan y funcionan los ríos, lagos o acuiferos que se explotan. Un suministro barato y constante de este elemento junto con una distribu-

Para satisfacer esta demanda se han construido numerosas y monumentales infraestructuras hidráulicas como grandes embalses, transvases, canalizaciones, etc. que han ocasionado importantes modificaciones en los flujos naturales y en la hidroquímica de los sistemas acuáticos superficiales y subterráneos. Ello ha propiciado graves alteraciones en el funcionamiento de extensos espacios naturales de gran valor ecológico.

El uso irracional del agua es responsable de un panorama ambiental cuyas características más importantes son, a nuestro juicio, las siguientes:

- La mitad de la población mundial carece de infraestructuras de saneamiento. Mas de un 1.000 millones de personas tienen problemas de abastecimiento de agua potable.
- Las enfermedades relacionadas con el agua están incrementándose espectacularmente.
- Los conflictos políticos e incluso militares relacionados con la explotación de recursos hídricos compartidos por diferentes países (como cuencas hidrográficas o acuíferos) están intensificándose en algunas regiones del planeta especialmente en Oriente Medio. Son las denominadas guerras del agua.
- Se está produciendo una perdida creciente y alarmante de superficie y funcionalidad en el reducido patrimonio mundial de ecosistemas acuáticos continentales (ríos, lagos, humedales, acuiferos). que se traduce en la desaparición de miles de especies de organismos acuáticos.
- La comunidad cientifica ha reconocido que las interferencias humanas en los cambios globales del clima son evidentes y que el ciclo hidrológico se verá afectado en forma y consecuencias que estamos comenzando a estudiar.

Todo esto pone de manifiesto que la calidad y disponibilidad de agua para el consumo humano y el mantenimiento de la salud de los ecosistemas constituye uno de los problemas ambientales más críticos de la sociedad contemporánea. Cada vez es más frecuente en los foros nacionales e internacionales ofr hablar de un nuevo desafio de nuestra sociedad; la dcnominada crisis del agua. Como indican muchos autores, la escasez de agua es ya en este siglo y lo será en el próximo una fuente de conflictos
actividad volcánica, determinados aspectos litológicos, etc.) pero, si anaizamos esta cuestión con más detalle, vemos que es un planeta único y su rareza reside en que posee una atmósfera rica en oxigeno (21% del total de gases) y sobre todo en que la mayor parte de su superficie, casi sus tres cuartas partes, está cubierta de una sustancia muy especial; el agua.
 planeta en términos de tierra, pero la Tierra es el planeta agua o mejor océano, ya que estos cubren más del 70% de su superficie.

Por este motivo, cuando observamos la Tierra desde el espacio se nos muestra fundamentalmente de color azul, y no el azul de una atmósfera de metano, como ocurre con Urano o Neptuno. El azul de la Tierra es producto de una superficie cubierta de agua básicamente en forma líquida sin olvidar el blanco de las nubes o agua en forma de vapor y el blanco del los casquetes polares o agua en forma sólida. Agua en sus tres estados, algo que no ocurre en ninguna otra parte del sistema solar. Su posición y dis-

 se hiele.

La Tierra que conocemos es el resultado de una historia de más de 4.000 millones de años en la que la vida ha tenido mucho que decir. Los

 sido un elemento clave en toda este historia. Sin ella no existiría la vida ni se entendería la organización y funcionamiento de nuestro planeta y como
 de coche. La bateria se llena de agua y, luego, la vida carga la batería.

1.1. Agua. Una sustancia muy extraña

${ }_{\text {¿Por qué el agua ha sido y es tan transcendente en la configuración ac- }}$ tual de nuestro planeta, incluyendo los procesos relacionados con el ongen, mantenimiento y evolución de la vida? ${ }_{¿}$ Por qué es tan importante en la mayoría de los procesos de la sociedad humana? La explicación hay que encontrarla en su extraordinaria estructura molecular que le confiere una alta polaridad eléctrica y explica la rareza de sus propiedades. Es la única
ción y desagüe por tuberias invisibles hace que muchas personas perciban el agua como algo cotidiano que sale sin fin por los grifos y que hay que captar allá donde esté, a cualquier precio, \sin tener en cuenta el papel que juega en el funcionamiento de la naturaleza a escala local y planetaria. Este comportamiento explica por ejemplo, el por quế el consumo anual de agua por habitante se considera crróneamente un indicador de la calidad de vida de un país o el que los ciudadanos del mundo desarrollado tiendan a sentir que la falta de agua para el consumo humano es un problema solo de los países del Tercer Mundo.
Como resultado de esta pérdida de contacto directo de la población humana con las fuentes del agua en la naturaleza y encerramiento en ambientes artificiales se han internalizado en amplios sectores de la sociedad una serie de conceptos erróneos sobre los problemas de la escasez de agua que sirven para llevar a cabo y justificar decisiones poco prudentes sobre política del agua relacionadas con el desarrollo de grandes infraestructuras hidráulicas. Son los Ilamado hidromitos entre los que cabe destacar: «la gestión del agua es un problema básicamente técnico»; «la existencia de desequilibrios hidrológicos», «la escasez de agua potablen; «el agua de las cuencas hidrográficas se pierde inútilmente en el maro; cla pertinaz sequía y las inundaciones catastróficas limitan el acceso de agua dulce"; «las aguas subterráneas no son un recurso fiable», etc.
Para abordar este y otros problemas relacionados, es necesario desarrollar programas de educación ambiental y concienciación social que propicien una nueva cultura del agua que promueva y defienda la divulgación a todos los niveles del papel que juega este elemento en el funcionamiento de la naturaleza para saber si lo estamos gestionando de una forma correcta.

1. Un planeta llamado agua

La Tierra ocupa la cálida región interior del Sistema Solar, constituyendo uno de los cuatro pequeños planetas denominados terrestres (Mercurio, Venus, La Tierra y Marte) con una cubierta sólida de rocas. A grandes rasgos, la Tierra puede parecernos muy parecida a los otros miembros de la familia solar (placas tectónicas, formación de montañas, erosión,
sustancia, junto con el mercurio, que se mantiene líquida a temperaturas, incluida la ambiental, en que la que el resto de líquidos se transforman en gases; mantiene objetos mas pesados en su superficic; almacena y cede grandes cantidades de calor con cambios pequeños de temperatura; es capaz de mantener flotando un volumen sólido (hiclo) de ella misma. El agua posee un alto calor especifico y tiene un elevado punto de ebullición $\left(100^{\circ} \mathrm{C}\right)$ y bajo punto de solidificación $\left(0^{\circ} \mathrm{C}\right)$. Hace falta mucho más calor para convertir el agua líquida (romper los puentes de hidrógeno) en vapor que el necesario para evaporar otros compuestos. Sin estas propiedades el agua en la Tierra o en los tejidos de los organismos vivos estaria en forma gaseosa o sólida (hielo) dentro del rango normal de temperatura sobre la superficie de la Tierra y la vida no existiria tal y como la conocemos. También por su alto calor específico el agua líquida almacena y cede grandes cantidades de calor con cambios pequeños de temperatura.

Estas cualidades protegen a los organismos, especialmente a los acuáticos, de cambios bruscos de temperatura y ayuda a modular las diferencias climáticas. Es conocido, desde muy antiguo, el efecto microclimático de la presencia de láminas de agua como lagos o la proximidad al mar. También por este motivo el ser humano la utiliza como un refrigerante efectivo de motores, centrales nucleares, eléctricas, etc.

El agua liquida tiene un calor de evaporación (a 100° es de 537 calorías por gramo) y fusión ($0^{\circ} 0^{\circ} \mathrm{C}$ es de 79 calorias por gramo) muy elevado. Esta capacidad para absorber grandes cantidades de calor cuando el agua líquida se convierte en vapor y liberar este calor cuando se condensa o cuando el hielo se convierte en líquido es un factor clave para explicar la distribución de calor alrededor de nuestro planeta y por tanto, actúa como un importantisimo regulador del clima local y mundial. Esta propiedad también explica cómo la evaporación del agua es un proceso de refrigeración efectivo de plantas y animales.
 grandes cantidades de una amplia gama de compuestos. Esta propiedad le permite llevar disueltos gases o sustancias sólidas de carácter polar, como nutrientes y otros elementos, que incorpora y transporta a través de los tejidos de los organismos, o expulsa como sustancias tóxicas. Por este motivo, se puede decir que en la Naturaleza no existe el agua pura o vacía. 98
desde su orígenes o se ha ido incrementado. De todas formas, la cantidad total de agua en nuestro planeta se estima en unos 1.400 millones de $\mathrm{km}^{3} \mathrm{y}$ está presente a cualquier escala, tanto a nivel planetario como celular. Como organismos que vivimos en los continentes, tenemos tendencia a interpretar el agua y sus manifestaciones como un fenómeno local, dando nombre a entidades que se suponen discretas -ríos, lagos, Iluvia de otoño, sequías, inundaciones-, pero el agua constituye un todo, un único recurso distribuido en cinco compartimentos -océanos, casquetes polares, continentes, biosfera y la atmósfera-unificado, como veremos, a través del ciclo hidrológico.

La distribución del volumen total de agua en la Tierra es altamente asimétrica (Figura 1) y su disponibilidad para los organismos terrestres y los seres humanos es muy desigual en función de su accesibilidad y su concentración iónica. Esta irregular y heterogénea distribución del agua en la Tierra, especialmente en los continentes, es debida a la gran variabilidad geográfica del balance entre precipitaciones y evapotranspiración que en último término condiciona su abundancia.

Por una parte, los océanos mantienen el $97,4 \%$ de toda el agua de la Tierra. Este volumen almacenado sería suficiente para satisfacer con creces las demandas actuales y futuras, pero al tener de una manera natural una

aguatotal

0067,45
AGUAS
CONTINENTALES
lado de la superficie del planeta ha estado sometido desde sus comienzos hasta ahora a la acción del agua bajo diferentes formas; Iluvia, escorrentía, rís, nieve, hielo. De este modo ha desgastado montañas, labrados los valles de los ríos, creado los paisajes kársticos, glaciares, etc.

Como hemos comentado, la abundancia de agua constituye el rasgo más caracteristico de nuestro planeta azul y ha sido esencial para el desarrollo de la vida. Debido a sus propiedades tan especiales el agua es una sustancia muy adecuada para posibilitar la aparición de organismos y crear un ambiente propicio para la vida tal y como se presenta en nuestro planeta. De esta forma, la materia viva está fuertemente hidratada y gran parte de los procesos químicos que caracterizan la vida tienen lugar en una matriz acuosa. Hablar de la vida en la Tierra es hablar de la fisico-quimica de las soluciones acuosas.

La vida surgió ligada al agua y desde entonces no ha podido independizarse de ella. Todos los seres vivos están formados en un alto porcentaje de su peso por agua, entre un 60 a 95% del peso total. Su papel bá-
 los organismos. Como ejemplo, un ser humano puede pasar varias semanas sin comer pero no más de dos o tres días sin beber (envenenamiento por falta de orina, cristalización de productos del metabolismo por falta de
 seres vivos. La ausencia permanente de agua significa muerte, falta de vida.

2. Agua y ecosfera

 compartimentos abióticos: una litosfera o parte sólida, una atmósfera o masa gaseosa y una hidrosfera o masa líquida. La biosfera como fase viva se localiza en la intersección o fronteras de los otros compartimentos no vivos. Necesita del agua de la hidrosfera como substrato, el oxigeno de la atmósfera y el soporte y determinados elementos de la litosfera. Pero el agua no solo es necesaria como substrato de la vida sino que además es indispensable para el mantenimiento global de nuestro planeta mediante su movimiento, a través de cada uno de estos grandes compartimentos no vi-
vos, denominado ciclo del agua a modo comparativo con los ciclos biogeoquímicos del planeta.

2.1. El ciclo del agua

El agua puede encontrase en tres estados físicos (sólido. líquido, gas) según gane o pierda energía. El paso de un estado a otro hace que esté continuamente transfiriéndose de un compartimento a otro dando lugar a un modelo cíclico de movimiento (Figura 2.). Presenta dos partes principales; la denominada fase terrestre que abarca los procesos de transporte y al-
 $c a$, que comprende el transporte de agua por la atmósfera, básicamente en forma de vapor.

El ciclo hidrológico es un sistema complejo de circulación ininterumpida que asegura los procesos de destilación y transporte del agua en todas sus formas, colectándola, purificándola y distribuyêndola alrededor fase atmosferica

Figura 2. Representación eqquemtitica del ciclo del agua mostrando las rutas más importantes y los procesos que condicionan su reciclado y depuración.
del planeta. Los principales procesos que condicionan su reciclado y purificación son la evaporación, transpiraciōn precipitacioin y escorrentia. De cualquier forma, hay que tener presente que no toda el agua del sistema participa constantemente en el ciclo hidrologico ya que determinadas cantidades permamecen durante periodos variables de tiempo en los distintos compartimentos, según sus tasas de renovación.

Dentro de este contexto, las aguas subterráneas denominadas por el profesor Gonzal el Bernáldez la cara ocsita del cicio del agna o las atganización y funcionamiento de los ecosistemas de la superficie de los continentes, especialmente de sus regiones áridas o semiáridas.

Desde una perspectiva energética tenemos que tener presente que se necesita disipar una gran cantidad de la energía solar que llega a la super o sisté-téminergía que ore te Bere mecanismo se transporta en forma de vapor do agua grandes cantidades de calor desde el Ecuador hasta los polos, suavizando el clima y haciendo más confortable la vida en las latitudes y altitudes elevadas
 ponentes: una ascendente, a través de la evaporación accionada por la energía solar y otra descendente movida por la fuerza de la gravedad que. mediante la precipitación va liberando energía. Este circuito descendente es aprovechado por diferentes tipos de ecosistemas (rios, lagos, humedales) y es utilizado también por los seres humanos para obtener diferente bienes y servicios (energia hidroeléctrica, producción de alimentos, etc.).
 de agua y energía que intercomumica los distintos compartimentos o esferas (hidrosfera, litosfera, atmósfera, biosfera), es clave para comprender el funcionamiento de los procesos que mantienen la vida en el planeta porque:

[^0] radiación que llega al planeta.

- Transforma el agua salada de los océanos en agua dulce y la transporta a los continentes.
Los sistemas ecológicos que conforman la biosfera dependen de un flujo de energía y de un ciclo de nutrientes o elementos esenciales para la construcción de sus biomoléculas. En este contexto y debido a la capacidad como disolvente del agua, el ciclo hidrológico es el principal vehículo de transporte de nutrientes a los ecosistemas temestres y acuáticos. Sin el ciclo del agua los ciclos biogeoquímicos no funcionarían y no se podría mantener la vida en nuestro planeta. El ciclo del agua afecta al balance de calor de la Tierra al transportar calor desde las latitudes bajas a las altas. Hace menos desiguales la variaciones térmicas de la superficie del globo en relación a los gradientes internos esperados. En general, es el responsable del clima tan singular que posee nuestro planeta, propicio para el desarrollo de la vida.

Bajo esta perspectiva, la atmósfera, ocćanos y los continentes forman un sistema planetario unido por el agua y conducido por la energía solar. La evaporación, precipitación, retención y transporte mantienen estable el balance global de agua sobre el planeta.

El mar tiene una tasa de renovación muy baja y un balance precipita-ción-evaporación muy diferente a la de los continentes. En los océanos se evapora más agua de la que llueve. Esta diferencia supone unos 40.000 km^{3} anuales, que es el agua que va a circular por los continentes. Este agua evaporada se desplaza muy rápidamente por la atmósfera hasta caer en los continentes (unos diez dias) formando parte de sus distintos tipos de ecosistemas acuáticos (rios, lagos, humedales, acuiferos), moviéndose según sus tiempos medios de renovación (desde días hasta miles de años). Dado que en los continentes la precipitación es mayor que la evaporación, el exceso de precipitación, $\left(40.000 \mathrm{~km}^{3}\right)$ vuelve al mar a través de los ríos. Así pues cabe considerar que el ciclo hidrológico del planeta es cerrado ya que las precipitaciones anuales medias equivalen a la evaporación anual en los océanos y continentes.

El ser humano incrementa la escorrentía superficial y hace decrecer la infiltración del suelo al desmantelar la cubierta vegetal, drenar los humedales, urbanizar el suelo. Por otra parte intenta mediante diferentes actua-
ciones (embalses, canalizaciones, transvases, etc.) impedir que el exceso de la precipitación de los continente vaya al mar. No es suficientemente consciente de que todo el agua que usamos es reciclada, cada gota que bebemos, con ta que cocinamos, con la que lavamos o regamos ha sido utilizada anteriormente un número incontable sle veces.

Este proceso natural de reciclado funciona y ha suministrado y suministrará agua dulce para las diferentes demandas de nuestra civilización si no se contamina o no se altera su funcionamiento. Desgraciadamente día tras día estamos interrumpiendo el ciclo del agua y como consecuencia hacemos que el agua como recurso sea cada vez más inaccesible.

Esta panorámica ecológica y global del ciclo de agua nos muestra la estrecha relación que existe entre los ambientes físicos y geográficos de la
 -

 -ṇuว eun owos 'opol un owoo sopend

 zrụиวd әp 'sootioporp! sequía, inundaciones catastróficas, etc.

2.2. La «cuenca hidrográfica» como unidad funcional de estudio

 denomina cuenca hidrográfica. El agua en su camino hacia la cubeta de

corre los cauces de su red fluvial. Un análisis del agua (estudio ecológico) nos permitirá fácilmente dar un diagnóstico de su estado de salud (nivel de

 generales que puedan aplicarse de la misma forma a todas. Es necesario es-

 temas acuáticos y el suministro de agua que representan basándose en el modelo de Gestión Integrada de Cuencas.

Por todo lo comentado, la cuenca hidrogräfica debe ser considerada como la unidad funcional básicả del territorio, ya que representa la unidad
 nentes y por tanto debe considerase como la unidad mínima de gestión en cualquier analisis o estudio, ya sea de carácter básico o aplicado. Desde la charca o arroyo más pequeño hasta el lago o río más grande responden,

 subyacen en el sufren importantes modificaciones al manipularse el ciclo del hidrológico en el contexto de las cuencas.

2.3. Los ecosistemas acuáticos continentales

 nos presenta como un continuum. Sin embargo, el ser humano intenta imponer una serie de categorías para clasificar los distintos tipos de paisajes que percibe. De esta forma, se habla de ecosistemas terrestres y acuáticos, aunque existan toda una serie de ambientes costeros o interiores que están, por su marcada variabilidad espacio-temporal, en la frontera en-

constituyendo la banda marrón o estrato inferior de los ecosisternas siem-
 de tejidos vivos o muertos controlando la tasa del flujo de energía y mate-
 componente abiótica constituye el reservorio de la materia orgánica particulada y disuelta, crítica para el reciclado de los nutrientes.

Bajo este esquema general y único de funcionamiento de cualquier ecosistema acuático, existen varias formas de organización del espacio. Las comunidades biológicas en función de la energía externa y la accesibilidad de nutrientes se segregan espacial y temporalmente como resultado de la selección impuesta por las condiciones fisico-químicas locales. Encontramos una comunidad que vive en suspensión en las aguas libres, \sin contacto con las interfases limitantes, que se denomina plancton, que a su vez se subdivide en fito y zooplancton, según formen parte de la componente autotrófica o heterotrófica del sistema. La comunidad que vive en la interfase entre el agua y los materiales sólidos de la cubeta se denomina bentos. Los organismos que son capaces de dominar las corrientes y los movimientos del agua desplazándose por varios ambientes del sistema se denominan necton.

Aunque existe una unidad funcional para todos los sistemas ecológicos, su gran heterogeneidad estructural y su dinamismo explican el hecho
 ción de la integridad de los ecosistemas acuáticos ni para la gestión de los recursos hídricos que representan. Existen unos principios generales de gestión, pero es indispensable desarrollar actuaciones apropiadas para cada tipo de ecosistema. No es lo mismo gestionar un río, que un lago o un acuifero. Esto nos conduce a que, sí queremos desarrollar un plan estratégico regional para la explotación-conservación de los recursos hídricos de un territorio, sea necesario elaborar una clasificación de los ecosistemas acuáticos que los suministran en el marco de las cuencas hidrográficas.
 nentales: los que están en su superficie (epicontinentales) y los subterráneos (acuiferos). Respecto a los epicontinentales la existencia o no de un flujo de agua determina dos tipos estructurales de ecosistemas; lóticos o de aguas fluyentes (ríos) y leníticos o de aguas estancadas (lagos y humedales).

De una forma tradicional la Hidrosfera se distribuye en dos secciones, los mares u océanos y las aguas continentales. A diferencia del medio marino la gran diversidad paisajística que presentan las masas de agua situadas sobre los continentes ha generado un léxico muy importante (lago, laguna, charca, tremedal, bodón, navazo, estero, tabla, etc.) que intenta recoger la variedad de manifestaciones visuales que podemos percibir relacionadas con su tamaño, forma, color, profundidad, cantidad y calidad de sales disueltas, tiempo de permanencia del agua, etc.

Pero, ¿existe realmente tal variedad de ecosistemas acuáticos? La respuesta sería que, desde una perspectiva ecológica, esta diversidad de paisajes del agua es más aparente que real. Si analizamos conjuntamente todas estas entidades tratando de caracterizar los procesos que subyacen en la escena percibida (ocultos a nuestros sentidos), vemos que existe una unidad de funcionamiento común a todos los sistemas ecológicos de la Ecosfera. La unidad funcional de todos los ecosistemas se relaciona con su flujo abierto de energía y el ciclo de materia. Es la única obra que se representa en este «Teatro Ecológico», como se ha definido a nuestro planeta. iar pero la representació pre la misma. Para que se pueda interpretar la función, la gran mayoría de los ecosistemas de la Ecosfera (en este caso los acuáticos), están formados por tres componentes básicos; productores primarios, consumidores y maleria orgánica/inorgánica. Las plantas verdes denominadas productores primarios o autótrofos fijan la energía lumínica del Sol a través de la fotosintesis para elaborar compuestos del carbono (energía química) a partir del CO_{2} sustancias inorgánicas y agua. El metabolismo autotrófico controla la entrada del flujo energía al sistema y solo puede llevarse a cabo en las zonas iluminadas de los ecosistemas constituyendo su banda verde.
 da por los autótrofos, la procesan y finalmente la descomponen en compuestos inorgánicos, cerrando de esta forma el ciclo de materia. La componente heterotrófica se subdivide en dos; consumidores propiamente dichos y los descomponedores. Los descomponedores o bacterias y hongos rompen la materia orgánica muerta en sustancias inorgánicas poniéndolas de nuevo en circulación. La actividad heterotrófica de los descomponedores controla el reciclado de los materiales y se localiza en los ecosistemas, básicamente, en aquellas zonas donde se acumula la materia orgánica,
na filtradora que suministra agua para el desarrollo de determinadas actividades humanas. Están llenos de vida, básicamente se encuentran poblados por comunidades bacterianas que juegan un papel esencial en determinados procesos geoquímicos, a los que se consideraba sólo dependientes de factores abióticos. Son por consiguiente sistemas ecológicos abiertos, típica-
 uəosod sonjynэe sot 'səpurunuorida seurisisona sono op up!jonpord una gran importancia en la definición de la funcionalidad de muchos ecosistemas acuáticos y terrestres de la superficie de los continentes que reciben sus descargas ya que por ellos circula un flujo de agua lleno de energía química y materiales que será en parte, procesado en su interior y en parte utilizado por los sistemas epicontinentales que alimenta.
 portamiento entre los ecosistemas acuáticos epicontinentales y subterráneos nos obligan a gestionarlos de una forma diferente. Como ejemplo, dado que el volumen de agua almacenada en los acuiferos es muy superior a la suma de la de los lagos, embalses o ríos y se mueve con una gran lentitud (decenios y hasta milenios) respecto a los ecosistemas epicontinentales (de días hasta años) poseen una gran increia que les hace estar menos sometidos a la variabilidad del clima. Esta característica apoya la explotación conjunta de las aguas subterráneas y superficiales para gestionar los recursos hídricos en zonas donde se producen episodios de sequía. Durante los ciclos húmedos se usa el agua superficial sobrante para recargar natural y artificialmente los acuíferos y durante la sequía se bombean las aguas subterráneas. De esta forma no haría falta construir nuevos embalses
 seadas. Otro aspecto sumamente importante de cara a su gestión es su vulnerabilidad frente a la contaminación. Los acuiferos aunque son bastante resistentes a la contaminación frente a la fragilidad de rios y lagos una vez alterados, dadas su bajas tasas de renovación y la lentitud de sus flujos, su descontaminación suele ser un proceso complicado, largo y muy costoso. Los lagos y especialmente los ríos tienen una gran capacidad de recuperarse una vez que haya cesado el vertido o cualquier otra perturbación de origen antrópico.
sopmuvunuoo senie sel 'eopuggsis en!̣oodsiod vun ofeq κ 'oumph ${ }^{10} \mathrm{~d}$ contribuyen cuantitativamente muy poco al balance total de materia y

En los primeros, los ríos, todo el sistema se organiza alrededor de un eje longitudinal cabecera-desembocadura. Con un tiempo de renovación muy breve ($10-12$ dias) el agua circula con gran rapidez hacia el mar transportando materiales disueltos y en suspensión. Se trata de un sistema transporte horizontal con un dinamismo básicamente abiótico impuesto por la direccionalidad de un flujo turbulento que genera una gran variabilidad ambiental. El factor ecológico clave que determina la integridad de estos ecosistemas va a ser el régimen de caudales que circula por su cauce. El río posee un marcado carácter heterotrófico mantenido por una aportación de materia orgánica procedentes de la cuenca y que explica su capacidad de autodepuración cuando se le somete a la tensión de un vertido orgánico. Dentro de los ambientes de aguas quietas o leníticas la profundidad genera un gradiente de organización estructural en cuyos extremos se sitúan los lagos y los humedales. Los lagos o masas de agua profundas constituyen los ejemplos más claros de una organización alrededor de un eje vertical definido por la gravedad y un gradiente de luz que genera dos compartimentos: uno autotrófico donde predominan los productores primarios y otro heterotrófico donde no llega luz suficiente como para que se pueda realizar la fotosíntesis, donde se desarrollan consumidores y descomponedores. Ambos subsistemas se encuentran acoplados a través de un flujo químico que va del plancton al bentos. Su dinamismo viene determinado por su régimen térmico que define los periodos y duración de las fases de estratificación y mezcla. La gravedad hace que cualquier elemento que entre en su cubeta tenga una alta probabilidad de ser transportado hacia el fondo permaneciendo un tiempo medio determinado según su tasa de renovación que a diferencia de los ríos puede variar entre I a 100 años, por este motivo es mucho más difícil limpiar un lago que un río contaminado. Cuando la luz no es un factor limitante de la producción primaria nos encontramos frente a los cuerpos de agua poco profundas o humedales caracterizados por un elevado dinamismo espacio-temporal y un eje de organización horizontal orilla-centro. Son ecosistemas muy reactivos y difíciles de gestionar, ya que su integridad depende de múltiples factores y procesos ecológicos que tienen lugar en sus cubetas y cuencas y que se expresan a distintas escalas espaciales y temporales.

Respecto a las masas de agua situadas por debajo de la superficie de los continentes encontramos a los acuiferos que son algo más que una colum-

de produccion en sentido tecnologico existen otro tipo de demandas de agua.

Por una parte existe una demanda fisiológica o de subsistencia, es decir el agua necesaria para mantener nuestro equilibrio hídrico. Las cifras son muy parecidas para todos los individuos del planeta en condiciones normales de actividad (unos dos litros diarios). Por otra, hay una demanda que podríamos llamar cultural es decir, el agua que empleamos para cocinar, lavamos, ducharnos, bañarnos, fregar, inodoro, piscinas, regar, fuentes, etc. y que paradójicamente, en la mayoría de los casos, toda ella es potable. Si la demanda fisiológica es prácticamente la misma para todos los seres humanos, no ocurre lo mismo con la demanda cultural en donde existen unas asimetrías muy marcadas alrededor del denominado eje NorteSur.

Mientras que en los países subdesarrollados existen problemas graves para satisfacer incluso el consumo fisiologico, en las sociedades desarrolladas la demanda crece de una forma constante y alarmante, actuando como si las disponibilidades del recurso fueran prácticamente ilimitadas. El consumo medio por habitante y día se sitúa en un país desarrollado en 268 litros que obtiene de la red de abastecimiento a un bajísimo precio y de los que solo utiliza un $0,8 \%$ para beber. El despilfarro mayor de agua se produce en los cuartos de baño donde se consumen del 50 al 65% del total diario. Como cjemplo del derroche, empleamos unos 10 litros de agua potable para diluir unos decilitros de orina. Además hoy día uno de los indicadores del nivel de calidad de las viviendas está en el número de baños y ascos que posec. Por el contrario en muchos países subdesarrollados el consumo por habitante es 70 veces menor teniendo además que desplazarse, a veces hasta distancias considerables, hasta un pozo o fuente para obtenerla sin garantías de potabilidad. Se usa para lo imprescindible; beber. cocinar, lavarse y fregar, midiendo cada litro que se consume.

Para evaluar las demandas de agua sus usos se agrupan en doméstico o abastecimiento (aseo, cocina, inodoro), industrial (fabricación de bienes manufacturados, refrigeracionn) y agricola (regadios). Por otra parte hay que ener en cuenta que no toda el agua extraiga es consumida y por tanto en una mayor o menor proporción vuelve a los ecosistemas acuáticos. También gran parte del agua transportada se evapora o transpira. En el abastecimiento urbano el bajo grado de eficiencia de la redes de distribución es,
cantidad no llega a ser una cifra importante respecto al total del consumo si exige una gran calidad. La tendencia al incremento de uso de agua para abastecimiento e industrial trae consigo un aumento considerable de pérdida de su calidad provocada por la contaminación de los vertidos.

Como consecuencia de esta demanda creciente este siglo ha vivido el aumento más acelerado de la historia de la humanidad. Entre 1900 y 1995 la extracción de agua se ha sextuplicado y ha llegado a ser dos veces superior a la tasa de crecimiento demográfico. Este rápido aumento de la demanda está ocasionando una fuerte presión sobre los recursos hídricos de muchas regiones del mundo de tal forma que cerea del 10% de la población mundial viven en países que pueden considerarse en una situación crítica y se estima que de seguir con esta situación dos tercios de la población mundial se enfrentarán a problemas de escasez de agua para el año 2025.

Por otra parte, casi 150 de las 214 cuencas fluviales más grandes de la Tierra afectan a dos países y 50 cuencas son compartidas entre 3 a 10 paises. Juntas mantienen el 40% de la población mundial y todos sus países reclaman sus derechos al uso libre de sus recursos hídricos. Es en el Medio Oriente donde los desequilibrios entre los límites políticos y naturales (interacción del ciclo del agua con la cuenca hidrográfica) se magnifican. Las aguas de los rios Jordán, Tigris-Eufrates y Nilo son reclamadas por países como Isracl y Siria, Irak y Siria, Egipto, Etiopía y Sudan. Tambiên dentro de los propios países se producen importantes conflictos regionales por el control del agua de las cuencas intercomunitarias (Aragón y el control de las aguas del río Ebro, en España). El agua se ha convertido y será aún mayor en el futuro un tema de conflicto y de tensión internacional creciente. Cada vez es más frecuente oír hablar de las futuras guerras por el agua más que los por recursos energéticos fósiles.
 planeta fácilmente accesible a la sociedad humana es del orden de 12.500 km^{3} de los que se utiliza aproximadamente la mitad. Dado que se prevé un incremento de alrededor del 50% de la población mundial en los próximos cincuenta años, unido a un aumento de la demanda como resultado del crecimiento económico y cambio de estilo de vida, no quedan muchas posibilidades de seguir incrementado la demanda sobre todo si queremos mantener determinados volúmenes de agua y un nivel de funcionalidad de
los ecosistemas acuáticos que permitan mantener otras actividades con repercusiones económicas como la pesca, la caza el transporte, la energía hidroeléctrica, etc.
3.3. El control de los recursos hídricos. La oferta de agua

La gestión del agua es una de las actividades relacionadas con la explotación del medio natural más antigua que se conoce. Varios autores han puesto de manifiesto como se puede hablar de una planificación hidrologica con una antigüedad-de más de 7.000 años de antigüedad tomando como referencia las culturas sumeria y egipcia. Curiosamente los objetivos de esta paleo planificación hidrológica cran básicamente los mismos que los actuales; captar, almacenar y redistribuir agua con el fin de reducir la variabilidad natural de los flujos, principalmente los fluviales, dada la desigual distribución de éstos en el espacio y en el tiempo. Antiguamente con el pequef̃o tamaño de la población humana la prioridad era el abastecimiento de agua a los campos de cultivo pero en la actualidad con el espectacular crecimiento demográfico y las previsiones de abandono del
 competencia creciente entre el suministro de agua para la agricultura y las ciudades.

Aunque desgraciadamente los objetivos de la planificación hidrológica antigua y la actual sean todavia muy parecidos, es evidente que el gran aumento de la demanda de agua ha requerido un continuo reajuste de los dispositivos de captación y distribución que ha servido para impulsar el desarrollo de la tecnología hidráulica que ha permitido la construcción de numerosas presas, trasvases de aguas entre cuencas o la explotación intensiva de unos ecosistemas prácticamente olvidados como son los acuíferos. En los países subdesarrollados pueden tener o no tener suficiente agua para sus demandas, pero lo que no tienen es dinero para realizar grandes obras hidráulicas, por lo que la gente vive donde hay agua. En los países desarrollados hay dinero suficiente como para realizar grandes trasvases de agua y hacer posible el desarrollo económico de una zona desértica. La

tán regulados por diferentes tipos de infracstructuras hidráulicas que generan importantes impactos en el funcionamiento de los sistemas naturales.

Embalses

 quiere un sistema de regulación basado fundamentalmente en grandes presas. Éstas permiten mantener reservas para finalidades muy diferentes: producción de energía, riegos, usos industriales y urbanos, aparte del control de caudales e inundaciones.

Los embalses, aunque muchas veces necesarios, no son la panacea para solucionar las demandas de agua. Tienen grandes perdidas por evaporación y plantean graves problemas técnicos para mantener una calidad de agua óptima para múltiples usos y evitar el aterramiento de su cubeta. Pero, son los problemas ambientales generados por la construcción de embalses los que adquieren una mayor dimensión. La alteración de las condiciones naturales dinámicas del río donde se ubica provoca una respuesta que se expresa a corto medio y largo plazo Se producen transformaciones en los valles anegados por las aguas, en el propio embalse y aguas abajo de la presa por las modificaciones del régimen de caudales y
 balses, especialmente los de grandes dimensiones, a luz de los efectos negativos que han generado desde su construcción no se habrian hecho, al menos con las mismas características del proyecto vigente. Pero la realidad es que hoy día prácticamente todos los ríos importantes del planeta poseen un sistema de regulación por grandes embalses.

A nivel biosférico, y como apunta el profesor Ramón Margalef, «pretender recuperar y hacer recircular toda el agua de los ríos, antes de llegar al mar, es, como si una persona fuera obligada a beber su propia orina, lo cual es incompatible con la continuación de la vida».

Como conclusión y debido a los elevados costes económicos y medioambientales que suponen la construcción de grandes presas los proyectos deben someterse a rigurosos estudios de Evaluación de Impacto Ambiental que abarquen todas las dimensiones (paisajística, ecológica, socioeconómica, cultural...) incluido un análisis muy riguroso de costes-beneficios. En
siempre dentro de las tasas de renovación de los distintos tipos de ecosistemas acuáticos que la mantienen (ríos, lagos, acuiferos). Como regla de salida hay que tener en cuenta que: las emisiones de vertidos a los ecosistemas acuáticos deben estar siempre dentro de su capacidad de asimilación,

 Hay que tener presente que una gestion irresponsable de los recursos hídricos puede reducir de una forma irreversible el valor de los ecosistemas para la sociedad al perderse su capacidad de generar en el futuro servicios y bienes. Todo esto implica que la gestión del agua tiene que tener unos limites ecológicos impuestos por la capacidad de carga o acogida de los ecosistemas acuáticos.

Bajo esta forma de entender la gestión de los recursos hídricos la degradación de los ecosistemas acuáticos no es algo inevitable; es simplemente más barato y más fácil a corto plazo. El mantener la integridad de nuestros ríos, lagos, humedales o acuiferos no es incompatible con las exigencias económicas. Hoy sabemos que un medio natural sano es la base de una economía sana.

Es evidente que propuestas de explotación-conservación del agua como la que propone la gestión ecosistémica no son fáciles, ya que implican cambios de fondo importantes en los modos actuales de administrar los ecosistemas acuáticos y los recursos que cllos representan. Pero entendemos que sólo a través de aproximaciones y actitudes ecosistémicas es decir, sólo si tenemos en cuenta en la planificación y ordenación territorial los principios ecológicos que explican como se organizan y funcionan los ecosistemas, se pueden superar los errores de intervención y gestión cometidos en el pasado.

En este contexto, el futuro de los ecosistemas acuáticos de un territorio y los recursos que representan no van a ir ligados sólo al desarrollo de nuevas normativas legales o a la declaración de nuevos espacios protegidos sino al incremento de conocimientos relacionados con su organización, funcionamiento y evolución en el tiempo. Por este motivo, es necesario que dentro de las nuevas políticas del agua exista un equilibrio entre los res pilares básicos que deberían sustentar cualquier estrategia de toma de decisiones sobre la gestión de los recursos hídricos suministrados por los ecosistemas; el cientifico, el social y el económico. Solo unos principios de

Bienes	Servicios
- Suministro de agua (doméstico,	- Control de caudales.
agricultura, industria).	- Transporte.
- Acuicultura.	- Almacenamiento de agua.
- Pesqueria.	- Fertilización de suelo.
- Generación hidroeléctrica.	- Depuración y mantenimiento de
- Minerales y materiales.	calidad de aguas y suelo.
- Reservorio genético.	- Hábitat de fauna y flora.
- Espacios para el recreo (natación	- Asimilación de residuos.
y navegación).	- Sumidero y fuente de nutrientes.
- Espacio para la educación.	- Retención de sedimentos.
- Bienes culturales.	- Control de erosión.
	- Placer estético y emocional.
	- Heterogeneidad del paisaje.

dinamismo del sistema ecológico que la mantiene si queremos tener un abastecimiento sostenible de este elemento. En la gestión ecosistémica a diferencia de los modelos tradicionales que se centran en extraer de forma independiente distintos tipos de recursos (agua, pesca, energía hidroeléctrica, etc.) para abastecer las demandas del mercado su objetivo prioritario es el mantenimiento de los factores y procesos que los generan. Sus actuaciones van dirigidas hacia la protección de las funciones ecologicas de los ecosistemas acuáticos que generan bienes y servicios a la sociedad mas que a la producción de éstos.
Los ecosistemas acuáticos sanos constituyen un capital natural que es necesario conservar si queremos seguir recibiendo sus múltiples y variados servicios. Para conseguir esto, los sistemas humanos tiene que aprender a vivir dentro de las restricciones biofíicas que imponen los ecosistemas acuáticos como fuentes de recursos naturales en general e hídricos en particular o como sumideros de residuos. Como regla de entrada hay que tener en cuenta que es necesario que las tasas de extracción de agua estén
tros ecosistemas acuáticos y cómo podemos beneficiamos de ella junto con otros muchos y variados bienes y servicios. En este contexto es necesario controlar especialmente los usos agrícolas y urbanos. Por ejemplo ¿qué sentido tiene producir más alimento aumentando la superficie de regadio si no maximizamos las téenicas de riego de los ya existentes? o ¿qué sentido tiene incrementar la oferta de agua a las ciudades si el consumo por habitante/día es exagerado y un porcentaje muy importante del agua aplicada se pierde en su distribución? Con tecnología de la que disponemos actualmente los agricultores podrían disminuir sus demandas de agua entre un 5$10 \%$, las industrias un $40-90 \%$ y las ciudades un tercio \sin ningún sacrificio económico o de calidad de vida.

La explicación de esta gran contradicción se encuentra, en parte, en el precio del agua. Aunque los precios son muy variables según las localidades continúan siendo prácticamente gratis por lo que incitan al derroche y por tanto contribuyen al incremento de la demanda. Los costes son mínimos incluso para el agua tratada y por este motivo colocamos ladrillos, regamos los jardines o limpiamos los coches con agua potable.

En un principio en muchos paises cuando el agua de calidad cra abundante era gratis pero conforme se ha ido despilfarrando y contaminando se ha hecho escasa y entrado en el dominio de la economía. En la Declaración de la Conferencia de Dublín se admitió que el agua tiene que tener un valor económico en todos los usos y debería ser reconocida como un bien económico. Cada día se habla y se escribe más sobre la Economía del agua un tema muy controvertido en el que se necesita incluir criterios ecológicos y éticos antes de aplicar de forma generalizada algunas de sus propuestas (mercados del agua, etc.). De becho algunos autores defienden el agua como un activo social es decir un recurso especial que tiene un valor cultural y ecológico que significa más que el mero beneficio de un determinado uso con precio en el mercado.
 racional es necesario hacer las cuentas del agua de las grandes cuencas hidrográficas y es importante que el precio del agua se aproxime a su precio de coste.

Por último no hay que olvidar que tenemos que promover programas de Educación Ambiental y Comunicación junto con programas de Participación Ciudadana con el objetivo de lograr una toma de conciencia eco- UCL Press.
Naiman, R. J., M
man, R. J., Magnuson, J. J., Mckngeht, D. M. y Stanford, J. A. (1995):
The Frehswater Imperative. A Research Agenda. Washington. Island
Prat, N. (1995): El agua en los ecosistemas. El Campo. Monográfico sobre el Agua.

- (1996): «Agua y Desarrollo Sostenible: la cuadratura del circulo». Vasconia,

NATIONAL RESEARCH COUNCIL. (1991): Opportunities in the Hydrologic Sciences. Washington, D. C. National Academic Press.

Odum, E. P. (1992): Ecologia: Bases cientificas para un nuevo paradigma. Barcelona. Vedra.

Postel, S. (1997).: Last Oasis: Facing Water Scarcity. New York. W. W. Norton \& Co. Edición en castellano de la 1^{*} edición. 1993. El Ultimo Oasis. Como afrontar la escasez de agua. Apóstrofe.

Postel, S. y Carpenter, S. (1997): «Freshwater Ecosystem Servicess. In: G.C. Dally (ed). Nature's Services. Societal Dependence on Natural Ecosystems. Washington. Island Press. Stauffer, J. (1999): Water Crisis. Consortium Book Sales \& Dist.

Shiklomanov, I. A. (1991): A guide to the world's freshwater resources. In: P.H. Gleick (ed). Oxford University Press. Water in crisis.

- (1998): World Water Resources: A new Appraisal and Assessment for the

2/st Century. UNESCO. The Coming World Crisis in Water and We Can Do About ii. Welcome Rain.

Sumpsi, J. M., Garrido, A., Blaco, M., Varela, C. y Iglesias. E. (1998): Economía y Política de Gestión del Agua en la Agricultura. Madrid. Mundi
Prensa.

Szollosi-Nagy, A.; Naus, P. y Biorklund, G. (1998): «Evaluación de los re-

VallumTMr．J．R．（1974）：The algal bowl．Lakes and mon．Dept．Environment Fisheries and Marine Service．Canada．Edición en espanhol．1978．Introdive－ ción a la Limuologla．Los lagos y el hombre．Barcelona．Omega．
Ward，C．（1997）：Rcficted in Water：A Crisis of Social Responsibility．Global Is－ sues．Cissell Academic．

En la red

－www pangea．org／orgfforoagua
Foro sobre el agua en español
－wพw oiedu／friespagnolinder hom
Ascisción francesa no lucrativa que reúne numerosas entidades intermaciones relacionadas con la gestión del agua
－www hydroweb．com
Asociación internacional de profesionales de Hidrologia Ambiental

Asociación internacional de profesional dedicados a la gestion de recursos hif－ dricos
－wwท⿱䒑⿻二丨䒑口 pongra．arglorg／unesco
Hoja web del Programa Hidrológico Internacional de UNESCO
－www，worldwater．arg
Posibilidad de acceder a datos actualizados continumente relacionados con el estado de los recursos hidricos mundiales y que forman parte de la publicación bianual The World＇s Water．

Desde cada una estas direcciones puede accederse a otras muchas hojps web de institaciones，asocinciones y programas nacionales e intemacionales felacio－ nodos con el estudio y gestión del agua．

[^0]: aprovechamiento por excelencia de la energia solar, tan sélo emplea menos de un 1 象 de la

