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Design of plasmonic superconducting transition-edge-
sensors with neural networks  

Sergio G. Rodrigo1,2,*, Carlos Pobes2,3, Luis Martín-Moreno2,3, and Agustín Camón Lasheras2,3 

1Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain.  
2Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain. 

3Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza 50009, Spain. 

*e-mail: sergut@unizar.es 

We demonstrate the use of neural networks (NN) to improve the design of plasmonic nanostructures. 
The scattering properties of a plasmonic nanostructure calculated by a slow numerical method is subrogated 
by a trained NN. The NN results are almost indistinguishable from those calculated with the numerical 
solver (FDTD method), but up to 106 times faster. We illustrate the capabilities of this approach by 
optimizing a Transition Edge Sensor (TES) to efficiently absorb infrared light. TES are extremely sensitive 
thermometers made of superconducting metals operating at their transition temperature, where small 
variations in temperature give rise to a measurable increase in electrical resistance. Coupled to suitable 
absorbers, they are used as radiation detectors with very good energy resolution in several experiments. 
TES has been thoroughly investigated for the detection of radiation in the X-ray range. Recently, we 
purposed a plasmonic TES to work at telecom wavelengths [1]. We designed a high absorbing TES (98% 
at 𝜆𝜆 = 1550 nm) by nanostructuring directly its metal surface, avoiding the use of an extra absorber to reduce 
the total heat capacity and to simplify the fabrication.  

[1] Sergio G. Rodrigo, Carlos Pobes, Marta Sánchez Casi, Luis Martín-Moreno, and Agustín Camón Lasheras, Opt. 
Express 30, 12368-12377 (2022) 
 
Acknowledgements: All authors acknowledge also the Aragón government project Q-MAD.  

 

 
 
Figure 1. The NN model takes as input: the geometrical parameters of the nanostructure, the dielectric 
constants of the materials, and the wavelength of light 𝜆𝜆. The output layer predicts the absorption at 𝜆𝜆. 
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Transition metals oxidation state determination  
through Electron Energy-Loss Spectra  

and Support Vector Machines 
Daniel del Pozo Bueno1,2,*, Francesca Peiró1,2, Sònia Estradé1,2 

1LENS-MIND, Dept. Enginyeries Electrónica i Biomèdica, Universitat de Barcelona, C/ Martí i Franquès, 1-11 
 08028 Barcelona, Spain.  2Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 

 C/ Martí i Franquès, 1-11 08028 Barcelona, Spain. 

*e-mail: ddelpozo@ub.edu 

Electron Energy-Loss Spectroscopy (EELS) is a powerful spectroscopic technique to study locally the 
composition and properties of materials at the nanoscale, which is carried out in the Scanning and 
Transmission Electron Microscopes (S/TEM). The recent technological advances in S/TEM devices are 
leading to higher spatial and energy resolution resulting in an enormous increase of the total amount of data 
acquired in EELS measurements. Thus, currently this technique offers better energy and spatial resolutions 
making possible a better nanometric characterization, at the cost of producing large spectral datasets.  

The machine learning methods provide a large variety of tools to properly deal with these large amounts 
of spectral data in an automated manner, at the same time that allow for extracting valuable physical 
information. A promising machine learning strategy for identifying EELS data is the Support Vector 
Machine (SVM) [1], in particular the soft-margin SVM, which is a supervised machine learning algorithm 
allowing the multiclass classification, even with non-linear data, and that can be used as a probabilistic 
classifier.  

The soft-margin SVM has shown promising results identifying the oxidation state in transition metal 
(TM) oxides, manganese and iron oxides, through the study of their EELS spectra, namely, their white lines 
(L3 and L2) as shown in Figure 1 [2]. The algorithm has been implemented in Python from the library Scikit-
learn [3], in particular, the LIBSVM library [4]. It has presented a performance, above 90% classifying the 
TM oxidation state, even if considering the usual level of noise and additional instrumental energy shifts.  

In conclusion, the SVM applied to EEL spectra makes the most of its simplicity (few parameters to 
optimize) and short computation times to correctly and automatically identify the oxidation state of the 
transition metals. Furthermore, for large spectral datasets the computing times can even be reduced by 
implementing the Stochastic Gradient Descend (SDG), which is an iterative method that optimizes, and so, 
accelerates model training enabling also faster parameter optimization. 
 

 
Figure 1. Iron oxides Electron Energy-Loss Spectra: a) Iron white lines for the 
magnetite (Fe3O4) and wüstite (FeO) oxides, b) Manganese white lines for 
three manganese oxides. 

 
[1] C. Cortes and V. Vapnik, Machine Learning 20, 273 (1995). 
[2] D. del-Pozo-Bueno, F. Peiró and S. Estradé, Ultramicroscopy 221, 113190 (2021). 
[3] F. Pedregosa et al., Journal of Machine Learning Research 12, 2825 (2011). 
[4] C. C. Chang and C. J. Lin, ACM Trans. Intell. Syst. Technol. 2, 1-39 (2011). 
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Certificates of quantum many-body properties
assisted by machine learning

Borja Requena1,∗, Gorka Muñoz-Gil1,2, Maciej Lewenstein1,3,
Vedran Dunjko4, Jordi Tura5,6
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3ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.

4LIACS, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, Netherlands.
5 Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands.
6Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany

*e-mail: borja.requena@icfo.eu

Computationally intractable tasks are often encountered in physics and optimization. Such tasks
usually comprise a cost function to be optimized over a so-called feasible set, which is specified by a set
of constraints. This may yield, in general, to difficult and non-convex optimization tasks. A number of
standard methods are used to tackle such problems: variational approaches focus on parameterizing a
subclass of solutions within the feasible set. In contrast, relaxation techniques have been proposed to
approximate it from outside, thus complementing the variational approach to provide ultimate bounds
to the global optimal solution.

In this work [1], we propose a novel approach combining the power of relaxation techniques with
deep reinforcement learning in order to find the best possible bounds within a limited computational
budget. We illustrate the viability of the method in the context of finding the ground state energy
of many-body quantum systems, a paradigmatic problem in quantum physics. We benchmark our
approach against other classical optimization algorithms such as breadth-first search or Monte-Carlo,
and we characterize the effect of transfer learning. We find the latter may be indicative of phase
transitions, implementing a completely autonomous approach. Finally, we provide tools to generalize
the method to other common applications in the field of quantum information processing.

[1] B. Requena, G. Muñoz-Gil, M. Lewenstein, V. Dunjko, J. Tura, arXiv:2103.03830 (2021).

Acknowledgements: ICFO group acknowledges support from: ERC AdG NOQIA, Agencia Estatal de Investiga-
ción (the R&D project CEX2019-000910-S, funded by MCIN/ AEI/10.13039/501100011033, Plan National FIDEUA
PID2019-106901GB-I00, FPI), Fundació Privada Cellex, Fundació Mir-Puig, and from Generalitat de Catalunya (AGAUR
Grant No. 2017 SGR 1341, CERCA program). G.M.-G. acknowledges funding from Fundació Obra Social “la Caixa”
(LCF-ICFO grant). J. T. thanks the Alexander von Humboldt foundation for support. This project has received funding
from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project number 414325145 in the
framework of the Austrian Science Fund (FWF): SFB F7104. This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No 899354. This work was suppor-
ted by the Dutch Research Council (NWO/OCW), as part of the Quantum Software Consortium programme (project
number 024.003.037).
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Machine Learning and Displacement transformations
to locate the Many Body Localization transition

Pablo Serna1,∗, Miguel Ortuño1, Andrés M. Somoza1

1 Departamento de Física—CIOyN, Universidad de Murcia, Murcia 30.071, Spain.

*e-mail: pablo.sernamtnez@um.es

The Many-Body localization (MBL) transition [1] is one of the simplest interacting quantum pro-
blems, and yet even its precise location in relatively simple models is disputed. The main hurdle is
the exponential increase of the size of the Hilbert space with the system size. It imposes constraints
to memory and computational time that are very hard to overcome.

Recently, several techniques have been developed to deal with this issue. In particular, the use
of unitary displacement transformations [2,3] to obtain eigenstates provides a way to control the
approximations that are necessarily made to access large system sizes. With this technique the memory
constraint can be overcome but it is compensated with a longer computational time to fully diagonalize
the Hamiltonian [4].

We will show how using Machine Learning techniques, namely gradient boosting and deep neural
networks, we can exploit the data obtained during the process of diagonalization with displacement
transformations to speed up the proccess. The insight from this techniques allow us to classify localized
and extended states up to system sizes much larger than what is reported in the literature L ≫ 32.

[1] Basko DM, Aleiner IL, Altshuler BL. Ann Phys (2006) 321:1126–205. doi:10.1016/j.aop.2005.11.014
[2] Rademaker L, Ortuño M. Phys. Rev. Lett. 116 (2016) 010404. doi:10.1103/PhysRevLett.116.010404
[3] Rademaker L, Ortuño M, Somoza AM. Annalen der Physik 529 (2017), 1600322. doi:10.1002/andp.201600322
[4] Serna P, Ortuño M, Somoza AM. Frontiers in Physics (2021) 664. doi:10.3389/fphy.2021.767001

Acknowledgements: We acknowledge support by AEI (Spain) grant PID2019-104272RB-C52 and Fundacion Seneca
grant 19907/GERM/15.
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Deep learning for disordered topological insulators
through their entanglement spectrum

Alejandro José Uría-Álvarez1,∗, Daniel Molpeceres-Mingo1, Juan José Palacios1

1Departamento de Física de la Materia Condensada, Condensed Matter Physics Center (IFIMAC), and
Instituto Nicolás Cabrera (INC), Universidad Autónoma de Madrid, Cantoblanco 28049, Spain

*e-mail: alejandro.uria@uam.es

Calculation of topological invariants for crystalline systems is well understood in reciprocal space,
allowing for the topological classification of a wide spectrum of materials [1, 2]. While working in the
reciprocal space may still be possible for disordered materials, computations will become too expensive
due to the mandatory increase in cell size. On top of that, the most popular techniques such as the
Wilson loop [3] are only well-defined in insulating materials, generally defined as systems with fully
occupied bands or partially occupied ones, but separated from the rest by a gap across the whole
Brillouin zone.

In this work [4], we present a technique based on the entanglement spectrum, which can be used
to identify the hidden topology of systems [5] without translational invariance. By training a neural
network to distinguish between trivial and topological phases using the entanglement spectrum ob-
tained from crystalline or weakly disordered phases, we can predict the topological phase diagram
for generic disordered systems. This approach becomes particularly useful for gapless systems, while
providing a computational speed-up compared to the commonly used Wilson loop technique for gap-
ful situations. Our methodology is illustrated in two-dimensional models based on the Wilson-Dirac
lattice Hamiltonian.

Figure 1. Topological phase diagram as
predicted by the neural network. Black
lines correspond to gap contour lines
for 0.1 eV.

Figure 2. Edge state in (a) an amorphous lattice and
(b) in the Bethe lattice.

[1] M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A. Bernevig, and Z. Wang, Nature 566, 480 (2019).
[2] T. Olsen, E. Andersen, T. Okugawa, D. Torelli, T. Deilmann, and K. S. Thygesen, Phys. Rev. Materials
3, 024005(2019).
[3] Dominik Gresch, Gabriel Autes, Oleg V. Yazyev, Matthias Troyer, David Vanderbilt, B. Andrei Bernevig,
and Alexey A. Soluyanov, Phys. Rev. B, 95, 075146 (2017)
[4] A. J. Uría-Álvarez, D. Molpeceres-Mingo, J. J. Palacios Phys. Rev. B 105, 155128 (2022).
[5] L. Fidkowski, Phys. Rev. Lett. 104, 130502 (2010)
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Deep Learning for the modeling and inverse design of 
radiative heat transfer 

J. J. García-Esteban*, J. Bravo-Abad, J. C. Cuevas  

Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), 
Universidad Autónoma de Madrid, E-28049 Madrid, Spain.  

*e-mail: juanjose.garciae@uam.es 

Deep learning is having a tremendous impact in many areas of computer science and engineering. 
Motivated by this success, deep neural networks are attracting an increasing attention in many other 
disciplines, including physical sciences. In this work [1], we show that artificial neural networks can be 
successfully used in the theoretical modeling and analysis of a variety of radiative heat transfer phenomena 
and devices. By using a set of custom-designed numerical methods able to efficiently generate the required 
training datasets, we demonstrate this approach in the context of three very different problems, namely, (i) 
near-field radiative heat transfer between multilayer systems that form hyperbolic metamaterials (figure 1), 
(ii) passive radiate cooling in photonic-crystal slab structures (figure 2), and (iii) thermal emission of 
subwavelength objects. Despite their fundamental differences in nature, in all three cases we show that 
simple neural network architectures trained with datasets of moderate size can be used as fast and accurate 
surrogates for doing numerical simulations, as well as engines for solving inverse design and optimization 
in the context of radiative heat transfer. Overall, our work shows that deep learning and artificial neural 
networks provide a valuable and versatile toolkit for advancing the field of thermal radiation. 

[1] J. J. García-Esteban, J. Bravo-Abad and J. C. Cuevas, Phys. Rev. Appl. 6, 064006 (2021). 
[2] H. Iizuka and S. Fan, Phys. Rev. Lett. 120, 063901 (2018). 
[3] J. Kou, Z. Jurado, Z. Chen, S. Fan and A. J. Minnich, ACS Photonics 4, 626 (2017). 
 
Acknowledgements: J.J.G.E. was supported by the Spanish Ministry of Science and Innovation through a FPU grant 
(FPU19/05281). J.B.A. acknowledges financial support from Ministerio de Ciencia, Innovación y Universidades 
(RTI2018-098452-B-I00). J.C.C. acknowledges funding from the Spanish Ministry of Science and Innovation 
(PID2020-114880GB-I00). 
 

 
Figure 1. Sketch of two identical multilayer systems 
separated by vacuum and composed of layers of width 
di alternating between a Drude metal (grey) with 
permittivity εm and a dielectric (blue) with 
permittivity εd. Inspired by the design from [2]. 

 
Figure 2. Left: Schematics of a silica mirror used in [3] 
as a passive radiative cooler, consisting of a SiO2 slab of 
thickness dSiO2 and a silver thin film of thickness dAg. 
Right: same mirror, but with a periodic array of holes in 
the silica layer, with radius R and lattice parameter a. 
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Can random laser networks learn? 
Pedro Moronta1,*, Antonio Consoli1,2, Jorge Bravo-Abad3, Ceferino López1 
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Universidad Autónoma de Madrid, Spain. 

*e-mail: p.moronta@csic.es 

The ever-increasing energy demand of conventional Artificial Intelligence (AI) hardware calls for 
disruptive approaches in which the training process can be less power-hungry and less environmentally 
harmful. Reservoir computing and extreme machine learning are two particularly appealing approaches 
that, by exploiting the natural dynamics of input-driven randomly connected neural networks, feature 
minimal energy requirements. Remarkably, photonics is emerging as a natural testbed to implement both 
reservoir computing and extreme machine learning that can represent realistic alternatives to the ubiquitous 
von Neumann architecture [1]. 

In this preliminary work, we discuss how a network of coupled random lasers (RLs) can be tailored to 
realize a novel platform for reservoir computing and extreme machine learning. We generalize to complex 
networks our recent experimental and numerical work investigating the coupling of few RLs based on a 
pumped gain-medium strip connecting two rough mirrors [2]. We particularly focus on a system based on 
three-resonator arranged in a Z-shaped configuration and show how the coupling of lasers modes between 
non-neighbouring resonators via a linking resonator can indeed provide the basis for a whole new paradigm 
in reservoir computing. 

 
[1] Shen, Y., Harris, N., Skirlo, S. et al., Nat. Photon. 11, 441 (2017). 
[2] N. Caselli, A. Consoli, Á. Mateos Sánchez, and C. López, Optica 8, 193(2021). 
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Graph convolutional neural networks for accelerating 
property predictions of small organic molecules  

Miguel Dalmau1,2,*, Jorge Bravo-Abad2, Eduardo Hernández1 

1Instituto de Ciencia de Materiales de Madrid, CSIC.  
2Departamento de Física Teórica de la Materia Condensada and IFIMAC, UAM. 
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In recent years graph neural networks (GNNs), a branch of deep learning exploiting graph structures, 
have found a very wide range of applications across industry and science [1]. GNNs offer significant 
potential in the context of property prediction of solids [2] and molecules [3], for which graph features 
(nodes and edges) allow for a natural self-contained and accurate description of the system. 

In this work, we demonstrate an efficient implementation of graph convolutional neural networks for 
accelerating the property predictions of small molecules made up of C, H, O, N, F (of up to nine atoms not 
counting H). Using an existing database containing quantum chemical calculations of 134,000 molecules 
[4], we show how a GNN architecture consisting of a small number of GNN convolutional layers, followed 
by a densely connected neural network enables an efficient prediction of the internal energy of the 
considered class of molecules (see Fig. 1). In our approach, each graph node represents an atom, and the 
corresponding edges include information about atom distances, bond angles and, optionally, dihedral 
angles.  

 
Figure 1. Comparison between the predicted internal energy at T=0K predicted by the proposed GCNN implementation 
and that calculated with a density-functional-theory approach. Each blue circle in the figure represents the results of 
one of the molecules included in a test set not included in the training process of the proposed algorithm. 

 
[1] J. Zhou et al., Graph neural networks: A review of methods and applications, AI Open 1, 57 (2020). 
[2] T. Xie and J. C. Grossman, Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable 
Prediction of Material Properties, Phys. Rev. Lett. 120, 145301 (2018). 
[3] K. Choudhary, and B. DeCost, Atomistic Line Graph Neural Network for improved materials property predictions, 
NPJ Computational Materials 7, 185 (2021). 
[4] R. Ramakrishnan, P.O. Dral, M. Rupp, and O. A. von Lilienfeld, Quantum chemistry structures and properties of 
134 kilo molecules, Scientific Data 1, 140022 (2014). 


