
www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

PrimeFaces Cookbook
Second Edition

Over 100 practical recipes to learn PrimeFaces 5.x – the
most popular JSF component library on the planet

Mert Çalışkan

Oleg Varaksin

BIRMINGHAM - MUMBAI

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

PrimeFaces Cookbook
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2013

Second edition: May 2015

Production reference: 1250515

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-342-7

www.packtpub.com

www.allitebooks.comwww.allitebooks.com

www.packtpub.com
http://www.allitebooks.org
http://www.allitebooks.org

Credits

Authors
Mert Çalışkan

Oleg Varaksin

Reviewers
Ramanath Bhongale

Aristides Villarreal Bravo

Sebastian D'Agostino

Commissioning Editor
Akram Hussain

Acquisition Editors
Tushar Gupta

Llewellyn Rozario

Content Development Editor
Ajinkya Paranjape

Technical Editor
Humera Shaikh

Copy Editors
Sarang Chari

Sonia Mathur

Project Coordinator
Harshal Ved

Proofreaders
Stephen Copestake

Safis Editing

Indexer
Mariammal Chettiyar

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Foreword

JavaServer Faces has come a long way since its initial release. This is mostly due to the
big ecosystem around it that allows many third-party add-ons to contribute. The first major
extension was Facelets that removed the burden of JSP-based views.

With 2.0, Facelets became standard, and along with Facelets, many other features, including
AJAX, originated from the community. JSF 2.2 followed the same approach and integrated
various enhancements, such as HTML5-friendly markup, resource library contracts, and
Faces Flows. Considering the current landspace of modern web application development,
a server-side component framework such as JSF is still a popular choice among Java
developers; this is because JSF is flexible enough to keep up.

I started PrimeFaces back in 2009 to provide a new alternative component suite to the JSF
ecosystem. As of now, PrimeFaces is the most popular framework and the de facto standard
for JSF applications built with Java EE. During this time, the component suite has extended
to an over-100-rich suite of components utilizing modern JavaScript and CSS techniques,
integrating responsive design, and providing mobile and push modules.

PrimeFaces is documented well in PrimeFaces User Guide, and Showcase is considered to be
a practical guide in itself. However, there are many cases that can only be seen when doing
actual development and are not to be found in the guide or Showcase. PrimeFaces Cookbook,
Second Edition, focuses on these cases in a practical way to provide best practices as
solutions to common requirements.

I've known Mert and Oleg for a long time; both are power users of PrimeFaces and longtime
contributors to the framework. Their expertise in PrimeFaces makes this book a great
complementary resource when developing applications with PrimeFaces.

Çağatay Çivici

Founder and Lead Developer of PrimeFaces

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Foreword

I consider it a great blessing to have been associated with the JavaServer Faces technology
for such a long time. In the 11 years since JSF 1.0 was released, the little corner of the
enterprise software world in which JSF plays has experienced an enormous amount of growth
and change, but it is still the world of enterprise software. During this time, I have come to
have a deep appreciation of the unique technical and nontechnical requirements of enterprise
software. This appreciation has shown me that these two aspects are very closely linked, and
any framework that wants to play in the enterprise software space must broadly and deeply
address both of them. The fact that there is still demand for the continued evolution of JSF is
a testament to the ecosystem behind JSF and also how well it addresses these aspects.

One of the key nontechnical requirements of enterprise software is the ability to build projects
that have very long service lifetimes. To do this, enterprises need technologies that are
good enough to get the job done while having the necessary market backing and support
guarantees to be trusted with mission-critical applications. This is where Java lives and
thrives, and the Java Community Process (JCP) is the engine to develop Java.

There is a tension between the long service lifetime requirement of enterprise software
and the constantly evolving state of the art. One element of this evolution is the rise and
acceptance of open source software (OSS). When JSF first came out, enterprises looked at
open source with a high degree of suspicion. Can we trust it? Will it be there for us throughout
the service life for which we need it? Over time, enterprises have come to accept OSS. As the
first part of Java to be made open source, JSF has ridden the crest of this trend. This was
entirely enabled by the evolution of the JCP with which JSF is developed. Without the opening
of the JCP to the ideas of OSS, JSF would have already faded out into nonuse. One could
argue that the JCP has helped make OSS for enterprises.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

The opening of the JCP was also a key enabler for the creation of the JSF component
ecosystem, in which PrimeFaces is now the biggest player. I'm very grateful to all of the
component libraries in the JSF ecosystem, in particular to PrimeFaces, for taking the core
ideas of JSF and building on them to create solutions that can ultimately deliver real business
value. Just as PrimeFaces takes the core ideas of JSF, Mert's and Oleg's book takes the core
ideas of PrimeFaces and puts them in your hands for quick and easy deployment in your
applications. These ideas are presented with frequent How to do it… and How it works…
sections, showing first the practice and then the theory of PrimeFaces. With this style of
presentation, Mert and Oleg cover the breadth and depth of PrimeFaces, diving down to the
core underlying JSF when necessary to drive the point home.

I'm confident you'll find the second edition of this book a valuable resource as you develop JSF
applications with PrimeFaces.

Ed Burns

JavaServer Faces Specification Co-lead

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

About the Authors

Mert Çalışkan is a software stylist living in Ankara, Turkey. He has more than 10 years
of expertise in software development with the architectural design of Enterprise Java web
applications. He is an advocate of open source for software projects such as PrimeFaces and
has also been a committer and founder of various others.

He is the coauthor of the first edition of this book. He is also the coauthor of Beginning Spring
by Wiley Publications. He is the founder of AnkaraJUG, which is the most active JUG in Turkey
that has been having monthly meetups for 3 years now.

In 2014, he was entitled a Java Champion for his achievements. He is also a Sun Certified
Java professional since 2007. He does part-time lecturing at Hacettepe University on
enterprise web application architecture and web services. He shares his knowledge at
national and international conferences, such as JDays 2015, JavaOne 2013, JDC2010, and
JSFDays'08. You can reach Mert via twitter at @mertcal.

First, I would like to thank my friend Oleg Varaksin for joining me on this
journey. I would also like to thank Çağatay Çivici and Ed Burns for crowning
our book with their forewords—without their ideas and inspiration on the JSF
ecosystem, this book wouldn't exist.

My thanks also go to Ajinkya Paranjape, content development editor;
Humera Shaikh, technical editor; and Llewellyn Rozario, acquisition editor,
all from Packt Publishing. I would also like to thank our reviewers, Aristides
Villarreal Bravo and Sebastian D'Agostino, for the great job they have done
in reviewing this book. These people accompanied us during the entire
writing process and made the publication of this book possible with their
support, suggestions, and reviews.

Last but not least, I would like to thank my mother, my father, my Tuğçe, and
especially my beloved fiancé, Funda, who gives me her never ending support
and enthusiasm.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Oleg Varaksin is a senior software engineer living in the Black Forest, Germany. He is a
graduate computer scientist who studied informatics at Russian and German universities.
His main occupation and "daily bread" in the last 10 years has consisted of building various
web applications based on JSP, JSF, CDI, Spring, web services, REST, jQuery, AngularJS, and
HTML5. He has a deep understanding of web usability and accessibility.

Oleg is an experienced JSF expert and has been working with the PrimeFaces library since
its beginning in 2009. He is also a well-known member of the PrimeFaces community and a
cocreator of the PrimeFaces Extensions project on additional JSF components for PrimeFaces.

Besides the aforementioned technologies, he has worked as a frontend developer with many
other web and JavaScript frameworks—Struts, GWT, Prototype, YUI library, and so on. He also
implemented an AJAX framework before all the hype about AJAX began.

Oleg normally shares the knowledge he has acquired on his blog at
http://ovaraksin.blogspot.de.

I would like to thank my family, especially my wife, Veronika; our advisers
from Packt Publishing, Llewellyn Rozario and Ajinkya Paranjape; our
reviewers; and the PrimeFaces project lead, Çağatay Çivici. These people
accompanied us during the entire writing process and made the publication
of the book possible with their support, suggestions, and reviews.

www.allitebooks.comwww.allitebooks.com

http://ovaraksin.blogspot.de
http://www.allitebooks.org
http://www.allitebooks.org

About the Reviewers

Aristides Villarreal Bravo is a Java developer, a member of the NetBeans Dream Team,
 and a leader of Java User Groups. He is also the CEO of Javscaz Software Developers.
He currently lives in Panamá.

Aristides has organized and participated in various conferences and seminars related to
Java, Java EE, the NetBeans platform, free software, and mobile devices, both nationally and
internationally. He writes tutorials and blogs about Java, NetBeans, and web development too.

He has given several interviews on sites such as NetBeans, NetBeans Dzone, and
javaHispano and developed various plugins for NetBeans.

He was a technical reviewer on one more book about PrimeFaces, PrimeFaces Blueprints,
Packt Publishing.

I would like to thank my family for their support and patience.

Sebastian D'Agostino currently lives in Argentina and has earned his computer software
engineering degree from the University of Buenos Aires (UBA). He has been developing with
C, C++, and Java EE in a professional manner for 6 years. He worked for big multinational
companies, such as Oracle, but also participated in freelance work. He was involved in
different projects covering backend, middleware, frontend, and even functional analysis. His
frontend experience includes Struts, PrimeFaces, and AngularJS. Presently, he is working for
Banco Industrial (Bind, Industrial Bank) and studying for a master's degree in information
technology and communications at Universidad Argentina de la Empresa (UADE).

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

This is his first book review, but he is currently also reviewing another book by Packt
Publishing.

I would like to thank my parents and my family for their constant support in
my life and career decisions.

I would also like to thank the authors for producing such a good reference
book on a piece of technology that I am very fond of. My thanks also go to
the Packt Publishing team for giving me the opportunity to participate in this
project.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

 To mom, dad, and my little Tuğçe…

 –Mert Çalışkan

i

Table of Contents
Preface	 v
Chapter 1: Getting Started with PrimeFaces	 1

Introduction	 1
Setting up and configuring the PrimeFaces library	 2
AJAX basics with process and update	 5
PrimeFaces selectors	 9
Partial process and update with fragments	 13
Partial view submit	 15
Internationalization (i18n) and Localization (L10n)	 17
Improved resource ordering	 24

Chapter 2: Theming Concepts	 27
Introduction	 27
Understanding structural and skinning CSS	 28
Installing themes	 32
Customizing default theme styles	 35
Adjusting the font and size throughout the web application	 39
Simple ways to create a new theme	 41
Stateless and stateful theme switchers	 44
Integrating Font Awesome with PrimeFaces	 48

Chapter 3: Enhanced Inputs and Selects	 53
Introduction	 53
Formatted input with inputMask	 54
Auto suggestion with autoComplete	 57
Usable features of inputTextArea	 62
Discovering selectBooleanCheckbox and selectManyCheckbox	 65
Choosing a single item with selectOneMenu	 67
Basic and advanced calendar scenarios	 69

ii

Table of Contents

Spinner – different ways to provide input	 74
Slider – different ways to provide input	 76
Rich text editing with the editor	 79
Advanced editing with an in-place editor	 83
Enhanced password input	 86
Star-based rating input	 88

Chapter 4: Grouping Content with Panels	 91
Introduction	 91
Grouping content with a standard panel	 92
PanelGrid with colspan and rowspan support	 95
Vertical stacked panels with accordion	 99
Displaying overflowed content with scrollPanel	 102
Working with a tabbed panel	 103
Grouping of buttons and more with toolbar	 107
The multipurpose output panel	 108
Simulating the portal environment with dashboard	 110
Creating complex layouts	 113
Responsive layout with Grid CSS	 119

Chapter 5: Data Iteration Components	 125
Introduction	 126
Selecting rows in dataTable	 126
Sorting and filtering data in dataTable	 131
In-cell editing with dataTable	 136
Resizing, reordering, and toggling columns in dataTable	 140
Making dataTable responsive	 147
Using subTable for grouping	 149
Handling tons of data – LazyDataModel	 152
Listing data with dataList	 153
Listing data with pickList	 157
Listing data with orderList	 162
Visualizing data with tree	 164
Visualizing data with treeTable	 171
Exporting data in various formats	 176
Managing events with schedule by leveraging lazy loading	 179
Visualizing data with dataScroller	 186

Chapter 6: Endless Menu Variations	 189
Introduction	 189
Statically and dynamically positioned menus	 190
Creating programmatic menus	 193
The context menu with nested items	 197

iii

Table of Contents

Integrating the context menu	 199
Breadcrumb – providing contextual information about page hierarchy	 203
SlideMenu – menu in the iPod style	 204
TieredMenu – submenus in nested overlays	 207
MegaMenu – the multicolumn menu	 210
PanelMenu – hybrid of accordion and tree	 214
MenuButton – multiple items in a popup	 216
Accessing commands via menubar	 218
Displaying checkboxes in selectCheckboxMenu	 221

Chapter 7: Working with Files, Images, and Multimedia	 227
Introduction	 228
Basic, automatic, drag and drop, and multiple file uploading	 228
Downloading files	 235
Cropping images	 238
Creating dynamic image streaming programmatically	 241
Displaying a collection of images with galleria	 242
Displaying a collection of images with imageSwitch	 245
Displaying a collection of images with contentFlow	 248
Embedding the multimedia content in JSF pages	 251
Capturing images with photoCam	 254

Chapter 8: Drag Me, Drop Me	 257
Introduction	 257
Making a component draggable	 258
Restricting dragging by axis, grid, and containment	 260
Snapping to the edges of nearest elements	 262
Defining droppable targets	 265
Restricting dropping by tolerance and acceptance	 267
AJAX-enhanced drag and drop	 270
Integrating drag and drop with data iteration components	 277

Chapter 9: Creating Charts and Maps	 283
Introduction	 283
Creating line, area, bar, and pie charts	 284
Creating combined charts	 288
Updating live data in charts with polling	 290
Interacting with charts via AJAX	 291
Basic mapping with GMaps	 292
Adding, selecting, and dragging markers in maps	 294
Creating rectangles, circles, polylines, and polygons in maps	 296
Enabling InfoWindow and streetView on maps	 298

iv

Table of Contents

Chapter 10: Client-side Validation	 301
Introduction	 301
Configuring and getting started with CSV	 302
Instant validation with p:clientValidator	 308
Bean Validation and transformation	 310
Extending CSV with JSF	 315
Extending CSV with Bean Validation	 321

Chapter 11: Miscellaneous Advanced Use Cases	 329
Introduction	 330
Programmatic updating and scrolling with RequestContext	 330
Two ways of triggering the JavaScript execution	 333
Adding AJAX callback parameters – validation within a dialog	 337
Opening external pages in dynamically generated dialogs	 340
Polling – sending periodical AJAX requests	 347
Blocking page pieces during long-running AJAX calls	 349
Controlling form submission using defaultCommand	 352
Clever focus management in forms	 355
Layout pitfalls of menus and dialogs	 357
Targetable messages with severity levels	 361
Conditional coloring in dataTable	 364
Sticking a component when scrolling	 365
Reducing page load time using content caching	 368
Possibilities for exception handling in PrimeFaces	 371

Index	 377

v

Preface
PrimeFaces Cookbook, Second Edition, is the most comprehensive book about
PrimeFaces—the rapidly evolving and leading JSF component suite. The book provides a
head start to its readers by covering all the knowledge needed to work with the PrimeFaces
framework and components in the real world. It is a quick, practical guide to learn
PrimeFaces, written in a clear, comprehensible style. PrimeFaces Cookbook, Second Edition,
addresses a wide audience interested in modern, trendsetting Java EE web development.

What this book covers
Chapter 1, Getting Started with PrimeFaces, provides details on the setup and configuration
of PrimeFaces, along with the core concepts for every web application powered by
PrimeFaces. The chapter gives a sneak preview of the basic features of PrimeFaces, such
as AJAX processing and updating, component referencing by keywords and selectors, partial
submitting, handling with Internationalization and Localization, along with the right-to-left
language support and resource ordering.

Chapter 2, Theming Concepts, introduces PrimeFaces themes and the concept involved.
Readers will learn about the theming of PrimeFaces components. The difference between
structural and skinning CSS, installing and customizing PrimeFaces themes, along with
creating new themes, will be detailed. Readers will also see how to adjust the font family and
the font size throughout the PrimeFaces components to provide a consistent look and feel.
Discussions of two variants of theme switchers and integrating additional icons finish this
chapter.

Chapter 3, Enhanced Inputs and Selects, explains how to work with the input and select
components available in PrimeFaces. Such components are the main parts of every web
application. PrimeFaces provides nearly 25 components for data input that extend the
standard JSF component suite with user-friendly interfaces, skinning capabilities, AJAX
interactions, Client-side Validation, and many other useful features.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Preface

vi

Chapter 4, Grouping Content with Panels, covers various container components, such
as panel, accordion, scrollPanel, tabView, and dashboard, which allow grouping of JSF
components. Various settings to configure panel components are detailed in this chapter.
Furthermore, the chapter explains how to create complex layouts with the layout component
and also responsive layouts for mobile devices and desktops with Grid CSS.

Chapter 5, Data Iteration Components, covers basic and advanced features to visualize
data with data iteration components provided by PrimeFaces, including dataTable, dataList,
pickList, orderList, tree, and treeTable. The discussed features include sorting, pagination,
filtering, lazy loading, and single and multiple selections. Advanced data visualization with the
schedule and dataScroller components will be demonstrated as well.

Chapter 6, Endless Menu Variations, explains several menu variations. PrimeFaces' menus
fulfill all major requirements. They come with various facets—static, dynamic, tiered, hybrid,
iPod-styled, and so on—and leave nothing to be desired. Readers will face a lot of recipes
that discuss the menu's structure, configuration options, customizations, and integration with
other components. At the end of this chapter, readers will know what kind of menu to choose
and how to put it on a page for a particular use case.

Chapter 7, Working with Files, Images, and Multimedia, provides ways of managing operations
on files such as uploading and downloading, image operations such as capturing, cropping,
and displaying images with galleria, imageSwitch, and contentFlow. Readers will learn basic
as well as advanced configuration of components and use cases.

Chapter 8, Drag Me, Drop Me, explains how the drag and drop utilities in PrimeFaces allow you
to create draggable and droppable user interfaces efficiently. They abstract developers from
dealing with implementation details on the browser level. In this chapter, readers will learn
about PrimeFaces' drag and drop utilities—Draggable and Droppable. AJAX-enhanced drag and
drop and a special integration with data iteration components will be explained as well.

Chapter 9, Creating Charts and Maps, covers the ways to create visual charts with
PrimeFaces' extensive charting features and create maps based on Google Maps.
PrimeFaces offers basic and advanced charting with its easy-to-use and user-friendly charting
infrastructure. Throughout the chapter, mapping abilities such as drawing polylines and
polygons and handling markers and events are covered as well.

Chapter 10, Client-side Validation, gives advice on how to implement Client-side Validation
(CSV) with PrimeFaces. PrimeFaces' Client Side Validation Framework is the most complete
and advanced CSV solution for JSF. Readers will learn all CSV tricks—configuration, standard
validation, instant validation, and integration with Bean Validation. They will also meet custom
client-side validators and find out how to extend CSV with JSF validators and Bean Validation.

Preface

vii

Chapter 11, Miscellaneous Advanced Use Cases, introduces more interesting features of the
PrimeFaces library. You will learn about RequestContext—a helpful utility that allows marking
components as updatable targets at runtime, adding AJAX callback parameters, opening
external pages in dynamically generated dialog (Dialog Framework), and more. In this chapter,
a number of real-world samples will be also developed—blocking UI during AJAX calls, periodic
polling, focus handling, controlling from submission, sticking components, content caching,
and targetable messages, to name a few. Furthermore, after reading this chapter, readers will
be aware of the pitfalls of menus within layout units and nested panels as well as possibilities
for exception handling.

What you need for this book
The PrimeFaces core functionality only requires a Java 5+ runtime. The PrimeFaces library is
just one single JAR file. With the help of the Maven tool, you can easily get the artifact for the
PrimeFaces library (for more information on installing Maven, visit http://maven.apache.
org). Please note that Maven demands a Java Development Kit installed on your local
environment instead of on the Java Runtime Environment. Alternatively, you can download the
JAR directly from the Maven central repository (http://search.maven.org) and add it to
the project's classpath.

The showcase to PrimeFaces Cookbook, Second Edition, is hosted on GitHub at https://
github.com/ova2/primefaces-cookbook/tree/second-edition. The homepage
on GitHub contains all the details on how to clone the Git repository with the source code
and build and run the showcase web application in your local environment.

Who this book is for
This book is for everybody who would like to learn modern Java web development based on
PrimeFaces and is looking for a quick introduction to this matter. Prerequisites for this book
are basic JSF, jQuery, and CSS skills.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

http://maven.apache.org
http://maven.apache.org
http://search.maven.org
https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Preface

viii

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code is set as follows:

<repository>
 <id>prime-repo</id>
 <name>PrimeFaces Maven Repository</name>
 <url>http://repository.primefaces.org</url>
</repository>

Preface

ix

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

Data:javax.faces.partial.ajax=true&javax.faces.source=j_idt19&jav
ax.faces.partial.execute=name&j_idt19=j_idt19&mainForm=mainForm&bo
okTree_selection=0_6&name=mert&j_idt21=&j_idt22=&j_idt23=&j_id
t24=&j_idt25=&j_idt26=&j_idt27=&j_idt28=&j_idt29=&javax.fac
es.ViewState=-6151865609302284540%3A502720797990996178

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "When the button with the
Partial Submit (False) label is clicked, the AJAX request that will be sent to the server will
contain all the ID's of the input text fields that exist on the page."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

www.packtpub.com/authors

Preface

x

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output. You
can download this file from: https://www.packtpub.com/sites/default/files/
downloads/3427OS_Graphics.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/3427OS_Graphics.pdf
https://www.packtpub.com/sites/default/files/downloads/3427OS_Graphics.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1

1
Getting Started with

PrimeFaces

In this chapter, we will cover:

ff Setting up and configuring the PrimeFaces library

ff AJAX basics with process and update

ff PrimeFaces selectors

ff Partial process and update with fragments

ff Partial view submit

ff Internationalization (i18n) and Localization (L10n)

ff Right-to-left language support

ff Improved resource ordering

Introduction
This chapter will provide details on the setup and configuration of PrimeFaces, along with
the basics of the PrimeFaces AJAX mechanism. The goal of this chapter is to provide a sneak
preview of some of the features of PrimeFaces, such as the AJAX processing mechanism,
Internationalization, and Localization, along with support for right-to-left languages.

Getting Started with PrimeFaces

2

Setting up and configuring the PrimeFaces
library

PrimeFaces is a lightweight JSF component library with one JAR file, which needs no
configuration and does not contain any required external dependencies. To start with the
development of the library, all we need is the artifact for the library.

Getting ready
You can download the PrimeFaces library from http://primefaces.org/downloads.
html, and you need to add the primefaces-{version}.jar file to your classpath. After
that, all you need to do is import the namespace of the library that is necessary to add the
PrimeFaces components to your pages to get started.

If you are using Maven (for more information on installing Maven, please visit http://
maven.apache.org/guides/getting-started/maven-in-five-minutes.html),
you can retrieve the PrimeFaces library by defining the Maven repository in your Project
Object Model XML file, pom.xml, as follows:

<repository>
 <id>prime-repo</id>
 <name>PrimeFaces Maven Repository</name>
 <url>http://repository.primefaces.org</url>
</repository>

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Add the dependency configuration as follows:

<dependency>
 <groupId>org.primefaces</groupId>
 <artifactId>primefaces</artifactId>
 <version>5.2</version>
</dependency>

At the time of writing this book, the latest and most stable version of PrimeFaces was 5.2. To
check whether this is the latest available version or not, please visit http://primefaces.
org/downloads.html. The code in this book will work properly with PrimeFaces 5.2. In prior
versions or the future versions, some methods, attributes, or components' behaviors may
change.

http://primefaces.org/downloads.html
http://primefaces.org/downloads.html
http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://primefaces.org/downloads.html
http://primefaces.org/downloads.html

Chapter 1

3

How to do it…
In order to use PrimeFaces components, first we need to add the namespace declaration to
our pages. The namespace for PrimeFaces components is as follows:

xmlns:p="http://primefaces.org/ui"

That is all there is to it. Note that the p prefix is just a symbolic link, and any other character
can be used to define the PrimeFaces components. Now you can create your first XHTML page
with a PrimeFaces component, as shown in the following code snippet:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:p="http://primefaces.org/ui">
 <f:view contentType="text/html">
 <h:head />
 <h:body>
 <h:form>
 <p:spinner />
 </h:form>
 </h:body>
 </f:view>
</html>

This will render a spinner component with an empty value, as shown in the following
screenshot:

A link to the working example for the given page is given at the end of this recipe.

Getting Started with PrimeFaces

4

How it works…
When the page is requested, the p:spinner component is rendered with the
SpinnerRenderer class implemented by the PrimeFaces library. Since the spinner
component is an input component, the request-processing life cycle will get executed
when the user inputs data and performs a post back on the page.

For the first page, we also needed to provide the contentType parameter
for f:view since WebKit-based browsers, such as Google Chrome and
Safari, request for the content type application/xhtml+xml by default.
This would overcome unexpected layout and styling issues that might occur.

There's more…
PrimeFaces only requires a Java 5+ runtime and a JSF 2.x implementation as mandatory
dependencies. There are some optional libraries for certain features. All of these are listed
in this table:

Dependency Version Type Description
JSF runtime 2.0, 2.1, or 2.2 Required Apache MyFaces or Oracle Mojarra
itext 2.1.7 Optional DataExporter (PDF)
apache-poi 3.7 Optional DataExporter (Excel)
rome 1.0 Optional FeedReader

commons-fileupload 1.3 Optional FileUpload

commons-io 2.2 Optional FileUpload

atmosphere 2.2.2 Optional PrimeFaces Push
barcode4j-light 2.1 Optional Barcode Generation
qrgen 1.4 Optional QR code support for barcode
hazelcast 2.6.5+ Optional Integration of the <p:cache>

component with hazelcast
ehcache 2.7.4+ Optional Integration of the <p:cache>

component with ehcache

Please ensure that you have only one JAR file of PrimeFaces or a specific
PrimeFaces theme in your classpath in order to avoid any issues regarding
resource rendering.
Currently, PrimeFaces fully supports nonlegacy web browsers with Internet
Explorer 10, Safari, Firefox, Chrome, and Opera.

Chapter 1

5

The PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available under http://localhost:8080/pf-cookbook/
views/chapter1/yourFirstPage.jsf.

AJAX basics with process and update
PrimeFaces provides Partial Page Rendering (PPR) and the view-processing feature based
on standard JSF 2 APIs to enable choosing what to process in the JSF life cycle and what to
render in the end with AJAX. PrimeFaces AJAX Framework is based on standard server-side
APIs of JSF 2. On the client side, rather than using the client-side API implementations of JSF,
such as Mojarra or MyFaces, PrimeFaces scripts are based on the jQuery JavaScript library,
which is well tested and widely adopted.

How to do it...
We can create a simple page with a command button to update a string property with the
current time in milliseconds that is created on the server side and output text to show the
value of that string property, as follows:

<p:commandButton update="display"
action="#{basicPPRBean.updateValue}" value="Update" />
<h:outputText id="display" value="#{basicPPRBean.value}"/>

If we want to update multiple components with the same trigger mechanism, we can provide
the ID's of the components to the update attribute by providing them with a space, comma,
or both, as follows:

<p:commandButton update="display1,display2" />
<p:commandButton update="display1 display2" />
<p:commandButton update="display1,display2 display3" />

In addition, there are reserved keywords that are used for a partial update. We can also make
use of these keywords along with the ID's of the components, as described in the following
table. Some of them come with the JSF standard, and PrimeFaces extends this list with
custom keywords. Here's the table we talked about:

www.allitebooks.comwww.allitebooks.com

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition
http://www.allitebooks.org
http://www.allitebooks.org

Getting Started with PrimeFaces

6

Keyword JSF/
PrimeFaces

Description

@this JSF The component that triggers the PPR is updated
@form JSF The encapsulating form of the PPR trigger is

updated
@none JSF PPR does not change the DOM with an AJAX

response
@all JSF The whole document is updated as in non-AJAX

requests
@parent PrimeFaces The parent of the PPR trigger is updated
@composite PrimeFaces This is the closest composite component ancestor
@namingcontainer PrimeFaces This is the closest naming container ancestor of

the current component
@next PrimeFaces This is the next sibling
@previous PrimeFaces This is the previous sibling
@child(n) PrimeFaces This is the nth child
@widgetVar(name) PrimeFaces This is a component stated with a given widget

variable name

The keywords are a server-side part of the PrimeFaces Search Expression Framework (SEF),
which provides both server-side and client-side extensions to make it easier to reference
components. We can also update a component that resides in a different naming container
from the component that triggers the update. In order to achieve this, we need to specify the
absolute component identifier of the component that needs to be updated. An example of this
could be the following:

<h:form id="form1">
 <p:commandButton update=":form2:display"
 action="#{basicPPRBean.updateValue}" value="Update"/>
</h:form>

<h:form id="form2">
 <h:outputText id="display" value="#{basicPPRBean.value}"/>
</h:form>

@Named
@ViewScoped
public class BasicPPRBean implements Serializable {

 private String value;

 public String updateValue() {

Chapter 1

7

 value = String.valueOf(System.currentTimeMillis());
 return null;
 }

 // getter / setter

}

PrimeFaces also provides partial processing, which executes the JSF life cycle phases—apply
request values, process validations, update model, and invoke application—for determined
components with the process attribute. This provides the ability to do group validation
on the JSF pages easily. Mostly group validation needs arise in situations where different
values need to be validated in the same form, depending on an action that gets executed. By
grouping components for validation, errors that would arise from other components when the
page has been submitted can be overcome easily. Components such as commandButton,
commandLink, autoComplete, fileUpload, and many others provide this attribute to
process partially instead of processing the whole view.

Partial processing could become very handy in cases where a drop-down list needs to
be populated upon a selection on another dropdown and where there is an input field on
the page with the required attribute set to true. This approach also makes immediate
subforms and regions obsolete. It will also prevent submission of the whole page; thus, this
will result in lightweight requests. Without partially processing the view for the dropdowns,
a selection on one of the dropdowns will result in a validation error on the required field. A
working example for this is shown in the following code snippet:

<h:outputText value="Country: " />
<h:selectOneMenu id="countries" value="#{partialProcessing
 Bean.country}">
<f:selectItems value="#{partialProcessingBean.countries}" />
 <p:ajax listener= "#{partialProcessingBean.handleCountryChange}"
 event="change" update="cities" process="@this"/>
</h:selectOneMenu>

<h:outputText value="City: " />
<h:selectOneMenu id="cities" value="#{partialProcessingBean.city}">
 <f:selectItems value="#{partialProcessingBean.cities}" />
</h:selectOneMenu>

<h:outputText value="Email: " />
<h:inputText value="#{partialProcessingBean.email}"
 required="true" />

With this partial processing mechanism, when a user changes the country, the cities of that
country will be populated in the dropdown regardless of whether any input exists for the
email field or not.

Getting Started with PrimeFaces

8

How it works…
As illustrated in the partial processing example to update a component in a different naming
container, <p:commandButton> is updating the <h:outputText> component that has the
display ID and the :form2:display absolute client ID, which is the search expression for
the findComponent method. An absolute client ID starts with the separator character of the
naming container, which is : by default.

The <h:form>, <h:dataTable>, and composite JSF components, along with
<p:tabView>, <p:accordionPanel>, <p:dataTable>, <p:dataGrid>,
<p:dataList>, <p:carousel>, <p:galleria>, <p:ring>, <p:sheet>, and
<p:subTable> are the components that implement the NamingContainer interface. The
findComponent method, which is described at http://docs.oracle.com/javaee/7/
api/javax/faces/component/UIComponent.html, is used by both JSF core
implementation and PrimeFaces.

There's more…
JSF uses : (colon) as the separator for the NamingContainer interface. The client IDs
that will be rendered in the source page will be of the kind id1:id2:id3. If needed, the
configuration of the separator can be changed for the web application to something other than
the colon with a context parameter in the web.xml file of the web application, as follows:

<context-param>
 <param-name>javax.faces.SEPARATOR_CHAR</param-name>
 <param-value>_</param-value>
</context-param>

It's also possible to escape the : character, if needed, in the CSS files with the \ character,
as \:. The problem that might occur with the colon is that it's a reserved keyword for the CSS
and JavaScript frameworks, like jQuery, so it might need to be escaped.

The PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

http://docs.oracle.com/javaee/7/api/javax/faces/component/UIComponent.html
http://docs.oracle.com/javaee/7/api/javax/faces/component/UIComponent.html
https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 1

9

For the demos of this recipe, refer to the following:

ff Basic Partial Page Rendering is available at http://localhost:8080/pf-
cookbook/views/chapter1/basicPPR.jsf

ff Updating Component in a Different Naming Container is available at
http://localhost:8080/pf-cookbook/views/chapter1/
componentInDifferentNamingContainer.jsf

ff An example of Partial Processing is available at http://localhost:8080/pf-
cookbook/views/chapter1/partialProcessing.jsf

PrimeFaces selectors
PrimeFaces integrates the jQuery Selector API (http://api.jquery.com/category/
selectors) with the JSF component-referencing model. Partial processing and updating of
the JSF components can be done using the jQuery Selector API instead of a regular server-
side approach with findComponent(). This feature is called the PrimeFaces Selector (PFS)
API. PFS provides an alternative, flexible approach to reference components to be processed
or updated partially. PFS is a client-side part of the PrimeFaces SEF, which provides both
server-side and client-side extensions to make it easier to reference components.

In comparison with regular referencing, there is less CPU server load because the JSF
component tree is not traversed on the server side in order to find client IDs. PFS is
implemented on the client side by looking at the DOM tree. Another advantage is avoiding
container limitations, and thus the cannot find component exception—since the
component we were looking for was in a different naming container.

The essential advantage of this feature, however, is speed. If we reference a component by
an ID, jQuery uses document.getElementById(), a native browser call behind the scene.
This is a very fast call, much faster than that on the server side with findComponent(). The
second use case, where selectors are faster, is when we have a lot of components with the
rendered attributes set to true or false. The JSF component tree is very big in this case,
and the findComponent() call is time consuming. On the client side, only the visible part of
the component tree is rendered as markup. The DOM is smaller than the component tree and
its selectors work faster.

In this recipe, we will learn PFS in detail. PFS is recognized when we use @(...) in the
process or update attribute of AJAX-ified components. We will use this syntax in four
command buttons to reference the parts of the page we are interested in.

http://api.jquery.com/category/selectors
http://api.jquery.com/category/selectors

Getting Started with PrimeFaces

10

How to do it…
The following code snippet contains two p:panel tags with the input, select, and
checkbox components respectively. The first p:commandButton component processes/
updates all components in the form(s). The second one processes / updates all panels. The
third one processes input, but not select components, and updates all panels. The last
button only processes the checkbox components in the second panel and updates the entire
panel.

<p:messages id="messages" autoUpdate="true"/>

<p:panel id="panel1" header="First panel">
 <h:panelGrid columns="2">
 <p:outputLabel for="name" value="Name"/>
 <p:inputText id="name" required="true"/>

 <p:outputLabel for="food" value="Favorite food"/>
 <h:selectOneMenu id="food" required="true">
 ...
 </h:selectOneMenu>

 <p:outputLabel for="married" value="Married?"/>
 <p:selectBooleanCheckbox id="married" required="true"
 label="Married?">
 <f:validator validatorId="org.primefaces.cookbook.
 validator.RequiredCheckboxValidator"/>
 </p:selectBooleanCheckbox>
 </h:panelGrid>
</p:panel>

<p:panel id="panel2" header="Second panel">
 <h:panelGrid columns="2">
 <p:outputLabel for="address" value="Address"/>
 <p:inputText id="address" required="true"/>

Chapter 1

11

 <p:outputLabel for="pet" value="Favorite pet"/>
 <h:selectOneMenu id="pet" required="true">
 ...
 </h:selectOneMenu>

 <p:outputLabel for="gender" value="Male?"/>
 <p:selectBooleanCheckbox id="gender" required="true"
 label="Male?">
 <f:validator validatorId="org.primefaces.cookbook.
 validator.RequiredCheckboxValidator"/>
 </p:selectBooleanCheckbox>
 </h:panelGrid>
</p:panel>

<h:panelGrid columns="5" style="margin-top:20px;">
 <p:commandButton process="@(form)" update="@(form)"
 value="Process and update all in form"/>

 <p:commandButton process="@(.ui-panel)" update="@(.ui-panel)"
 value="Process and update all panels"/>

 <p:commandButton process="@(.ui-panel :input:not(select))"
 update="@(.ui-panel)"
 value="Process inputs except selects in all panels"/>

 <p:commandButton process="@(#panel2 :checkbox)"
 update="@(#panel2)"
 value="Process checkboxes in second panel"/>
</h:panelGrid>

In terms of jQuery selectors, regular input field, selection, and checkbox
controls are all inputs. They can be selected by the :input selector.

Getting Started with PrimeFaces

12

The following screenshot shows what happens when the third button is pushed. The
p:inputText and p:selectBooleanCheckbox components are marked as invalid. The
h:selectOneMenu component is not marked as invalid although no value was selected by
the user.

How it works…
The first selector from the @(form) first button selects all forms on the page. The second
selector, @(.ui-panel), selects all panels on the page as every main container of
PrimeFaces' p:panel component has this style class. Component style classes are
usually documented in the Skinning section in PrimeFaces User's Guide (http://
www.primefaces.org/documentation.html). The third selector, @(.ui-panel
:input:not(select)), only selects p:inputText and p:selectBooleanCheckbox
within p:panel. This is why h:selectOneMenu was not marked as invalid in the preceding
screenshot. The validation of this component was skipped because it renders itself as an
HTML select element. The last selector variant, @(#panel2 :checkbox), intends to
select p:selectBooleanCheckbox in the second panel only.

http://www.primefaces.org/documentation.html
http://www.primefaces.org/documentation.html

Chapter 1

13

In general, it is recommended that you use Firebug (https://
getfirebug.com) or a similar browser add-on to explore the generated
HTML structure when using jQuery selectors.
A common use case is skipping validation for the hidden fields. Developers
often hide some form components dynamically with JavaScript. Hidden
components get validated anyway, and the form validation can fail if the
fields are required or have other validation constraints. The first solution
would be to disable the components (in addition to hiding them). The values
of disabled fields are not sent to the server. The second solution would be to
use jQuery's :visible selector in the process attribute of a command
component that submits the form.

There's more…
PFS can be combined with regular component referencing as well, for example,
update="compId1 :form:compId2 @(.ui-tabs :input)".

The PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter1/pfs.jsf.

Partial process and update with fragments
For enhanced AJAX capabilities, PrimeFaces offers the <p:fragment> component, which
offers partial processing and updating with the AJAX request triggered by a component that
resides inside the fragment itself. This component is useful and easy to use when multiple
sections exist for a form with a different action for each section since there'll be no need to
specify ID's for component processing and updating.

How to do it…
Let's define two fragments to retrieve data for registering a user into a system, one for user
name input and the other for user address input. The definition of these two fragments would
be as follows with the respective input fields marked with the required attribute:

<p:fragment autoUpdate="true">
 <p:fieldset legend="Basic Info">

https://getfirebug.com
https://getfirebug.com
https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Getting Started with PrimeFaces

14

 <p:outputLabel for="name" value="Name:" />
 <p:inputText id="name"
 value="#{fragmentBean.userName}" required="true" />
 <p:commandButton value="Save"
 actionListener="#{fragmentBean.saveUserInfo}" />
 </p:fieldset>
</p:fragment>
<p:fragment autoUpdate="true">
 <p:fieldset legend="Address">
 <p:outputLabel for="address" value="Address:" />
 <p:inputText id="address"
 value="#{fragmentBean.address}" required="true" />
 <p:commandButton value="Save"
 actionListener="#{fragmentBean.saveAddressInfo}" />
 </p:fieldset>
</p:fragment>

How it works…
When we click on the Save button of the Address section, only the Address input text will be
processed and the Name input will be left intact. Since the Address input is a required field,
we will get that field drawn in red for the error in the following image, but only that one since
a descendant command button of the second fragment invokes the action.

Chapter 1

15

The PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x compatible application server, such as JBoss WildFly and
Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter1/fragment.jsf.

Partial view submit
One other cool feature of the enhanced AJAX provided by PrimeFaces is the partialSubmit
attribute that can be applied to action components and <p:ajax>, where only partially
processed components are added to the AJAX requests with their ID's. By default, the JSF
and PrimeFaces implementation serializes the whole form to send it via AJAX requests, and
eventually, with large views, this will increase the size of the network data traffic that will be
posted to the server. To overcome this problem, partial submit can be used to reduce the size
of the post data when actions take place on views that have quite a lot of input fields. With
this approach, only the ID's of the partially processed fields will be sent to the server.

How to do it…
Partial submit is disabled by default; it can be enabled globally with a context parameter in
web.xml, as follows:

<context-param>
 <param-name>primefaces.SUBMIT</param-name>
 <param-value>partial</param-value>
</context-param>

Or, it can be declared with the partialSubmit attribute explicitly on the command action,
as follows:

<h:outputLabel for="name" value="Name:"
 style="font-weight:bold" />
<p:inputText id="name" />
<p:commandButton value="Partial Submit (False)"
 partialSubmit="false" process="name" />
<p:commandButton value="Partial Submit (True)"
 partialSubmit="true" process="name" />
<p:inputText /> <p:inputText /> <p:inputText /><br\>
<p:inputText /> <p:inputText /> <p:inputText /><br\>
<p:inputText /> <p:inputText /> <p:inputText /><br\>

www.allitebooks.comwww.allitebooks.com

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition
http://www.allitebooks.org
http://www.allitebooks.org

Getting Started with PrimeFaces

16

How it works…
The visual output of the given code snippet will be as follows. So, here we have two buttons,
one with the partialSubmit attribute set to false and another one set to true:

When the button with the Partial Submit (False) label is clicked, the AJAX request that will
be sent to the server will contain all the ID's of the input text fields that exist on the page.
An example output for the AJAX request is extracted from the <p:log> component (a visual
console to display internal logs of PrimeFaces) and given here:

Data:javax.faces.partial.ajax=true&javax.faces.source=j_idt19&jav
ax.faces.partial.execute=name&j_idt19=j_idt19&mainForm=mainForm&bo
okTree_selection=0_6&name=mert&j_idt21=&j_idt22=&j_idt23=&j_id
t24=&j_idt25=&j_idt26=&j_idt27=&j_idt28=&j_idt29=&javax.fac
es.ViewState=-6151865609302284540%3A502720797990996178

The ID's that are highlighted belong to the input text fields that exist in the page. If we click
on the button with the Partial Submit (True) label, we should get an AJAX request with no
chained ID list in the data list:

Data:javax.faces.partial.ajax=true&javax.faces.source=j_idt20&jav
ax.faces.partial.execute=name&j_idt20=j_idt20&name=&javax.faces.Vi
ewState=-6151865609302284540%3A502720797990996178

The partial submit feature does not exist within the core JSF features;
it's a feature provided by PrimeFaces.

Chapter 1

17

There's more…
With version 5.2, PrimeFaces introduced partial submit filtering, which allows customization
on the AJAX data sent to the server. This comes in handy when you have multiple input fields
within a data table, for instance, and try to prevent sending the ID list of those input fields to
the server while doing paging, sorting, or row selection. The filter can be defined as a selector
and its default value is :input. The example AJAX component in the following code will filter
on all the input fields and will not send any data to the server:

<p:ajax event="page" partialSubmit="true"
 partialSubmitFilter=":not(:input)" />

The PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter1/partialSubmit.jsf.

Internationalization (i18n) and Localization
(L10n)

Internationalization (i18n) and Localization (L10n) are two important features that should
be provided in the web application's world to make it accessible globally.

With Internationalization, we are emphasizing that the web application should support
multiple languages, and with Localization, we are stating that the text, date, or other fields
should be presented in a form specific to a region.

PrimeFaces only provides English translations. Translations for other
languages should be provided explicitly. In the following sections,
you will find details on how to achieve this.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Getting Started with PrimeFaces

18

Getting ready
For internationalization, first we need to specify the resource bundle definition under the
application tag in faces-config.xml, as follows:

<application>
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>tr_TR</supported-locale>
 </locale-config>
 <resource-bundle>
 <base-name>messages</base-name>
 <var>msg</var>
 </resource-bundle>
</application>

A resource bundle is a text file with the .properties suffix that would contain locale-
specific messages. So, the preceding definition states that the resource bundle messages_
{localekey}.properties file will reside under classpath, and the default value of
localekey is en, which stands for English, and the supported locale is tr_TR, which stands
for Turkish. For projects structured by Maven, the messages_{localekey}.properties
file can be created under the src/main/resources project path. The following image was
made in the IntelliJ IDEA:

Chapter 1

19

How to do it…
To showcase Internationalization, we will broadcast an information message via the
FacesMessage mechanism that will be displayed in PrimeFaces' growl component. We need
two components—growl itself and a command button—to broadcast the message:

<p:growl id="growl" />
<p:commandButton action="#{localizationBean.addMessage}"
 value="Display Message" update="growl" />

The addMessage method of localizationBean is as follows:

public String addMessage() {
 addInfoMessage("broadcast.message");
 return null;
}

The preceding code uses the addInfoMessage method, which is defined in the static
MessageUtil class as follows:

public static void addInfoMessage(String str) {
 FacesContext context = FacesContext.getCurrentInstance();
 ResourceBundle bundle =
 context.getApplication().getResourceBundle(context, "msg");
 String message = bundle.getString(str);
 FacesContext.getCurrentInstance().addMessage(null,
 new FacesMessage(FacesMessage.SEVERITY_INFO, message, ""));
}

Localization of components, such as calendar and schedule, can be achieved by providing
the locale attribute. By default, locale information is retrieved from the view's locale, and it
can be overridden by a string locale key or with a java.util.Locale instance.

Components such as calendar and schedule use a shared PrimeFaces.locales
property to display labels. As stated before, PrimeFaces only provides English translations, so
in order to localize the calendar, we need to put the corresponding locales into a JavaScript
file and include the scripting file to the page.

Getting Started with PrimeFaces

20

The content for the German locale of the Primefaces.locales property for calendar
would be as shown in the following code snippet. For the sake of the recipe, only the German
locale definition is given and the Turkish locale definition is omitted; you can find it in the
showcase application Here's the code snippet we talked about:

PrimeFaces.locales['de'] = {
 closeText: 'Schließen',
 prevText: 'Zurück',
 nextText: 'Weiter',
 monthNames: ['Januar', 'Februar', 'März', 'April', 'Mai',
 'Juni', 'Juli', 'August', 'September', 'Oktober', 'November',
 'Dezember'],
 monthNamesShort: ['Jan', 'Feb', 'Mär', 'Apr', 'Mai', 'Jun',
 'Jul', 'Aug', 'Sep', 'Okt', 'Nov', 'Dez'],
 dayNames: ['Sonntag', 'Montag', 'Dienstag', 'Mittwoch',
 'Donnerstag', 'Freitag', 'Samstag'],
 dayNamesShort: ['Son', 'Mon', 'Die', 'Mit', 'Don', 'Fre',
 'Sam'],
 dayNamesMin: ['S', 'M', 'D', 'M ', 'D', 'F ', 'S'],
 weekHeader: 'Woche',
 FirstDay: 1,
 isRTL: false,
 showMonthAfterYear: false,
 yearSuffix: '',
 timeOnlyTitle: 'Nur Zeit',
 timeText: 'Zeit',
 hourText: 'Stunde',
 minuteText: 'Minute',
 secondText: 'Sekunde',
 currentText: 'Aktuelles Datum',
 ampm: false,
 month: 'Monat',
 week: 'Woche',
 day: 'Tag',
 allDayText: 'Ganzer Tag'
};

The definition of the calendar components both with and without the locale attribute
would be as follows:

<p:calendar showButtonPanel="true" navigator="true" mode="inline"
 id="enCal"/>

Chapter 1

21

<p:calendar locale="tr" showButtonPanel="true" navigator="true"
 mode="inline" id="trCal"/>

<p:calendar locale="de" showButtonPanel="true" navigator="true"
 mode="inline" id="deCal"/>

They will be rendered as follows:

How it works…
For Internationalization of the PrimeFaces message, the addInfoMessage method retrieves
the message bundle via the defined msg variable. It then gets the string from the bundle with
the given key by invoking the bundle.getString(str) method. Finally, the message is
added by creating a new PrimeFaces message with the FacesMessage.SEVERITY_INFO
severity level.

There's more…
For some components, localization could be accomplished by providing labels to the
components via attributes, such as with p:selectBooleanButton:

<p:selectBooleanButton
 value="#{localizationBean.selectedValue}"
 onLabel="#{msg['booleanButton.onLabel']}"
 offLabel="#{msg['booleanButton.offLabel']}" />

Getting Started with PrimeFaces

22

The msg variable is the resource bundle variable that is defined in the resource bundle
definition in the PrimeFaces configuration file. The English version of the bundle key
definitions in the messages_en.properties file that resides under the classpath would be
as follows:

booleanButton.onLabel=Yes
booleanButton.offLabel=No

The PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

For the demos of this recipe, refer to the following:

ff Internationalization is available at http://localhost:8080/pf-cookbook/
views/chapter1/internationalization.jsf

ff Localization of the calendar component is available at http://localhost:8080/
pf-cookbook/views/chapter1/localization.jsf

ff Localization with resources is available at http://localhost:8080/pf-
cookbook/views/chapter1/localizationWithResources.jsf

For already translated locales of the calendar, see http://code.google.com/p/
primefaces/wiki/PrimeFacesLocales.

Right to left language support
In PrimeFaces, components such as accordionpanel, datatable, dialog, fileupload,
schedule, tabview, and tree offer right-to-left text direction support for languages such as
Arabic, Hebrew, and so on. These components possess the dir attribute that can either get
the value ltr (which is the default behavior with left-to-right text direction) or rtl.

How to do it...
We are going to create a dialog box that contains Arabic characters, as given here:

<p:commandButton value="Show Dialog"
 onclick="PF('arabicDlg').show();" type="button" />
<p:dialog widgetVar="arabicDlg" dir="rtl">
 <h:outputText value="PrimeFaces نوكملا عورشملا يف ةمهاسملل ردصم وه
</ ".ةفلتخملا تاقحلملا عم حوتفم حانج
</p:dialog>

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition
http://code.google.com/p/primefaces/wiki/PrimeFacesLocales
http://code.google.com/p/primefaces/wiki/PrimeFacesLocales

Chapter 1

23

When you click on the Show Dialog button, you will get the following output:

How it works…
Within the example, we're setting the dir attribute of the <p:dialog> component to rtl,
stating that the text direction will be right to left.

There's more…
The direction of text can also be changed globally by setting primefaces.DIR in the web.
xml file:

<context-param>
 <param-name>primefaces.DIR</param-name>
 <param-value>rtl</param-value>
</context-param>

A parameter value can either be ltr or rtl. It can also be an EL expression to provide
dynamic values.

The PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter1/rightToLeft.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Getting Started with PrimeFaces

24

Improved resource ordering
PrimeFaces provides improved resource ordering to support customization of content. This
ability could be used when Internet Explorer demands special meta tags to be placed first or
for scenarios where the styling for PrimeFaces components needs to be overridden by custom
styling.

How to do it…
Define <h:head> using facet definitions where necessary:

<h:head title="PrimeFaces Cookbook - ShowCase">
<f:facet name="first">
</f:facet>
...
<f:facet name="middle">
</f:facet>
...
<f:facet name="last">
</f:facet>
...
</h:head>

The <h:head> tag is used by JSF components to add their resources to
pages; thus, it's a must-have tag throughout your JSF-based applications.
One of the commonly made mistakes among developers is forgetting to
put in the head tag.

For instance, if a stylesheet gets declared in multiple CSS files, which would be linked in the
middle and last facets respectively, the stylesheet definition referred to in the middle facet
will be overridden by the one defined in the last facet.

How it works…
With PrimeFaces' own HeadRenderer implementation, the resources are handled in the
following order:

1.	 If defined, first facet.

2.	 PF-JSF registered CSS.

3.	 Theme CSS.

4.	 If defined, middle facet.

Chapter 1

25

5.	 PF-JSF registered JS.

6.	 Head content.

7.	 If defined, last facet.

There's more…
Internet Explorer introduced a special tag named meta, which can be used as <meta http-
equiv="X-UA-Compatible" content="..." />. The <meta> tag is X-UA-Compatible
and its content helps to control document compatibility, such as specifying the rendering
engine to render the related pages in the browser. For example, inserting the following
statement into the head of a document would force IE 8 to render the page using the new
standards mode:

<meta http-equiv="X-UA-Compatible" content="IE=8" />

X-UA-Compatible must be the first child of the head component. Internet Explorer won't accept
this <meta> tag if it's placed after the <link> or <script> tag. Therefore, it needs to be
placed within the first facet. This is a good demonstration of resource ordering with the use
of the first facet.

The PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter1/resourceOrdering.jsf.

www.allitebooks.comwww.allitebooks.com

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition
http://www.allitebooks.org
http://www.allitebooks.org

27

2
Theming Concepts

In this chapter, we will cover the following topics:

ff Understanding structural and skinning CSS

ff Installing themes

ff Customizing default theme styles

ff Adjusting the font and size throughout the web application

ff Simple ways to create a new theme

ff Stateless and stateful theme switchers

ff Integrating Font Awesome with PrimeFaces

Introduction
In this chapter, readers will be introduced to PrimeFaces themes and the concepts involved.
Later on, we will build on these concepts to learn theming of the PrimeFaces components.
The theming concept used in PrimeFaces is similar to the jQuery ThemeRoller CSS Framework
(http://jqueryui.com/themeroller). All PrimeFaces components are designed to allow
a developer to integrate them seamlessly into the look and feel of an entire web application.
At the time of writing, there are 38 plus ready-to-use themes, which you can preview and
download from the PrimeFaces Theme Gallery (http://primefaces.org/themes). There
are two kinds of themes: ELITE themes that are available to ELITE & PRO users exclusively or
as a standalone purchase, and Community themes that are free to use under Apache License.
Community themes include the ones available in ThemeRoller and custom themes such as
Twitter Bootstrap.

http://jqueryui.com/themeroller
http://primefaces.org/themes

Theming Concepts

28

Powered by ThemeRoller, PrimeFaces separates structural CSS from skinning CSS. The
difference between the two CSS concepts is the topic of the first recipe. Installation and
customization of PrimeFaces themes, along with creation of new themes, will be detailed.
We will also see how to adjust the font family and font size throughout the PrimeFaces
components. Adapted font settings provide a consistent look and feel in a multi-theme web
application. Two variants of theme switcher will demonstrate how to switch PrimeFaces
themes with and without page refresh. Discussion about integrating the Font Awesome CSS
toolkit for scalable vector icons will finish this chapter.

Understanding structural and skinning CSS
Each component is styled with CSS and contains two layers of style information—structural or
component-specific and skinning or component-independent styles.

In this recipe, you will understand the difference between these two types of CSS, learn some
useful selectors, and see an exemplary styling of the pickList component in the generated
HTML.

Getting ready
To learn about different layers of style information, you can go to the PrimeFaces Showcase
(http://primefaces.org/showcase) and look at it in the Firefox browser with an
installed Firebug add-on (http://getfirebug.com). Firebug allows live editing, debugging,
and monitoring CSS, HTML, and JavaScript in any web page. Another useful tool is the built-in
Developer Tools for the Google Chrome browser, which is similar to the Firebug. Both these
tools can be opened by pressing the F12 key.

How to do it…
Go to the PrimeFaces Showcase and choose the PickList component from the left sidebar
(the PickList menu item belongs to the Data menu). Open the Firebug now. It has a toolbar
with tabs and a small icon having the tooltip Click an element in the page to inspect. Select
the HTML tab and then click on that small icon. After that, click on the left (source) area in the
displayed Basic PickList box. You will see the HTML code that belongs to the selected area
as seen in the following screenshot:

http://primefaces.org/showcase
http://getfirebug.com

Chapter 2

29

In the highlighted line in the preceding screenshot, the source area of pickList is presented
as an HTML ul element with the following style classes:

ff ui-picklist-list

ff ui-picklist-source

ff ui-widget-content

ff ui-corner-all

ff ui-sortable

Theming Concepts

30

Firebug also shows the corresponding styling with CSS next to the generated HTML code. For
the Aristo theme, it looks as follows:

.ui-picklist .ui-picklist-list {
 height: 200px;
 list-style-type: none;
 margin: 0;
 overflow: auto;
 padding: 0;
 width: 200px;
}

.ui-widget-content {
 background: none repeat scroll 0 0 #ffffff;
 border: 1px solid #a8a8a8;
 color: #4f4f4f;
}

.ui-corner-all {
 border-radius: 3px;
}

How it works…
The first two style classes ui-picklist-list and ui-picklist-source are generated
by PrimeFaces and provide a semantic presentation to indicate the role of an element within a
component. In this case, it is a list of the pickList items. Other examples are ui-datatable
for a table and ui-button for a button. These are structural style classes. In general, structural
style classes define the skeleton of the components and include CSS properties such as margin,
padding, display type, overflow behavior, dimensions, and positioning.

As already said, PrimeFaces leverages the jQuery ThemeRoller CSS Framework. The ui-
widget-content and ui-corner-all classes in the preceding code are defined by
ThemeRoller and affect the look and feel of the underlying HTML element and component.
These are skinning style classes, which define CSS properties such as text colors, border
colors, and background images.

Selector Applies

.ui-widget
This is the class applied to all PrimeFaces components. It
applies, for example, font family and font size to any component.

.ui-widget-header
This is the class applied to the header section(s) of a
component.

.ui-widget-content
This is the class applied to the content section(s) of a
component.

Chapter 2

31

Selector Applies

.ui-state-default
This is the default class applied to clickable, button-like
components or their elements.

.ui-state-hover
This is the class applied on a mouseover event to clickable,
button-like components or their elements.

.ui-state-active
This is the class applied on a mousedown event to clickable,
button-like components or their elements.

.ui-state-disabled
This is the class applied to components or their elements when
they are disabled.

.ui-state-highlight
This is the class applied to components or their elements when
they are highlighted or selected.

.ui-state-error This is the class applied to error messaging container elements.

.ui-icon
This is the class applied to elements representing an icon.
It sets dimensions and hides inner text and the background
image.

.ui-corner-all
This is the class that applies corner-radius to all four corners of
a component.

.ui-corner-top
This is the class that applies corner-radius to both top corners of
a component.

.ui-corner-bottom
This is the class that applies corner-radius to both bottom
corners of a component.

These styles are applied consistently across all PrimeFaces components, so a clickable button
and accordion tab have the same ui-state-default class applied to indicate that they are
clickable. When a user moves the mouse over one of these elements, this class gets changed
to ui-state-hover, and then to ui-state-active when these elements are selected.
This approach makes it easy to ensure that all elements with a similar interaction state will
look identical across all components.

The main advantage of the presented PrimeFaces selectors is a great flexibility in theming
because you don't need to know each and every skinning selector to change the styles of all
available components in your web application consistently.

Theming Concepts

32

There's more…
Some style classes are not generated by PrimeFaces explicitly and not defined by the
ThemeRoller. There is, for instance, the structural class ui-sortable (listed in the How to do
it… section of this recipe). This class defines a sortable behavior and tells us that pickList
items can be sorted by a drag-and-drop action. The PrimeFaces library utilizes the jQuery
Sortable plugin (http://jqueryui.com/demos/sortable) for the underlying JavaScript
widget used in pickList to enable a group of DOM elements to be sortable. The plugin adds
the structural style class ui-sortable automatically, on the fly, while the component gets
rendered.

It is also important to say that the prefix of both types of style classes is ui. Most jQuery-
based plugins typically have this prefix too. This fact might lead to a CSS collision when you
use a jQuery plugin, which overrides PrimeFaces styles. An example is the jQuery UI (native)
and PrimeFaces dialogs. Both use the style class ui-dialog. Manage this case properly with
a CSS selector's specificity to avoid CSS collisions. Selector's specificity is the weight of the
selector applied when multiple selectors affect the same element (http://w3.org/TR/
CSS21/cascade.html#specificity).

More information on the ThemeRoller selectors can be found in the official
documentation at http://api.jqueryui.com/theming/css-
framework

Almost every component description in the PrimeFaces User's Guide
(http://primefaces.org/documentation.html) contains a
Skinning section with the component's structural style classes.

Installing themes
PrimeFaces themes are bundled as JAR files. Community themes are free and available
for download at the PrimeFaces repository (http://repository.primefaces.org/
org/primefaces/themes). Each theme can be quickly previewed before download
at PrimeFaces Theme Gallery (http://primefaces.org/themes) or tested in the
PrimeFaces Showcase with an integrated theme switcher.

In this recipe, we will install and configure themes to use them in an JSF application. The
steps to accomplish this task are straightforward.

http://jqueryui.com/demos/sortable
http://w3.org/TR/CSS21/cascade.html#specificity
http://w3.org/TR/CSS21/cascade.html#specificity
http://api.jqueryui.com/theming/css-framework
http://api.jqueryui.com/theming/css-framework
http://primefaces.org/documentation.html
http://repository.primefaces.org/org/primefaces/themes
http://repository.primefaces.org/org/primefaces/themes
http://primefaces.org/themes

Chapter 2

33

Getting ready
If you are a Maven (http://maven.apache.org) user, ensure that you have Maven
installed. Maven is a build and project management tool, which manages installation of all
dependencies in an easy way. PrimeFaces is a Maven-based project and offers all artifacts,
including themes, as Maven dependencies.

How to do it…
Maven users should define any desired theme artifact in their project's pom.xml as follows:

<dependency>
 <groupId>org.primefaces.themes</groupId>
 <artifactId>cupertino</artifactId>
 <version>1.0.10</version>
</dependency>

artifactId is the name of the theme as defined at the Theme Gallery page. Also, make
sure that you have the PrimeFaces repository in your pom.xml:

<repository>
 <id>prime-repo</id>
 <name>PrimeFaces Maven Repository</name>
 <url>http://repository.primefaces.org</url>
 <layout>default</layout>
</repository>

Non-Maven users should download the theme manually from the PrimeFaces repository
and place it in the classpath of your application. You can repeat this step for all the themes
you need.

Once you have included one or multiple themes, configure PrimeFaces to use them. Set the
primefaces.THEME context parameter in web.xml (deployment descriptor) with its value as
the name of the theme that you would like to use as default. Assuming you would like to use
Home theme, then, the configuration is:

<context-param>
 <param-name>primefaces.THEME</param-name>
 <param-value>home</param-value>
</context-param>

http://maven.apache.org

Theming Concepts

34

That's all. You don't need to manually include any CSS files on your pages or anything
else. PrimeFaces will handle everything for you. In case you would like to make the theme
dynamic, define an EL expression as the param value. Assume that you have managed bean
UserSettings keeping the current theme name in a theme variable. A proper configuration
is as follows:

<context-param>
 <param-name>primefaces.THEME</param-name>
 <param-value>#{userSettings.theme}</param-value>
</context-param>

This is a case where you have installed multiple themes and let users switch them as per a
theme switcher. All community themes are also available in an "all-in-one" bundled JAR file
that can be included with just one dependency:

<dependency>
 <groupId>org.primefaces.themes</groupId>
 <artifactId>all-themes</artifactId>
 <version>1.0.10</version>
</dependency>

How it works…
The PrimeFaces component library has a special implementation for the JSF standard head
component. PrimeFaces provides the HeadRenderer class, which is responsible for rendering
of the <h:head> tag. HeadRenderer automatically detects the current configured theme
in web.xml regardless of whether it is static or dynamic, via the managed bean and renders
theme-related resources on the page. After that the page contains a link to theme.css:

<link type="text/css" rel="stylesheet"
 href="/showcase/javax.faces.resource/theme.css.jsf
 ?ln=primefaces-home"/>

There's more…
Aristo is the built-in default theme of PrimeFaces. There is no separate JAR file for it; the
theme is delivered with the core PrimeFaces JAR file itself. Therefore, you don't need to
install it via Maven or have it extra in the classpath.

If you are using Apache Trinidad (http://myfaces.apache.org/trinidad) or JBoss
RichFaces (http://jboss.org/richfaces), PrimeFaces Theme Gallery includes
Trinidad's Casablanca and RichFaces' BlueSky themes. You can use them to make the
PrimeFaces components look like the Trinidad or RichFaces themes during migration.

http://myfaces.apache.org/trinidad
http://jboss.org/richfaces

Chapter 2

35

See also
ff You may also want to check the Themes section in PrimeFaces User's Guide

(http://primefaces.org/documentation)

ff See the use of dynamic themes in the Stateless and stateful theme switchers recipe

Customizing default theme styles
How to customize theme styles is one of the most asked questions by the PrimeFaces users.
There are simple rules to be followed to overwrite bundled theme styles with custom CSS.
There is no need to edit bundled themes and repackage theme JAR files.

In this recipe, we will present two examples for theme customization—one for selectOneMenu
and another for the tree component. We will see how to change styles for a particular
component or for all components of the same type. The reason to do that could be a
company style guide with the need to maintain corporate identity throughout all applications.
Furthermore, we will learn tips for customizing default styles on input components.

How to do it…
Let's set a fixed width for p:selectOneMenu and remove the background and border for
p:tree. The default width of p:selectOneMenu is calculated at runtime. That means, the
width of p:selectOneMenu is dynamic and depends on its content (select items). Large
select items cause large p:selectOneMenu. A fixed width would sometimes show a better
p:selectOneMenu for items with a short text. p:tree without background and border
could better fit a custom design in certain circumstances. This is demonstrated in the
following screenshot:

www.allitebooks.comwww.allitebooks.com

http://primefaces.org/documentation
http://www.allitebooks.org
http://www.allitebooks.org

Theming Concepts

36

The corresponding XHTML part looks as follows:

<h:panelGrid styleClass="customStyles">
 <h3>p:selectOneMenu (fix width)</h3>

 <p:selectOneMenu value="dummy">
 <f:selectItem itemLabel="English" itemValue="en"/>
 <f:selectItem itemLabel="German" itemValue="de"/>
 <f:selectItem itemLabel="Russian" itemValue="ru"/>
 </p:selectOneMenu>

 <h3 style="margin:20px 0 0 0;">
 p:tree (no background, no border)
 </h3>

 <p:tree value="#{treeController.root}" var="node">
 <p:treeNode>
 <h:outputText value="#{node}"/>
 </p:treeNode>
 </p:tree>
</h:panelGrid>

The most interesting part is CSS. Our aim is to customize styles for only two particular
components which are placed below a h:panelGrid with style class customStyles.
Use namespacing to do this. Simply prepend the .customStyles style class to the
PrimeFaces styles:

.customStyles .ui-selectonemenu {
 width: 157px !important;
}

.customStyles .ui-selectonemenu .ui-selectonemenu-label {
 width: 130px !important;
}

.customStyles .ui-tree {
 border: none;
 background: none;
}

PrimeFaces styles can be inspected by the Firefox add-on Firebug or
Google Chrome built-in Developer Tools.

Chapter 2

37

Any other CSS selector can be used for namespacing too, but the use of ID is not
recommended. ID in CSS is a component's client ID—an ID in the generated HTML. This is
normally not the ID used in facelets (XHTML files). JSF prepends IDs of parent components
that extend NamingContainer (for example, h:form or p:dataTable) while generating
client IDs. It has disadvantages such as:

ff The default separator for NamingContainer is a colon which should always be
escaped in CSS by a backslash

ff A style class can be used several times, while an ID can only be used once

ff IDs can be changed accidentally while refactoring and developers have to change
the client IDs in CSS too

Namespacing is not needed if you want to change styles for all components of the same type.
In this case, .customStyles should be omitted.

Use h:outputStylesheet to add custom CSS files to your JSF application. An example:

<h:outputStylesheet library="css" name="customStyles.css"/>

How it works…
Custom styles will be rendered after the PrimeFaces theme (skinning) and component
(structural) styles. The correct output is ensured by the PrimeFaces resource ordering. Therefore,
custom styles, being rendered after PrimeFaces ones, overwrite the default settings.

We used the !important keyword to set a fixed width for the container and the label of
selectOneMenu. This was necessary because selectOneMenu renders the width as an
inline style in HTML markup, for example, style="width:76px". Inline styles always have
the highest specificity and win against IDs and other CSS selectors. The different weight of
selectors is usually the reason why your CSS rules are not applied to some elements, although
you think they should have.

You can learn about CSS specificity (weight of selectors) at World Wide
Web Consortium (W3C) http://w3.org/TR/CSS21/cascade.
html#specificity.

To remove the default border and background settings for Tree, we applied the none keyword
on the border and background properties.

http://w3.org/TR/CSS21/cascade.html#specificity
http://w3.org/TR/CSS21/cascade.html#specificity

Theming Concepts

38

There's more…
Generally, to distinguish between input and non-input elements, there is a style class
ui-inputfield assigned to every input element. Examples of components with ui-
inputfield are p:inputText, p:inputTextarea, p:calendar and p:spinner. There
are also additional CSS selectors on those elements such as ui-state-disabled. They
affect the look and feel for various states. To modify default styles on input components, we
should overwrite the style classes ui-inputfield, ui-state-disabled, ui-state-
error, ui-state-default, ui-state-focus, and so on. In the following code snippet,
we have removed the border, background and shadow on input components. Furthermore, we
have changed the styling of disabled inputs and assigned a custom background to the ui-
state-error style class, which is applied to inputs when the validation fails:

.ui-inputfield {
 background: #ffffff;
 -moz-box-shadow: none;
 -webkit-box-shadow: none;
 box-shadow: none;
 color: #000000;
}

.ui-inputfield.ui-state-focus {
 -moz-box-shadow: none;
 -webkit-box-shadow: none;
 box-shadow: none;
}

.ui-inputfield.ui-state-default {
 background: none;
 border: 1px inset;
}

.ui-inputfield.ui-state-disabled,

.ui-state-disabled .ui-inputfield {
 background-color: #8F8F8F;
 border: solid 1px gray;
}

.ui-inputfield.ui-state-error,

.ui-state-error .ui-inputfield {
 background-color: #F43939;
}

Chapter 2

39

We write .ui-inputfield concatenated with .ui-state-default, .ui-state-
disabled, .ui-state-error, .ui-state-focus, and so on. because these style classes
are defined on the same HTML elements.

The order of resource rendering may be broken when you use dynamic includes (the
ui:include tag with the dynamic src attribute bound to a bean). CSS resources for
dynamic included component tags, which were not presented on the page before including,
are being added to the head as the last elements. That means that the existing custom styles
will be rendered before, and not after, the newly added PrimeFaces styles.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, build, and deploy the WAR file on every Servlet 3.x
compatible application server such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter2/customThemeStyles.jsf.

See also
ff Refer to the Improved resource ordering recipe from Chapter 1, Getting Started with

PrimeFaces, for better understanding of PrimeFaces resource ordering

Adjusting the font and size throughout the
web application

Each PrimeFaces theme has a specific font family and font size, which can differ from theme
to theme. This may have a disadvantage in a multi-theme application because switching from
one theme to another would cause a broken layout. Furthermore, default font sizes of themes
might be bigger than expected. Hence, it is important to know how to change font properties
of the PrimeFaces components globally.

In this recipe, we will learn how to adjust the font family and font size throughout the web
application.

How to do it…
A simple way to change fonts globally can be accomplished by using the .ui-widget style
class. An example of smaller font is as follows:

.ui-widget, .ui-widget .ui-widget {
 font-size: 90% !important;
}

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Theming Concepts

40

Using !important in CSS can sometimes be useful to force a rule, so that
you can place your CSS in any order in HTML.

This might not be enough in some cases, especially when you mix PrimeFaces and JSF
standard components based on native HTML pendants. In this case, more CSS selectors are
required to be listed in order to adjust fonts globally. Assume that we have decided to use the
font Arial with size as 12 pixel. CSS selectors working for all known components would be as
in the following code:

body,
input,
select,
textarea,
button,
.ui-widget,
.ui-widget input,
.ui-widget select,
.ui-widget textarea,
.ui-widget button,
.ui-widget-header,
.ui-widget-content,
.ui-widget-header .ui-widget-header,
.ui-widget-content .ui-widget-content {
 font-family: Arial, Verdana, sans-serif;
 font-size: 12px !important;
}

The universal selector * is much shorter, but it has no CSS specificity. Its
specificity is 0,0,0,0. That means, it cannot overwrite, for example, an
inline style with a specified font size.

How it works…
All PrimeFaces components are styled by the ui-widget style class. It is a skinning style
specified by jQuery ThemeRoller and applied to HTML elements rendered by PrimeFaces.
An input element has it, for instance:

<input type="text" class="ui-inputfield ui-inputtext ui-widget ui-
 state-default ui-corner-all" name="..." id="..." role="textbox">

In rare cases, when some component parts have been assigned font properties, but are not
styled by .ui-widget or you use non-PrimeFaces components, more CSS selectors are
needed for changing font properties throughout the web application.

Chapter 2

41

See also
ff More explanation for CSS selectors in the PrimeFaces-based applications can be

found in the Understanding structural and skinning CSS and Customizing default
theme styles recipes

Simple ways to create a new theme
We sometimes need to create our own themes instead of using the predefined ones. Web
applications should often feature a company-specific look and feel, which is constant and
preset by company-wide style guides. Creating new themes is easy with PrimeFaces because
it is powered by the ThemeRoller CSS Framework (http://jqueryui.com/themeroller).
ThemeRoller provides a powerful and easy-to-use online visual tool.

In this recipe, we will systematically show all the required steps to create a new theme.

Getting ready
To gain first-hand experience of the ThemeRoller online visual tool, go to the ThemeRoller
home page, explore the available theme's Gallery, and play with the CSS properties to see
changes for jQuery widgets embedded on the page. All CSS changes will be applied on the fly.

http://jqueryui.com/themeroller

Theming Concepts

42

How to do it…
The simplest way to make our own theme is to modify one of the existing PrimeFaces themes.
Choose one from the PrimeFaces Theme Gallery (http://primefaces.org/themes),
which is close to your needs. All the themes are downloadable JAR files. The JAR structure is
listed here (example for the Home theme):

- jar
 - META-INF
 - resources
 - primefaces-home
 - theme.css
 - images
 - ...

Assume that our new theme has the name funny. We can now create the following structure
in a web project below the resources folder:

- war
 - resources
 - primefaces-funny
 - theme.css
 - images
 - ...

Or create quite a new JAR project for the new theme as follows:

- jar
 - META-INF
 - resources
 - primefaces-funny
 - theme.css
 - images
 - ...

The second way is preferred because it would be conforming to the PrimeFaces theme
convention. JAR files can be shared across multiple web applications by adding them to the
classpath. The last step consists of modifying theme.css according to our needs. Knowledge
of CSS selectors is necessary.

If no predefined theme matches our requirements, we should use the ThemeRoller online tool.
We have to select one of the existing themes (the Gallery tab) and edit it (the Roll Your Own
tab). A click on the Download theme button accomplishes the work.

http://primefaces.org/themes

Chapter 2

43

We should choose the Deselect all components option on the Download
page so that our new theme only includes the skinning styles.

Next, we need to migrate the downloaded theme files from ThemeRoller to the PrimeFaces
theme infrastructure. The migration steps are straightforward.

1.	 The theme package that we have downloaded will have a CSS file jquery-ui-
{version}.custom.css and a folder images. Extract the package and rename
the CSS file as theme.css.

2.	 Image references in the theme.css file must be converted to JSF expressions,
which can be understood by the JSF resource loading mechanism. An example for
the original CSS file would be as follows:
url("images/ui-bg_highlight-hard_100_f9f9f9.png")

This should be converted to the following:

url("#{resource['primefaces-funny:images/ui-bg_highlight-
 hard_100_f9f9f9.png']}")

3.	 Create a JAR theme project with the structure shown in this section.

4.	 Once the JAR file is in the classpath, we can use it as per the configuration in web.
xml.

<context-param>
 <param-name>primefaces.THEME</param-name>
 <param-value>funny</param-value>
</context-param>

How it works…
JSF 2 has a built-in facility for serving resources. The JSF implementation looks for resources
in two locations and in the following order:

ff /resources: This location represents resources in the web application itself

ff /META-INF/resources: This location represents resources on the classpath

The syntax for image references in CSS files is #{resource[...]}; it activates this facility
and allows to load resources from JAR files.

The PrimeFaces' renderer implementation for the <h:head> tag automatically detects the
current configured theme in web.xml and renders theme-related resources on the page.

Theming Concepts

44

There's more…
There is also a third-party Theme Converter application where you can upload your custom
theme (zip file) created with ThemeRoller (https://themeroller.osnode.com/
themeroller). The application will generate a JAR file for you. This is the easiest way to
create your custom themes without requiring knowledge of CSS.

Stateless and stateful theme switchers
Multi-theme web applications require a theme switcher component. The default PrimeFaces'
theme switcher is a component which enables switching themes on the fly, without sending an
AJAX or a full-page request. We speak about a stateless theme switcher because the current
selected theme is only known on the client side. Users also often need a stateful theme switcher
to save the chosen theme on the server side in user preferences or settings.

In this recipe, we will show the usage of a stateless theme switcher and implement a stateful
theme switcher, which is able to save the current selected theme on the server side.

How to do it…
The theme switcher usage is very similar to the usage of p:selectOneMenu. The
component is represented by the p:themeSwitcher tag and accepts f:selectItem or
f:selectItems. The code snippet for a stateless theme switcher is as follows:

<p:themeSwitcher style="width:165px" effect="fade">
 <f:selectItem itemLabel="Choose Theme" itemValue=""/>
 <f:selectItems value="#{userSettingsBean.themes}"/>
</p:themeSwitcher>

Themes are prepared in a CDI bean UserSettingsBean:

@Named
@SessionScoped
public class UserSettingsBean implements Serializable {

 private Map<String, String> themes;

 public Map<String, String> getThemes() {
 return themes;
 }

 @PostConstruct
 public void init() {
 themes = new TreeMap<String, String>();

https://themeroller.osnode.com/themeroller
https://themeroller.osnode.com/themeroller

Chapter 2

45

 themes.put("Afterdark", "afterdark");
 ...
 themes.put("Vader", "vader");
 }
}

The next code snippet demonstrates a stateful theme switcher:

<p:themeSwitcher value="#{userSettingsBean.theme}" var="t"
 style="width:170px" effect="fade"
 converter="#{themeConverter}"
 onchange="$('#mainForm').submit()">
 <f:selectItems value="#{userSettingsBean.availableThemes}"
 var="theme"
 itemLabel="#{theme.displayName}"
 itemValue="#{theme}"/>
 <p:column>
 <h:graphicImage library="images"
 name="themes/#{t.name}.png"/>
 </p:column>
 <p:column>
 #{t.displayName}
 </p:column>
</p:themeSwitcher>

It supports the display of theme previews in the form of small images.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Theming Concepts

46

The implementation requires p:column. This theme switcher sends full-page requests when
the user changes themes. UserSettingsBean is a bean class providing getters / setters for
the current selected theme and a public method List<Theme> getAvailableThemes().
This method returns all available themes as a list of instances of type Theme. The model class
Theme consists of two attributes, displayName and name:

public class Theme implements Serializable {

 private String displayName;
 private String name;

 public Theme(String displayName, String name) {
 this.displayName = displayName;
 this.name = name;
 }

 // getters
 ...
}

How it works…
The resource URL to theme.css contains a current theme name. The stateless theme
switcher changes the theme name in the resource URL by JavaScript. The changed resource
link streams down a new theme.css to the page dependent on the user selection.

In the second example for the stateful theme switcher, we defined a JavaScript onchange
callback to submit the closest form with a current selected theme. It results in a regular HTTP
request. The p:column tag is needed to display table-like custom content. The model class
Theme encapsulates the displayed name and the name of the picture for every single theme
and exposes this information on the page via the var attribute.

In case you would like to be notified when a user changes the theme (for example, to update
user preferences), you can use an attached p:ajax:

<p:themeSwitcher value="#{userSettingsBean.theme}">
 <f:selectItems value="#{userSettingsBean.themes}"/>
 <p:ajax listener="#{userSettingsBean.saveTheme}"/>
</p:themeSwitcher>

Chapter 2

47

There's more…
We used a JSF converter for the stateful theme switcher, which was developed as a CDI bean.
The converter as bean allows to inject another bean into the converter instance. In our case,
we injected an instance of UserSettingsBean:

@Named
@SessionScoped
public class ThemeConverter implements Serializable, Converter {

 @Inject
 private UserSettingsBean userSettingsBean;

 public Object getAsObject(FacesContext context, UIComponent
 component, String value) {
 List<Theme> themes = userSettingsBean.getAvailableThemes();
 for (Theme theme : themes) {
 if (theme.getName().equals(value)) {
 return theme;
 }
 }

 return null;
 }

 public String getAsString(FacesContext context, UIComponent
 component, Object value) {
 return ((Theme) value).getName();
 }
}

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, build and deploy the WAR file on every Servlet 3.x
compatible application server such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter2/statelessThemeSwitcher.jsf and http://localhost:8080/
pf-cookbook/views/chapter2/statefulThemeSwitcher.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Theming Concepts

48

Integrating Font Awesome with PrimeFaces
The jQuery ThemeRoller provides various icons and corresponding style classes, but the
number of icons is limited. If you need more icons, check out the Font Awesome project.
(http://fortawesome.github.io/Font-Awesome). Font Awesome gives you hundreds
of scalable vector icons that can be customized—size, color, drop shadow, and anything that
can be done with the power of CSS. With a little effort, you are able to use many new icons in
your JSF application in the same way that you use predefined icons from ThemeRoller.

In this recipe, we will learn step- by- step how to integrate additional icons from Font Awesome
with PrimeFaces themes. We will develop an example with custom icons for buttons and links.

How to do it…
First of all, we need two dependencies in the pom.xml (two JAR files in the classpath)—one
for the premade Font Awesome JAR created by the WebJars project (http://webjars.org)
and one for the OmniFaces (http://omnifaces.org):

<dependency>
 <groupId>org.webjars</groupId>
 <artifactId>font-awesome</artifactId>
 <version>4.2.0</version>
</dependency>
<dependency>
 <groupId>org.omnifaces</groupId>
 <artifactId>omnifaces</artifactId>
 <version>1.8.1</version>
</dependency>

The next steps are straightforward. Register OmniFacess' UnmappedResourceHandler
in faces-config.xml:

<application>
 ...
 <resource-handler>
 org.omnifaces.resourcehandler.UnmappedResourceHandler
 </resource-handler>
</application>

In web.xml, add /javax.faces.resource/* to FacesServlet URL-mapping:

<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>

http://fortawesome.github.io/Font-Awesome
http://webjars.org
http://omnifaces.org

Chapter 2

49

</servlet>
<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/javax.faces.resource/*</url-pattern>
 <url-pattern>*.jsf</url-pattern>
</servlet-mapping>

And the following mime-type mappings:

<mime-mapping>
 <extension>eot</extension>
 <mime-type>application/vnd.ms-fontobject</mime-type>
</mime-mapping>
<mime-mapping>
 <extension>otf</extension>
 <mime-type>font/opentype</mime-type>
</mime-mapping>
<mime-mapping>
 <extension>ttf</extension>
 <mime-type>application/x-font-ttf</mime-type>
</mime-mapping>
<mime-mapping>
 <extension>woff</extension>
 <mime-type>application/x-font-woff</mime-type>
</mime-mapping>
<mime-mapping>
 <extension>svg</extension>
 <mime-type>image/svg+xml</mime-type>
</mime-mapping>
<mime-mapping>
 <extension>ico</extension>
 <mime-type>image/x-icon</mime-type>
</mime-mapping>

The last step is including font-awesome.css from the Font Awesome JAR file, which is
available via the Maven dependency:

<h:outputStylesheet name="webjars/font-awesome/4.2.0/css/font-
 awesome.css"/>

Let us now develop PrimeFaces buttons and links with some custom icons. All available icons
can be viewed on the Font Awesome site at http://fontawesome.io/icons. The pattern
for the icons' style class is always the same—fa fa-* where * is an icon name:

<p:commandButton value="Area Chart" icon="fa fa-area-chart"
 style="margin-right:10px;"/>

http://fontawesome.io/icons

Theming Concepts

50

<p:commandButton value="Bar Chart" icon="fa fa-bar-chart"/>

<p/>

<p:commandLink style="margin-right:15px;">
 <i class="fa fa-linux"/>
 <h:outputText value="Linux" style="margin-left:5px;"/>
</p:commandLink>
<p:commandLink>
 <i class="fa fa-windows"/>
 <h:outputText value="Windows" style="margin-left:5px;"/>
</p:commandLink>

<p/>

<p:selectBooleanButton onLabel="Bus" offLabel="Taxi"
 onIcon="fa fa-bus" offIcon="fa fa-taxi"
 style="width:80px"/>

<style type="text/css">
 .ui-icon.fa {
 text-indent: 0;
 margin-top: -6px;
 }
</style>

The result looks as follows:

.

Chapter 2

51

How it works…
WebJars are client-side web libraries packaged into JAR files. The project structure
inside a JAR file is compatible with the JSF resource identifier format. OmniFaces'
UnmappedResourceHandler is typically needed to manage the JSF resource handling
in third-party CSS files, such as font-awesome.css. Third-party files normally contain
relative URLs to images and don't have #{resource[...]} to activate the JSF 2 facility
for resources loading from JAR files. The UnmappedResourceHandler helps to load images
by relative URLs in CSS files.

Setting text-indent to 0 pixels is required for overriding the PrimeFaces own ui-icon
style {text-indent: -99999px}:

.ui-icon.fa {
 text-indent: 0;
}

There's more…
PrimeFaces 5.1.1 (and upwards) bundles Font Awesome and provides the CSS tuning of
components for the icons. Any component that provides an icon attribute such as a button
or menu item can accept an icon from the Font Awesome project. In order to enable this
feature, a context parameter in web.xml is required:

<context-param>
 <param-name>primefaces.FONT_AWESOME</param-name>
 <param-value>true</param-value>
</context-param>

See also
ff Some inside information for the JSF 2 built-in facility for serving resources is

available in the Simple ways to create a new theme recipe

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, build and deploy the WAR file on every Servlet 3.x
compatible application server such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter2/fontAwesome.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

3
Enhanced Inputs

and Selects

In this chapter, we will cover the following topics:

ff Formatted input with inputMask

ff Auto suggestion with autoComplete

ff Usable features of inputTextArea

ff Discovering selectBooleanCheckbox and selectManyCheckbox

ff Choosing a single item with selectOneMenu

ff Basic and advanced calendar scenarios

ff Spinner – different ways to provide input

ff Slider – different ways to provide input

ff Rich text editing with the editor

ff Advanced editing with an in-place editor

ff Enhanced password input

ff Star-based rating input

Introduction
In this chapter, we will learn how to work with the input and select components available in
PrimeFaces. PrimeFaces provides over 25 components for data input, which extend standard
corresponding JSF components with skinning capabilities and useful features such as user-
friendly interface, validation, and so on.

Enhanced Inputs and Selects

54

Formatted input with inputMask
inputMask minimizes the chances for the user to input incorrect data. It applies client-side
validation with the provided masking template.

How to do it...
A basic example of an input mask for a phone number input would be as follows:

<p:inputMask value="#{inputMaskBean.phone}"
 mask="(999) 999-9999"/>

As can be seen with the mask (999) 999-9999, it is stated that only numbers can be input
along with the parenthesis and dashed structure. The initial visual of the input will be as seen
in the following screenshot:

The fields that are filled up with number 9 in the mask will be empty and the rest will be
rendered with the initial phase. The character 9 is used to depict only numeric characters
that could be input for the field. By providing the alphabetic character a, input could also
be restricted to alphabetic characters only. An example would be the input of a product key,
as follows:

<p:inputMask value="#{inputMaskBean.productKey}" mask="a999-a9"/>

This will restrict the input of the first characters of the two sections that are separated by the
dash, only to the alphabetic characters.

How it works…
The inputMask component decorates the input text component with JavaScript to provide
the masking feature. With each keypress event, the value is checked against the mask
provided for the validation on the client-side. The component will unmask itself when the
readonly attribute is set to true. PrimeFaces wraps masked input plugin of jQuery for the
inputMask component.

Chapter 3

55

There's more…
There is also the slotChar attribute, which renders the character(s) given in the template.
The default value of the slotChar is the _ character. For instance, we can change the
slotChar value for the phone input with the definition X; the component would be defined
as follows:

<p:inputMask value="#{inputMaskBean.phone}"
 mask="(999) 999-9999" slotChar="X" />

The component will be rendered as shown in the following screenshot:

The placeHolder attribute for the inputMask component is
deprecated with PrimeFaces version 5.1 since placeHolder conflicts
with the HTML5 placeholder attribute. Please use the slotChar
attribute instead if you are upgrading from a version prior to 5.1.

Using the asterisk (*) character
With the asterisk character, we can represent an alphanumeric character to be input by the
user, which could be A to Z, a to z, or 0 to 9.

<p:inputMask value="#{inputMaskBean.productKey}"
 mask="a*-999-a999" />

With the preceding inputMask definition, inputs such as ac-223-a481 or a2-223-a481
will be validated as true.

Making a part of the mask optional
It is also possible to make a part of the mask optional with the use of a question mark
character. Anything listed after ? within the mask definition will be considered as an optional
user input. A common example for this is a phone number with an optional extension:

<p:inputMask value="#{inputMaskBean.phoneExt}"
 mask="(999) 999-9999? x99999" />

When the user finishes the input by reaching the ? character and un-focusing the component,
the rest of the validation will be skipped, and the input up to that section will not be erased.
Input values such as (555) 204-2551 or (555) 204-2551 x1980 will be valid for this
optional input.

Enhanced Inputs and Selects

56

Dynamically changing the mask value
With the help of some JavaScript, it's also possible to change the mask value of the
component dynamically. In the screenshot given next, we define two masks, one is
(99)9999-9999, which is the default value, and the other one is (99)9-9999-9999,
which is enabled when checkbox gets clicked:

The JavaScript and component definition would be as follows:

<script type="text/javascript">
 function setMask() {
 var c = PF('cbxMask');
 var i = PF('phoneMask');
 if (c.isChecked()) {
 i.jq.mask('(99)9-9999-9999');
 i.jq.focus();
 } else {
 i.jq.mask('(99)9999-9999');
 i.jq.focus();
 }

 }
</script>

<p:inputMask id="phone" widgetVar="phoneMask"
 value="#{inputMaskBean.phone2}" mask="(99)9999-9999"/>
<p:selectBooleanCheckbox itemLabel="Extended Mask"
 onchange="setMask()" widgetVar="cbxMask"/>

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, and build and deploy the WAR file on every Servlet
3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available under http://localhost:8080/pf-cookbook/
views/chapter3/inputMask.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 3

57

Auto suggestion with autoComplete
The autoComplete component provides suggestions while you type into the input field. This
enables users to quickly find and select from the list of looked-up values as they type, which
leverages the searching and filtering abilities.

How to do it…
For simple usage of the autoComplete component, all we need to do is to define the
complete method that will be invoked with the user input, as follows:

<p:autoComplete id="simple" value="#{autoCompleteBean.txt1}"
 completeMethod="#{autoCompleteBean.complete}" />

This will be rendered as shown in the following screenshot:

As the user types characters into the input text (as shown in the preceding screenshot)
the component will assist 10 selections by appending numbers from 0 to 9. The
completeMethod implemented for this in the autoCompleteBean backing bean is shown
in the following code snippet. The user input is passed as the parameter to the method:

public List<String> complete(String input) {
 List<String> result = new ArrayList<String>();
 for (int i = 0; i < 10; i++) {
 result.add(input + i);
 }
 return result;
}

Enhanced Inputs and Selects

58

There are several attributes that could be used with the autoComplete component. With
the minQueryLength attribute, we can specify the number of characters to be typed before
starting query; its default value is 1. This minimizes the unnecessary lookups that could be
done to the server since the input provided by the user, a couple of characters probably, is
often not enough for meaningful prediction most of the time.

With the queryDelay attribute, we can specify the delay in milliseconds before sending each
query to the server; its default value is 300 ms. This minimizes the round trips that are done
to the server to reduce the load on the execution of completeMethod.

With the forceSelection attribute, a component only accepts input from the selection list;
so the typed characters will be transient if no selection is made. This forces the user to select
the proper content that could be validated properly via the assistance of the component. The
user can also leave the component intact with no selection. Its default value is false.

When set to true, the dropdown attribute provides the autoComplete component to be
used as a dropdown by rendering the drop-down icon. This will enable the selection of any of
the autoComplete items by the user without inputting any character.

Starting with version 4.0, when the cache attribute is set to true, the autoComplete
component caches previous server side suggestions on the client side if the same query
is provided by the user. A time out value can also be set in milliseconds with the
cacheTimeout attribute.

By default, autoComplete does not provide any feedback to the user when no records are
found for the suggestion. To achieve this, the emptyMessage attribute can be used to display
a custom message to the user.

There's more…
Instead of working with primitive types, most of the time we would be using the
autoComplete component with domain objects. The basic definition of the component for
listing the cars for a given brand, for example, would be as follows:

<p:autoComplete id="carPOJO"
 value="#{autoCompleteBean.selectedCar}"
 completeMethod="#{autoCompleteBean.completeCar}"
 var="car" itemLabel="#{car.name}" itemValue="#{car}"
 forceSelection="true">
 <f:converter
 converterId="org.primefaces.cookbook.converter.CarConverter"
 />
 <p:column>
 <p:graphicImage
 value="/resources/images/autocomplete/#{car.name}.png"/>

Chapter 3

59

 </p:column>
 <p:column>#{car.name}</p:column>
</p:autoComplete>

Here, the component contains column definitions along with a converter declaration. The
converter is responsible for converting the submitted value for each car, and with the help
of the columns, we render images along with the name of each car. This will enhance
the autocompletion for the user, and will ease the selection. The visual of the component
definition will be as seen in this screenshot:

Instant AJAX selection
It's also possible to invoke a server-side method instantly when an item from autoComplete
is selected. The autoComplete component provides the itemSelect AJAX behavior event
that will be fired instantly when an item is selected:

<p:autoComplete value="#{autoCompleteBean.txt1}"
 completeMethod="#{autoCompleteBean.complete}">
 <p:ajax event="itemSelect"
 listener="#{autoCompleteBean.handleSelect}"
 update="messages" />
</p:autoComplete>

The itemSelect method will be invoked with org.primefaces.event.SelectEvent.
The current value of the selected item can be retrieved with event.getObject(), and a
Faces message could be added with the current item, as in the following code snippet:

public void handleSelect(SelectEvent event) {
 Object selectedObject = event.getObject();
 MessageUtil.addInfoMessage("selected.object", selectedObject);
}

Enhanced Inputs and Selects

60

Multiple selection
With autoComplete, it is also possible to select multiple items by setting the multiple
attribute to true:

<p:autoComplete id="multipleSelect"
 value="#{autoCompleteBean.selectedTexts}"
 completeMethod="#{autoCompleteBean.complete}"
 multiple="true" />

With the help of multiple select, the selected texts can be retrieved as a list in
autoCompleteBean.selectedTexts, which maps to the property List<String>
selectedTexts.

Adding item tip
The autoComplete component offers an advanced built-in tooltip that gets visible when the
mouse is hovered over the suggested items. The following is the screenshot of the tooltip that
is rendered for the Car domain objects:

The content of the tooltip can be defined within a facet named itemtip as follows:

<p:autoComplete id="itemTip"
 value="#{autoCompleteBean.selectedCar2}"
 completeMethod="#{autoCompleteBean.completeCar}"
 var="car" itemLabel="#{car.name}" itemValue="#{car}">
 <f:converter
 converterId="org.primefaces.cookbook.converter.CarConverter"
 />
 <f:facet name="itemtip">
 <h:panelGrid columns="2" cellpadding="5">
 <p:graphicImage
 value="/resources/images/autocomplete/#{car.name}.png"
 width="80" height="50"/>

Chapter 3

61

 <h:outputText value="#{car.name}

 #{car.year}" escape="false" />
 </h:panelGrid>
 </f:facet>
</p:autoComplete>

Grouping on items
With the value provided to the groupBy attribute, it's possible to create groups for the
suggested items list. The following screenshot groups a list of cars whose names contain the
query string:

The names of the groups are created from the first character of each car's name. The
component declaration and method definition for this grouping is given here:

<p:autoComplete id="grouped"
 value="#{autoCompleteBean.selectedCar}"
 completeMethod="#{autoCompleteBean.completeCarContains}
 var="car" itemLabel="#{car.name}" itemValue="#{car}"
 forceSelection="true"
 groupBy="#{autoCompleteBean.getGroup(car)}">
 <f:converter
 converterId="org.primefaces.cookbook.converter.CarConverter"
 />

Enhanced Inputs and Selects

62

 <p:column>
 <p:graphicImage
 value="/resources/images/autocomplete/#{car.name}.png"/>
 </p:column>
 <p:column>#{car.name}</p:column>
</p:autoComplete>

public char getGroup(Car car) {
 return car.getName().charAt(0);
}

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, and build and deploy the WAR file on every Servlet
3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available under http://localhost:8080/pf-cookbook/
views/chapter3/autoComplete.jsf.

Usable features of inputTextArea
The inputTextArea component is an extension to the HTML <textarea> component with
special capabilities, such as auto-growing, auto-resizing, and remaining-character count.

How to do it…
A basic definition for the input text area would be as follows:

<p:inputTextarea value="#{inputTextAreaBean.value}" />

This will render an input text area with the default values rows='3' and cols='20' as
shown in the following screenshot:

The component also provides auto-resizing with the autoResize attribute that allows us to
expand the height automatically when the text input overflows. The default value is true. If
you want to get the vertical scrollbar, you need to set the autoResize to false.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 3

63

Like the HTML <textarea> component, we can also specify the rows and cols attributes to
specify the size of the text area component in rows and columns.

How it works…
The JavaScript plugin for the inputTextArea component is solely implemented by
PrimeFaces with jQuery. Auto-resizing is executed on the keyup, focus, and blur JavaScript
events and it increases the number of rows that the component owns. Remaining character
count is executed on the keyup event, and the content gets trimmed if maxlength is
exceeded. We will get to this trimming feature in the next section.

There's more…
With the maxlength attribute, we can limit the maximum allowed characters to be input to
the component. There are two more attributes, counter and counterTemplate, which will
dynamically output the number of characters left to be input to the component easily:

<p:inputTextarea value="#{bean.propertyName}" counter="display"
 maxlength="20" counterTemplate="{0} characters remaining" />
<h:outputText id="display" />

The counter attribute should refer to the ID of the label component to display the remaining
characters; counterTemplate will contain the template text to display in counter, with the
default value {0}. Either <h:outputText> or <p:outputLabel> can be used as the
label component.

Since the maximum length constraint is being triggered by keyboard
inputs, it's not possible to control the length of the input if the user
right clicks to the text area canvas and pastes his own text content that
will exceed the maximum length. To disable pasting, use pass through
attributes of JSF 2.2, as given here:

<p:inputTextarea value="#{inputTextAreaBean.value}"

 counter="display2" maxlength="20"

 counterTemplate="{0} characters remaining">

 <f:passThroughAttribute name="onpaste"

 value="return false;" />

</p:inputTextarea>

Enhanced Inputs and Selects

64

Autocomplete on content
By defining the completeMethod attribute, the inputTextarea component also offers
autocomplete functionality. The following definition will try to complete input queries at a
minimum of 4 characters length:

<p:inputTextarea completeMethod="#{inputTextAreaBean.complete}"
 queryDelay="500" minQueryLength="4" cols="40" />

public List<String> complete(String query) {
 List<String> results = new ArrayList<String>();

 if(query.equals("PrimeFaces")) {
 results.add("PrimeFaces Rocks!!!");
 results.add("PrimeFaces has 100+ components.");
 results.add("PrimeFaces is lightweight.");
 results.add("PrimeFaces Cookbook
 is the best source for PrimeFaces!");
 }
 else {
 for(int i = 0; i < 10; i++) {
 results.add(query + i);
 }
 }

 return results;
}

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on every
Servlet 3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available under http://localhost:8080/pf-cookbook/
views/chapter3/inputTextArea.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 3

65

Discovering selectBooleanCheckbox and
selectManyCheckbox

To provide skinning, selectBooleanCheckbox and selectManyCheckbox extend the
default JSF components <h:selectBooleanCheckbox> and <h:selectManyCheckbox>,
respectively.

How to do it…
Basic definitions for selectBooleanCheckbox and selectManyCheckbox would be
as follows:

<p:selectBooleanCheckbox
 value="#{selectCheckboxBean.selectedValue}" />

<p:selectManyCheckbox
 value="#{selectCheckboxBean.selectedCountries}">
 <f:selectItem itemLabel="Turkey" itemValue="Turkey" />
 <f:selectItem itemLabel="Germany" itemValue="Germany" />
 <f:selectItem itemLabel="Switzerland" itemValue="Switzerland" />
</p:selectManyCheckbox>

Adding labels to the checkbox is easy with the itemLabel attribute. The itemLabel
attribute displays a label next to the checkbox:

<p:selectBooleanCheckbox
 value="#{selectCheckboxBean.selectedValue}"
 itemLabel="#{msg['selectBooleanCheckbox.label']}" />

The text that will be rendered right next to the checkbox component with the itemLabel
attribute can also be clicked to select/deselect the checkbox. The msg resource bundle
variable given in the example is defined in faces-config.xml.

The direction of contents of the selectManyCheckbox component can be changed
from the default horizontal rendering to vertical by setting the layout attribute with the
pageDirection value. The output for both horizontal and vertical rendering of the example
given in the basic definition is shown in the following screenshot:

Enhanced Inputs and Selects

66

There's more…
The layout of selectManyCheckbox can be customized with its columns attribute, which
would specify the maximum number of allowed columns. When it's exceeded the number of
SelectItem elements given, a new row will be created automatically.

It's also possible to get the state of the checkbox at the client-side via JavaScript. To achieve
this, the widgetVar attribute needs to be specified to the component. The widgetVar
attribute defines the client-side variable, which has various responsibilities, such as
progressive enhancement of the markup and communication with the server-side via AJAX.
It can also be used directly from the JavaScript code as follows:

<p:selectBooleanCheckbox
 value="#{selectCheckboxBean.selectedValue}"
 widgetVar="mySelection" />

<p:commandLink value="Alert Selection"
 onclick="alert(PF('mySelection').isChecked());" />

Within the alert method of the onclick event of commandLink (a client-side JavaScript
call), the state will be retrieved by the mySelection.isChecked() code section. The
checkbox component is being accessed by mySelection, which is the name of the
client-side widget variable of the checkbox.

Selection with AJAX behavior on selectBooleanCheckbox
We can also invoke server-side code when the checkbox is checked/unchecked. The definition
will update the growl message component when it's clicked:

<p:selectBooleanCheckbox
 value="#{selectCheckboxBean.selectedValue}">
 <p:ajax update="growl"
 listener="#{selectCheckboxBean.addMessage}" />
</p:selectBooleanCheckbox>

The server-side addMessage method that is called for adding the actual message is
as follows:

public void addMessage() {
 String summaryKey =
 selectedValue ? "checkbox.checked" : "checkbox.unchecked";
 MessageUtil.addInfoMessage(summaryKey);

}

Chapter 3

67

This will add a Faces message that corresponds to the given key from the defined
resource bundle.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on every
Servlet 3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available under http://localhost:8080/pf-cookbook/
views/chapter3/selectBooleanCheckboxSelectManyCheckbox.jsf.

See also
For details about the MessageUtil class, see the Internationalization (i18n) and Localization
(L10n) recipe in Chapter 1, Getting Started with PrimeFaces.

Choosing a single item with selectOneMenu
The selectOneMenu component is an extended version of JSF selectOneMenu. It provides
custom content display along with skinning capabilities.

How to do it…
The simplest component declaration would be as follows:

<p:selectOneMenu>
 <f:selectItem itemLabel="English" itemValue="en"/>
 <f:selectItem itemLabel="Turkish" itemValue="tr"/>
</p:selectOneMenu>

The output visual will be as follows:

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Enhanced Inputs and Selects

68

There's more...
Instead of working with primitive types or just string literals, most of the time we would be
using the selectOneMenu component with domain objects. The basic definition of the
component for listing the cars for a given brand would be as follows:

<p:selectOneMenu id="carPOJO"
 value="#{selectOneMenuBean.selectedCar}" var="car">
 <f:converter
 converterId="org.primefaces.cookbook.converter.CarConverter"
 />
 <f:selectItems value="#{selectOneMenuBean.cars}" var="c"
 itemLabel="#{c.name}" itemValue="#{c}" />
 <p:column>
 <p:graphicImage
 value="/resources/images/autocomplete/#{car.name}.png"
 width="80" height="50"/>
 </p:column>
 <p:column>#{car.name}</p:column>
</p:selectOneMenu>

Here, the component contains column definitions along with a converter declaration. The
converter is responsible for converting the submitted value for each car, and with the help
of the columns, we render images along with the name of each car.

You can find the source code of the Car converter class available
at http://bit.ly/CarConverter.

Also, with the editable attribute set to true, it becomes possible to choose from a given list
or to input your own value.

Filtering on items
The selectOneMenu component offers filtering of its contents when the filter attribute
is set to true. When enabled, an input field gets rendered on the drop-down list as overlay
and filtering is triggered on the onkeyup event of the input. The filterMatchMode attribute
defines the matching mode for filtering the content. Its values could either be startsWith,
which is the default value, contains, endsWith, and custom.

http://bit.ly/CarConverter

Chapter 3

69

When set to custom, a JavaScript method name should be provided with the
filterFunction attribute. The visual of the component, when filtering is enabled,
will be similar to the following screenshot:

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, and build and deploy the WAR file on every Servlet
3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available under http://localhost:8080/pf-cookbook/
views/chapter3/selectOneMenu.jsf.

Basic and advanced calendar scenarios
The calendar component is used to provide date input with customizable features, such as
localization, paging of months, and restriction mechanisms on the date selection.

How to do it…
The simplest component declaration for a basic date selection would be as follows:

<p:calendar value="#{calendarBean.date}" />

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Enhanced Inputs and Selects

70

This renders an input text that opens a pop-up date selection dialog when clicked, as shown in
the following screenshot:

The pop-up visual of the calendar can also be configured to render as an inline visual on the
page with the mode attribute, as follows:

<p:calendar value="#{calendarBean.date}" mode="inline" />

The default value of mode is popup. It is also possible to render multiple months side by side
on the page with the pages attribute:

<p:calendar value="#{calendarBean.date}" pages="3"
 mode="inline" />

Paging will start with the month that the given date exists in, and will continue with the number
of months specified by the pages attribute. The inline attribute can also be used along with
the paging to display, for instance, three months in a row, as in the preceding example.

The attribute showOn defines a client-side event that displays the pop-up calendar. The
value button can be specified with the showOn attribute to render a button right next to the
input text field to show the pop-up calendar when clicked. The default value for the showOn
attribute is focus, which will render the popup when the input field gets the focus.

The mindate and maxdate attributes set the calendar's minimum visible and maximum
visible dates. With the following example, the calendar will be rendered with three days
available for selection, which are yesterday, today, and tomorrow.

<p:calendar id="restrictedDates" value="#{calendarBean.date}"
 mode="inline"
 mindate="#{calendarBean.yesterday}"
 maxdate="#{calendarBean.tomorrow}" />

It's also possible to disable the manual input on the input text of a pop-up calendar by setting
the readonlyInput attribute to true.

Chapter 3

71

There's more...
The pattern attribute defines the date format that will be applied for localization. A pattern
given as dd.MM.yyyy will result in a value like 07.01.2015. A pattern given as EEE, dd
MM, yyyy will result in the value Wed, 07 Jan, 2015 for the same date.

It's also possible to invoke a server-side method instantly when a date is selected. The
calendar component provides the dateSelect AJAX behavior event that will be fired
instantly when a date is selected:

<p:calendar value="#{calendarBean.date}" mode="inline">
 <p:ajax event="dateSelect"
 listener="#{calendarBean.onDateSelect}" update="growl" />
</p:calendar>

The onDateSelect method will be invoked with org.primefaces.event.
DateSelectEvent. The current value of the calendar can be retrieved with event.
getDate(), and a Faces message could be added with the current date, as in the following
code snippet:

public void onDateSelect(DateSelectEvent event) {
 Date date = event.getDate();
 MessageUtil.addInfoMessage("selected.date", date);
}

Localization of the calendar
Defining the locale value to the locale attribute provides the localization of the calendar.
Definition of a calendar in a Turkish locale would be as follows:

<p:calendar locale="tr" mode="inline" id="trCal"/>

The calendar component uses a shared PrimeFaces.locales property to display the
labels. PrimeFaces only provides English translations, so in order to localize the calendar,
we need to put the corresponding locales into a JavaScript file and include the scripting file
to the page, as follows:

<h:outputScript library="js" name="turkishLocale.js" />

For the usage of the outputScript tag, refer to http://www.mkyong.com/jsf2/how-
to-include-javascript-file-in-jsf. For already translated locales of the calendar,
visit http://code.google.com/p/primefaces/wiki/PrimeFacesLocales.

http://www.mkyong.com/jsf2/how-to-include-javascript-file-in-jsf
http://www.mkyong.com/jsf2/how-to-include-javascript-file-in-jsf
http://code.google.com/p/primefaces/wiki/PrimeFacesLocales

Enhanced Inputs and Selects

72

Effects with the calendar
When the calendar component is in the popup mode, effects can be applied for the hide/
unhide mechanism of the pop-up dialog box:

<p:calendar value="#{calendarBean.date}" effect="bounce"
 effectDuration="slow" />

The effectDuration attribute can also be set with values slow, normal, and fast to
define the duration of the effect. The default value for the duration is normal. The list of all
the effects that could be used is as follows:

ff blind

ff bounce

ff clip

ff drop

ff fadeIn

ff fold

ff show

ff slide

ff slideDown

Picking time with the calendar
By providing a time format to the pattern attribute, the timePicker functionality can
be enabled:

<p:calendar value="#{calendarBean.date}"
 pattern="dd/MM/yyyy HH:mm:ss" />

The appearance of the calendar with the time-picking ability would appear as shown in the
following screenshot:

Chapter 3

73

To select only time with the calendar component, the timeOnly attribute should be set to
true, along with the pattern value as "dd/MM/yyyy HH:mm". Sliders of the time input
section of the calendar should have the step value 1. In order to change this, the calendar
component provides three attributes: stepHour, stepMinute, and stepSecond. We can
also define ranges for the hour, minute, and second inputs, so as to enable the user to input
hours between 3 and 5, minutes between 0 and 30, and seconds between 45 and 55. This is
shown in the following code snippet:

<p:calendar value="#{calendarBean.date}"
 pattern="dd/MM/yyyy HH:mm:ss"
 minHour="3" maxHour="5"
 minMinute="0" maxMinute="30"
 minSecond="45" maxSecond="55" />

To disable entering the date with keyboard input or with pasting,
use pass through attributes of JSF 2.2 within the definition of the
calendar component, as given here:

<f:passThroughAttribute name="onkeypress"

 value="return false;" />

<f:passThroughAttribute name="onpaste"

 value="return false;" />

Enhanced Inputs and Selects

74

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on every
Servlet 3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available under http://localhost:8080/pf-cookbook/
views/chapter3/calendar.jsf.

See also
For details about the localization of the calendar component, see the Internationalization
(i18n) and Localization (L10n) recipe in Chapter 1, Getting Started with PrimeFaces.

Spinner – different ways to provide input
The input component spinner provides a numerical input via increment and
decrement buttons.

How to do it…
A basic definition of the component would be as follows:

<p:spinner value="#{spinnerBean.intValue}" />

This will render an input textbox on the page, with controls to increase and decrease the value
as shown in the following screenshot:

There's more…
The stepFactor attribute defines the stepping factor that will be applied for each increment
and decrement with the default value 1. The following definition will increase or decrease the
value by 0.5:

<p:spinner value="#{spinnerBean.doubleValue}" stepFactor="0.5" />

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 3

75

Adding prefix and suffix
The prefix and suffix attributes provide the ability to place fixed strings on the input field
as a prefix or suffix to the input respectively. The first definition will render the $ sign as a
prefix, and the second one will render the % sign as a suffix with the value of the input field:

<p:spinner value="#{spinnerBean.intValue}" prefix="$" />

<p:spinner value="#{spinnerBean.intValue}" suffix="%" />

Applying boundaries to the input
The spinner component also provides attributes to set boundary values on the input value.
The min attribute defines the minimum boundary value with the minimum value of java.
lang.Double as default. The max attribute defines the maximum boundary value with the
maximum value of java.lang.Double as default.

The minimum and maximum control on the input field will only get applied on the increment
and decrement buttons, and not on manual input done with the keyboard. In order to disable
manual input, we need to specify JSF 2.2 pass-through attributes with the name onkeydown:

<p:spinner value="#{spinnerBean.intValue}" suffix="%"
 min="0" max="100">
 <f:passThroughAttribute name="onkeydown"
 value="return false;" />
</p:spinner>

This will result in rendering the spinner component with the restriction from 0 to 100,
suffixed with the % sign, and disabled with the keyboard input.

Adjusting the width of the spinner
One misleading approach towards setting the width of the spinner component is defining
the style attribute with the width value. For example, style="width:50px;", will
increase the width of the spinner component by having a fixed width for the input part.
We can easily resize the field with the size attribute, which defines the number of characters
used to determine the width of the input element:

<p:spinner value="#{spinnerBean.intValue}" size="3" />

Enhanced Inputs and Selects

76

AJAX update with spinner
It is also possible to update an output field for each click on the spinner, with the <p:ajax>
component:

<p:spinner id="ajaxSpinner" value="#{spinnerBean.intValue2}">
 <p:ajax update="output" process="@this" />
</p:spinner>
<h:outputText id="output" value="#{spinnerBean.intValue2}" />

Referring the ID of the outputText component with the update attribute does the
actual update.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on every
Servlet 3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available under http://localhost:8080/pf-cookbook/
views/chapter3/spinner.jsf.

Slider – different ways to provide input
The slider component provides the user with the ability to input a value by using a slider
bar. This component requires an input component to work properly.

How to do it…
As mentioned earlier, we first need to define an input component that will be used by the
slider component. The for attribute is used to set the ID of the input component whose
input will be provided by the slider component. The basic definition of a slider would be
as follows:

<h:inputText id="basicSlider" value="#{sliderBean.intValue}" />
<p:slider for="basicSlider" />

This will render an input text along with a horizontal slider bar as follows:

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 3

77

By default, the slider renders a horizontal bar for sliding. With the type attribute, the slider
can also be set to render a vertical bar with the value set as vertical. The minValue
attribute defines the minimum value of the slider with the default value as 0. The maxValue
attribute defines the maximum value of the slider with the default value as 100.

It's possible to provide a minus value for minValue attribute but it can
only be set via the slider bar of the component. Inputting a hyphen for the
minus value with a keyboard is not supported.

By default, the slider provides animation when the background of the slider is clicked. This
animation can be enabled/disabled with the animation attribute by setting its value as
true or false.

There's more...
The step attribute defines the amount of fixed pixels which increment the movement of the
slider with the default value of 1. The step attribute only supports integer values:

<h:inputText id="steppingSlider" value="#{sliderBean.intValue}" />
<p:slider for="steppingSlider" step="10" />

Displaying the value of the slider
With the display attribute, we can display the output of the slider while getting input from
the user by using an inputHidden component. The display attribute should refer the
output component while the for attribute refers the hidden input field:

<h:outputText id="output" value="#{sliderBean.intValue}" />
<h:inputHidden id="displaySlider"
 value="#{sliderBean.intValue}" />
<p:slider for="displaySlider" display="output" />

The slider component also provides a displayTemplate attribute where we can provide
a template while updating the display. A sample usage for the template could be as follows:

<h:outputText id="output"
 value="The value is: #{sliderBean.intValue}" />
<h:inputHidden id="displaySlider"
 value="#{sliderBean.intValue}" />
<p:slider for="displaySlider" display="output"
 displayTemplate="The value is: {value}" />

Here, {value} is a placeholder definition that is being set by the number value selected in
the spinner.

Enhanced Inputs and Selects

78

Disabling manual input with the slider
By default, the slider component does not disable the manual input. To get input only with
the slider bar, without keyboard input, we need to define the onfocus attribute as follows:

<h:inputText id="minMaxSlider" value="#{sliderBean.intValue}"
 onfocus="this.readOnly=true;" />
<p:slider for="minMaxSlider" step="10"
 minValue="0" maxValue="100" />

This will render an input field and a slider bar for which the user can enter values from 0 to
100 with an increment of 10 only by using the slider bar.

Selecting a range with slider
Range selection is also offered with the slider where we can select a minimum and a
maximum value. The range attribute should be set to true in order to achieve this and a
comma-separated ID pair should be declared with the for attribute, whose IDs are defined by
the inputHidden components.

The code snippet definition for the range selection is given here:

<h:outputText id="outputRange" value="The selected range:
 [#{sliderBean.rangeStart}, #{sliderBean.rangeEnd}]" />
<p:slider for="rangeStart,rangeEnd" style="width:200px"
 range="true" display="outputRange"
 displayTemplate="The selected range: [{min}, {max}]" />
<h:inputHidden id="rangeStart" value="#{sliderBean.rangeStart}" />
<h:inputHidden id="rangeEnd" value="#{sliderBean.rangeEnd}" />

The displayTemplate attribute can be used with {min} and {max} placeholders when
range selection is enabled. These placeholders will be updated by spinner when the user
selects his own range. The visual of the range selection is given in the following screenshot:

AJAX behavior events on slider
The slider provides the slideEnd AJAX behavior event that will be fired when the slide
gets completed:

<h:inputText id="ajaxSliderInput"
 value="#{sliderBean.intValue}" />
<p:slider id="ajaxSlider" for="ajaxSliderInput">

Chapter 3

79

 <p:ajax event="slideEnd" listener="#{sliderBean.onSlideEnd}"
 update="growl" />
</p:slider>

The onSlideEnd method will be invoked with org.primefaces.event.SlideEndEvent.
The current value of the slider can be retrieved with event.getValue(), and a Faces
message could be added with the current value, as in the following code snippet:

public void onSlideEnd(SlideEndEvent event) {
 int value = event.getValue();
 MessageUtil.addInfoMessage("selected.value", value);
}

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, and build and deploy the WAR file on every Servlet
3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available under http://localhost:8080/pf-cookbook/
views/chapter3/slider.jsf.

See also
For details about the MessageUtil class, see the Internationalization (i18n) and Localization
(L10n) recipe in Chapter 1, Getting Started with PrimeFaces.

Rich text editing with the editor
An input component editor, provides rich text editing features. It contains a toolbar that can
also be configured with custom controls to provide more functionality to the user.

How to do it…
The basic component declaration for editor, which renders default controls such as
indentation, and font and color selection, would be as follows:

<p:editor value="#{editorBean.text}" />

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Enhanced Inputs and Selects

80

The component will be rendered on the page with default controls as shown in the
following screenshot:

There's more…
The editor component offers the controls attribute, which can be used to customize the
toolbar of the editor. For instance, the following declaration will render only three controls,
bold, italic, and strikethrough:

<p:editor value="#{editorBean.text}"
 controls="bold italic strikethrough" />

The component will be rendered as shown in the following screenshot:

Chapter 3

81

The list of available controls is as follows:

ff alignleft

ff alignright

ff bold

ff bullets

ff center

ff color

ff copy

ff cut

ff font

ff highlight

ff image

ff indent

ff italic

ff justify

ff link

ff numbering

ff outdent

ff paste

ff pastetext

ff print

ff redo

ff removeFormat

ff rule

ff size

ff source

ff strikethrough

ff style

ff subscript

ff superscript

ff underline

ff undo

ff unlink

Enhanced Inputs and Selects

82

Clearing the contents of the editor
The editor component also provides a client-side JavaScript API for the execution of
methods such as clearing the content of the editor. The editor component can be reached
within JavaScript with the declaration of the widgetVar attribute:

<p:editor value="#{editorBean.text}" widgetVar="editor" />
<p:commandButton type="button" value="Clear"
 onclick="PF('editorClear').clear()" icon="ui-icon-close" />

Embedding the editor inside a dialog box
We can also embed the editor component inside a dialog box to get input from the user
in a more user-friendly manner:

<p:dialog widgetVar="editorDialog" modal="true">
 <p:editor />
</p:dialog>
<p:commandButton value="Show"
 onclick="PF('editorDialog').show()" />

By clicking on the commandButton, the dialog box that contains the editor component
will be rendered on the page as a modal dialog.

The editor component is not integrated with ThemeRoller since there is only one icon set
for the controls.

At the time of writing this book, Internationalization is not supported
by the editor component. All the tool tips for the controls are
rendered in English.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, and build and deploy the WAR file on every Servlet
3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available under http://localhost:8080/pf-cookbook/
views/chapter3/editor.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 3

83

Advanced editing with an in-place editor
The inplace component provides easy in-place editing and inline content display. It consists
of two members:

ff The display element that is the initial clickable label

ff The inline element, which is the hidden content that'll be displayed when the
display element is toggled

How it works…
The basic declaration of the component would be as follows:

<p:inplace>
 <h:inputText value="Edit Me!" />
</p:inplace>

This would render an input text field that could be clicked by the user to go into the edit mode.
To go out of the edit mode, the user needs to click on the Enter button after typing.

By default, the inplace component displays its first child's value as the label; this can also
be customized with the label attribute. This attribute defines the label that will be shown in
the display mode regardless of the text input by the user:

<p:inplace label="My Input Field">
 <h:inputText value="Edit Me!" />
</p:inplace>

The emptyLabel attribute defines the label that will be shown to the user when the value
of the input field is empty. The value displayed will change to the one provided if the user, for
instance, enters any text into the input field:

<p:inplace emptyLabel="My Empty Input Field">
 <h:inputText value="" />
</p:inplace>

Enhanced Inputs and Selects

84

There's more…
Besides the input text field, other components such as the drop-down list could also be used
with the in-place editor, as seen in the following example:

<p:inplace label="Countries">
 <h:selectOneMenu>
 <f:selectItem itemLabel="Turkey" itemValue="Turkey" />
 <f:selectItem itemLabel="Germany" itemValue="Germany" />
 </h:selectOneMenu>
</p:inplace>

Editing with confirmation buttons
The editor attribute specifies the confirmation mode of the editor with the default value
false. When set to true, approve and cancel buttons will be rendered right next to the
editor, as shown in the following screenshot:

There are two attributes available for introducing i18n to the in-place input when the editor
mode is set to true. The saveLabel attribute sets the tool-tip text of the save button with
the default value Save. The cancelLabel attribute sets the tool-tip text of the cancel
button with the default value Cancel.

Giving effects to the in-place input
The inplace component also provides ways to customize the effects of editing with the
attributes effect and effectSpeed. The effect attribute sets the effect to be used when
toggling, with the default value as fade. The other option is slide. When set to slide, the
component will slide its content upside down when it's toggled. The effectSpeed attribute
sets the speed of the effect with the default value normal. The other options for the attribute
are slow and fast.

Adding facets
Since version 4.0, the inplace component offers input and output faces, where you can
customize what to show as the input and output states of the component. The next example
given shows a checkbox for the input and a cross or a thick icon as the output. The names of
the icons are set as false.png and true.png for simplicity:

<p:inplace editor="true">
 <f:facet name="output">
 <p:graphicImage

Chapter 3

85

 value="/resources/images/inplace/#{inplaceBean.value}.png"
 width="30" height="30" />
 </f:facet>
 <f:facet name="input">
 <p:selectBooleanCheckbox value="#{inplaceBean.value}" />
 <h:outputLabel value="PrimeFaces Rocks!" />
 </f:facet>
</p:inplace>

The editing process will be as given in the following screenshot:

AJAX behavior events
The inplace component provides the save AJAX behavior event that will be fired when the
save button gets clicked:

<p:inplace editor="true">
 <p:ajax event="save"
 listener="#{inplaceBean.handleSave}" update="growl" />
 <h:inputText value="Edit Me!" />
</p:inplace>

The handleSave method will be invoked with javax.faces.event.
AjaxBehaviorEvent:

public void handleSave(AjaxBehaviorEvent event) {
 MessageUtil.addInfoMessageWithoutKey("Input Saved!", null);
}

Enhanced Inputs and Selects

86

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, and build and deploy the WAR file on every Servlet
3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available under http://localhost:8080/pf-cookbook/
views/chapter3/inPlaceEditor.jsf.

Enhanced password input
The password component is an extended version of the JSF <h:inputSecret> component,
which also provides a strength indicator and the match mode.

How to do it…
The basic declaration for the component will provide no feedback on the input password and
will just render a simple input component:

<p:password value="#{passwordBean.password}" />

To enable the strength indicator, the feedback attribute should be set to true. By default,
the indicator will be rendered right next to the component when it is hovered:

When feedback is enabled, it's also possible to set the prompt label and the strength label
with the promptLabel, weakLabel, goodLabel, and strongLabel attributes. This will
help to localize the password input component according to the need:

<p:password value="#{passwordBean.password}" feedback="true"
 promptLabel="#{msg['password.promptLabel']}"
 weakLabel="#{msg['password.weakLabel']}"
 goodLabel="#{msg['password.goodLabel']}"
 strongLabel="#{msg['password.strongLabel']}" />

To render the indicator in the inline mode without hovering, the inline attribute should be
set to true.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 3

87

How it works…
Strength testing is done by differently weighing the characters in the ranges [0-9],
[a-zA-Z], and [!@#$%^&*?_~.,;=].

There's more…
It is also possible to check a password match by providing the match attribute, which
identifies another password component with its ID to match the value against. The following
panel grid definition contains a message component, along with two password components
and a commandButton component, to invoke the validation:

<h:panelGrid id="passwords" columns="1">
 <p:messages id="messages" showDetail="true" />
 <p:password id="passwordMatch1"
 value="#{passwordBean.password}" match="passwordMatch2" />
 <p:password id="passwordMatch2"
 value="#{passwordBean.password}" />
 <p:commandButton update="passwords" value="Save" />
</h:panelGrid>

When the input password does not match the actual password, the validation error will be
thrown, as shown in the following screenshot:

You can set the autocomplete attribute to off for the password field,
but beware that nearly all major browsers are now ignoring this attribute
for the password fields.

Enhanced Inputs and Selects

88

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on every
Servlet 3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available under http://localhost:8080/pf-cookbook/
views/chapter3/password.jsf.

Star-based rating input
The rating component provides star-based rating with the ability to select and cancel.

How to do it…
The basic declaration for the component would be as follows:

<p:rating value="#{ratingBean.rate}" />

Here, the rate value binding is a java.lang.Integer definition. The default visual of the
component will be as shown in the following screenshot:

The stars attribute sets the number of stars to display with a default value 5.

There's more…
With the readonly attribute, it's possible to only display the value output of the component
by disabling user interaction. When set to true, the cancellation button will also not be
rendered on the left-hand side of the component.

When the disabled attribute is set to true, the rating component will act the same as
when the readonly attribute is set to true, but the color of the stars will get faint, as seen
in this screenshot:

Currently, the rating component does not support half or
quarter values.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 3

89

AJAX behavior events
It is also possible to invoke a server-side method instantly when the user rates or cancels the
rating. The rating component provides two AJAX behavior events for this, rate and cancel.

A sample definition that updates the growl component with AJAX behavior would be as follows:

<p:rating id="instantRating" value="#{ratingBean.rate}">
 <p:ajax event="rate" listener="#{ratingBean.handleRate}"
 update="growl" />
 <p:ajax event="cancel" listener="#{ratingBean.cancelRate}"
 update="growl" />
</p:rating>

The handleRate method gets org.primefaces.event.RateEvent, as shown in the
following code snippet, despite the cancelRate method that has no arguments. The rating is
contained in rateEvent and can be retrieved as an object with the getRating() method:

public void handleRate(RateEvent rateEvent) {
 Integer rate = (Integer) rateEvent.getRating();
 MessageUtil.addInfoMessage("rating.selected", rate);
}
public void cancelRate() {
 MessageUtil.addInfoMessage("rating.cancelled");
}

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on every
Servlet 3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available under http://localhost:8080/pf-cookbook/
views/chapter3/rating.jsf.

See also
For details about the MessageUtil class, see the Internationalization (i18n) and Localization
(L10n) recipe in Chapter 1, Getting Started with PrimeFaces.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

91

4
Grouping Content

with Panels

In this chapter, we will cover the following topics:

ff Grouping content with a standard panel

ff PanelGrid with colspan and rowspan support

ff Vertical stacked panels with accordion

ff Displaying overflowed content with scrollPanel

ff Working with a tabbed panel

ff Grouping of buttons and more with toolbar

ff The multipurpose output panel

ff Simulating the portal environment with dashboard

ff Creating complex layouts

ff Responsive layout with Grid CSS

Introduction
In this chapter, we will cover various container components, such as panel, accordion, scroll
panel, output panel, and tabbed panel, which allow grouping of JSF components.

Grouping Content with Panels

92

Grouping content with a standard panel
A generic grouping component for JSF components, panel has features such as toggling,
closing, a built-in pop-up menu, and AJAX event listeners. In this recipe, we will create panels
that can be closed and toggled, with custom action menus and AJAX behaviors added.

How to do it…
A basic definition of the panel would be as follows:

<p:panel id="simple" header="PrimeFaces" footer="The Cookbook">
 <h:outputText value="Open Source Primefaces is the leading JSF
 Component Suite in the industry, which is adopted widely and
 being used in production ready projects around the globe." />
</p:panel>

The preceding definition of the panel will be rendered as shown in the following image:

There's more…
The header and footer attributes can be used to render text at the top of the panel as the
header and at the bottom of the panel as the footer. The values defined for the attributes are
escaped by default, so the HTML content can be easily provided. With the facets, header
and footer, also offered by panel, you can define elements other than texts. The facet
definitions override the attributes defined.

In order to enable closing and toggling of the panel, the closeable and toggleable
attributes should be set to true. Once the panel gets closed, the page should be refreshed,
or the panel should be re-rendered to see the panel back. The toggling speed can also be
adjusted using the toggleSpeed attribute, which has the default value of 1000 milliseconds.
The title values for the buttons can be localized with the closeTitle and toggleTitle
attributes, if needed.

Chapter 4

93

The options facet is present in panel to provide a built-in menu that would be given within
the facet. The definition of a menu with two menu items would be as follows:

<p:panel id="panelWithMenu" header="PrimeFaces"
 footer="The Cookbook" widgetVar="panel" closable="true"
 toggleable="true">
 <h:outputText value="Open Source Primefaces is the leading
 JSF Component Suite in the industry, which is adopted widely
 and being used in production ready projects around the
 globe." />
 <f:facet name="options">
 <p:menu>
 <p:submenu label="Settings">
 <p:menuitem value="Toggle" url="#" icon="ui-icon-newwin"
 onclick="PF('panel').toggle()" />
 <p:menuitem value="Remove" url="#" icon="ui-icon-close"
 onclick="PF('panel').close()" />
 </p:submenu>
 </p:menu>
 </f:facet>
</p:panel>

The menu will render with the Settings icon as shown in the following image. The widget
variable panel is being used by the menu item's onclick events to close and toggle
the panel.

With the toggleOrientation attribute, it's possible to toggle the panels horizontally, from
right-to-left, instead of the default vertical toggling. The value for the attribute could be either
of the values vertical and horizontal.

Grouping Content with Panels

94

Custom actions
The actions facet enables you to add custom actions to the title bar of the panel with
specified icons. The definition here puts a help icon on the right-hand side of the title bar:

<p:panel id="customActions" header="PrimeFaces"
 footer="The Cookbook">
 <f:facet name="actions">
 <h:commandLink styleClass="ui-panel-titlebar-icon
 ui-corner-all ui-state-default"
 onclick="alert('action!')">
 <h:outputText styleClass="ui-icon ui-icon-help" />
 </h:commandLink>
 </f:facet>
 <h:outputText value="Open Source Primefaces is the leading JSF
 Component Suite in the industry, which is adopted widely and
 being used in production ready projects around the globe." />
</p:panel>

The ui-icon-help used in the preceding example is one of the
elements of the jQuery UI. It provides an extensive set of icons that can be
applied through CSS classes. The complete list can be found at http://
api.jqueryui.com/theming/icons.

AJAX behavior events on panel
The panel component supports the close and toggle AJAX behavior events that will be
fired when the panel is closed or toggled. The definition of the panel with AJAX behavior events
will be as follows:

<p:panel id="ajaxPanel" header="PrimeFaces" footer="The Cookbook"
 closable="true" toggleable="true">
 <p:ajax event="close" listener="#{panelBean.handleClose}"
 update="growl" />
 <p:ajax event="toggle" listener="#{panelBean.handleToggle}"
 update="growl" />
 <h:outputText value="Open Source PrimeFaces is the leading
 JSF Component Suite in the industry, which is adopted widely
 and being used in production ready projects around the globe."/>
</p:panel>

http://api.jqueryui.com/theming/icons
http://api.jqueryui.com/theming/icons

Chapter 4

95

The listener methods, handleClose and handleToggle, receive an instance of org.
primefaces.event.CloseEvent and org.primefaces.event.ToggleEvent,
respectively, as parameters:

public void handleClose(CloseEvent event) {
 MessageUtil.addInfoMessage("panel.closed",
 "Closed panel id:'" + event.getComponent().getId());
}

public void handleToggle(ToggleEvent event) {
 MessageUtil.addInfoMessage("panel.toggled",
 "Status:" + event.getVisibility().name());
}

To get the id parameter of the closed panel, event.getComponent().getId() is used,
and to retrieve the status of toggling, the visibility enumeration can be retrieved using event.
getVisibility().name(), which would be either VISIBLE or HIDDEN.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter4/panel.jsf.

See also
For details about the MessageUtil class, see the Internationalization (i18n) and Localization
(L10n) recipe in Chapter 1, Getting Started with PrimeFaces.

PanelGrid with colspan and rowspan support
The panelGrid component extends the JSF's <h:panelGrid> component with the support
of colspan, that is, the number of columns a cell should span, and rowspan, which is the
number of rows a cell should span, and the theming ability. In this recipe, we will create
panels with row and column span abilities.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Grouping Content with Panels

96

How to do it…
A basic definition of the panel grid would be as follows:

<p:panelGrid columns="2">
 <f:facet name="header">User Information</f:facet>
 <h:outputLabel for="firstname" value="First Name" />
 <p:inputText id="firstname" value="" label="firstname" />
 <h:outputLabel for="lastname" value="Last Name" />
 <p:inputText id="lastname" value="" required="true"
 label="lastname"/>
 <f:facet name="footer">
 <p:commandButton type="button" value="Save"
 icon="ui-icon-check" style="margin:0"/>
 </f:facet>
</p:panelGrid>

This will render two columns with header and footer facets, as shown in the following image:

The panelGrid component is rendered as an HTML table with borders by default. In order to
remove borders, you can specify the custom style, as given here:

<p:panelGrid columns="2" styleClass="pGrid">
...
</p:panelGrid>

<style type="text/css">
 .pGrid tr, .pGrid td {
 border: none;
 }
</style>

The style segment should be placed in the head section of the page.

Chapter 4

97

There's more…
The p:row and p:column components can be used to provide column and row spanning on
the grid. They could either be used in the header or footer facets or within the content of
the panel. Here is a sample with the definition and the visual result:

<p:panelGrid style="margin-top:20px">
 <f:facet name="header">
 <p:row>
 <p:column colspan="6">Time Chart</p:column>
 </p:row>
 <p:row>
 <p:column/>
 <p:column>Monday</p:column>
 <p:column>Tuesday</p:column>
 <p:column>Wednesday</p:column>
 <p:column>Thursday</p:column>
 <p:column>Friday</p:column>
 </p:row>
 </f:facet>
 <p:row>
 <p:column rowspan="6">Hours</p:column>
 <p:column>Science</p:column>
 <p:column>Math</p:column>
 <p:column rowspan="2"
 style="text-align:center">Project</p:column>
 <p:column>Math</p:column>
 <p:column>Arts</p:column>
 </p:row>
 <p:row>
 <p:column>Social</p:column>
 <p:column>History</p:column>
 <p:column>Sports</p:column>
 <p:column>Math</p:column>
 </p:row>
 <p:row>
 <p:column colspan="6"
 style="text-align:center">Lunch</p:column>
 </p:row>
 <p:row>
 <p:column>Math</p:column>
 <p:column>History</p:column>
 <p:column>English</p:column>

Grouping Content with Panels

98

 <p:column>Science</p:column>
 <p:column>Arts</p:column>
 </p:row>
 <f:facet name="footer">
 <p:row>
 <p:column colspan="6">Duration: 40 minutes</p:column>
 </p:row>
 </f:facet>
</p:panelGrid>

The preceding sample definition of column and row spanning will be rendered as shown in the
following image:

The panelGrid component also supports responsive web design with the layout attribute,
which effectively handles browser resizing. The default value for layout is tabular, and
when the value of the attribute is set to grid, the content becomes responsive and promptly
responds to the browser resizing, panning, and so on.

Using colspan or rowspan is not supported when layout is set
to grid.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter4/panelGrid.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 4

99

Vertical stacked panels with accordion
A container component, accordionPanel provides the ability to group multiple tabs. In this
recipe, we will create accordion panels generated with dynamic content and AJAX behaviors
added.

How to do it...
A basic definition of the accordion panel with two panels would be as follows:

<p:accordionPanel>
 <p:tab title="Volkswagen CC">
 <h:panelGrid columns="2" cellpadding="10">
 <h:graphicImage library="images"
 name="autocomplete/CC.png" />
 <h:outputText value="The Volkswagen CC (also known as the
 Volkswagen Passat CC) is a four-door coupé version of
 the Volkswagen Passat." />
 </h:panelGrid>
 </p:tab>
 <p:tab title="Volkswagen Golf">
 <h:panelGrid columns="2" cellpadding="10">
 <h:graphicImage library="images"
 name="autocomplete/Golf.png" />
 <h:outputText value="The Volkswagen Golf is a small
 family car manufactured by Volkswagen since 1974 and
 marketed worldwide across six generations, in various
 body configurations and under various nameplates" />
 </h:panelGrid>
 </p:tab>
</p:accordionPanel>

The visual output for the panel will be as follows:

Grouping Content with Panels

100

There's more…
The multiple attribute enables the activation of multiple tabs. With the value set as
enabled, the active tab will not collapse when another tab gets activated. The default
value of the attribute is false. To disable a tab, just set the disabled attribute to true.

The activeIndex attribute defines the index of the tab that will be expanded by default.
Its default value is 0. If 2 is specified as the value, the third tab will be expanded. When the
multiple attribute is set to true, we can specify the index of the multiple tabs as being
separated by commas.

Dynamic content loading
By setting the dynamic attribute to true, it's also possible to lazily load the content of the
tabs with an AJAX request when they get activated in order to save the bandwidth and reduce
the size of the page. Also, by setting the cache attribute to true, consecutive invokes on the
same tab will not invoke an AJAX request.

Dynamic tabbing
Dynamic tab loading allows us to load the content of the accordion panel dynamically by
providing a data model. We can access the iterator defined by the var attribute. The definition
of the component for providing a data list on cars to accordionPanel would be as follows:

<p:accordionPanel value="#{accordionPanelBean.cars}" var="car">
 <p:tab title="#{car.name}">
 <h:panelGrid columns="2" cellpadding="5">
 <p:graphicImage
 value="/resources/images/autocomplete/#{car.name}.png" />
 <h:outputText value="#{car.name}" />
 </h:panelGrid>
 </p:tab>
</p:accordionPanel>

The data model here is the list of car objects that will be iterated over, for rendering each
panel, along with the image and the name of the car.

AJAX behavior events on accordion
The accordionPanel component supports the tabChange and tabClose AJAX behavior
events that will be fired when a tab is changed by clicking on another one or when a tab
is closed by clicking on it. The definition of the AJAX behavior events and their method
declarations would be as follows:

<p:accordionPanel>
 <p:ajax event="tabChange"

Chapter 4

101

 listener="#{accordionPanelBean.onTabChange}"
 update=":mainForm:growl" />
 <p:ajax event="tabClose"
 listener="#{accordionPanelBean.onTabClose}"
 update=":mainForm:growl" />
 ...
</p:accordionPanel>

The listener methods, onTabChange and onTabClose, receive an instance of org.
primefaces.event.TabChangeEvent and org.primefaces.event.TabCloseEvent
respectively, as parameters:

public void onTabChange(TabChangeEvent event) {
 MessageUtil.addInfoMessage("tab.changed", "Title: " +
 event.getTab().getTitle());
}

public void onTabClose(TabCloseEvent event) {
 MessageUtil.addInfoMessage("tab.closed", "Closed Tab: " +
 event.getTab().getTitle());
}

Since the accordionPanel component is an example of
NamingContainer, the value of the update attributes given in
the previous example defines the ID of the form that wraps the
component, which is mainForm.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter4/accordionPanel.jsf.

See also
For details about the MessageUtil class, see the Internationalization (i18n) and Localization
(L10n) recipe in Chapter 1, Getting Started with PrimeFaces.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Grouping Content with Panels

102

Displaying overflowed content with
scrollPanel

The scrollPanel component provides customizable scrollbars instead of the browser's
scrolls. In this recipe, we will create panels with a fixed viewport and styled scroll bars applied
to them.

How to do it…
A basic definition of a scroll panel with a width of 500 pixels and a height of 500 pixels would
be as follows:

<p:scrollPanel style="width:500px;height:500px">
 <p:dataGrid var="car" value="#{scrollPanelBean.cars}"
 columns="2">
 <p:panel header="#{car.name}" style="text-align:center">
 <p:graphicImage value=
 "/resources/images/autocomplete/#{car.name}.png" />
 </p:panel>
 </p:dataGrid>
</p:scrollPanel>

This will render a list of car models within a data grid. The visual size of the grid will be limited
to a 500 x 500 pixel view, and the content can be scrollable horizontally and vertically. By
default, according to the selected UI theme, customized scrollbars will be rendered on the
lines of the following image:

Chapter 4

103

The mode attribute with the scrollbar value defines whether the component should render
customized scroll bars according to a theme or use the browser's default ones with the
native value.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter4/scrollPanel.jsf.

Working with a tabbed panel
A tabbed panel component, tabView has powerful features such as dynamic content loading,
orientations, and programmatically managing tabs. In this recipe, we will create tabs with the
scrolling ability and with a different tab header orientation, along with the dynamic content
generation and AJAX behaviors added.

How to do it...
A basic definition of a tabbed panel with two panels would be as follows:

<p:tabView id="tabView">
 <p:tab title="Volkswagen CC">
 <h:panelGrid columns="2" cellpadding="5">
 <h:graphicImage library="images"
 name="autocomplete/CC.png" />
 <h:outputText value="The Volkswagen CC (also known as
 the Volkswagen Passat CC) is a four-door coupé version of
 the Volkswagen Passat." />
 </h:panelGrid>
 </p:tab>
 <p:tab title="Volkswagen Golf">
 <h:panelGrid columns="2" cellpadding="5">
 <h:graphicImage library="images"
 name="autocomplete/Golf.png" />
 <h:outputText value="The Volkswagen Golf is a small
 family car manufactured by Volkswagen since 1974 and
 marketed worldwide across six generations, in various
 body configurations and under various nameplates" />
 </h:panelGrid>

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Grouping Content with Panels

104

 </p:tab>
</p:tabView>

This will render two tabs, with the first tab activated by default, as shown in the following
image:

There's more…
We can also enable or disable a tab within the tab view according to a business rule. If we
set the disabled attribute to true in the tab, the tab will have a grayed-out caption that
indicates that the tab is disabled, as seen in the image here:

If you have more tabs that could be seen in the title, setting the scrollable attribute to
true will render arrows for navigation in the tab panel header, as shown in the following
image.

By setting the dynamic attribute to true, it's also possible to lazily load the content of the
tabs with an AJAX request when they get activated in order to save bandwidth and reduce the
size of the page. And by also setting the cache attribute to true, consecutive invokes on the
same tab will not invoke an AJAX request.

Orientation of the tabs
Orientation of the tabs can be set with four positions: top, bottom, left, and right. By
default, the orientation for the tabs is top.

Chapter 4

105

Dynamic tabbing
Dynamic tab loading allows us to load the content of the tab view dynamically by providing a
data model. The definition of the component for providing a data list of cars to the tabView
component would be as follows:

<p:tabView value="#{tabViewBean.cars}" var="car">
 <p:tab title="#{car.name}">
 <h:panelGrid columns="2" cellpadding="5">
 <p:graphicImage value=
 "/resources/images/autocomplete/#{car.name}.png" />
 </h:panelGrid>
 </p:tab>
</p:tabView>

The data model here is the list of car objects that will be iterated through, to render each tab,
along with the image and the name of the car.

Transition effects
With the effect attribute, effects can be applied for content transition between the tabs.
The possible values are as follows:

ff blind

ff clip

ff drop

ff explode

ff fade

ff fold

ff puff

ff scale

ff slide

The effect duration can also be set with the effectDuration attribute. The possible values
are slow, normal, and fast.

AJAX behavior events on tabView
The tabView component provides the tabChange and tabClose AJAX behavior events that
will be fired when a tab is changed or closed in a tab view. The definition of the event listeners
for the tabView component would be as follows:

<p:ajax event="tabChange" listener="#{tabViewBean.onTabChange}"
 update=":mainForm:growl" />

Grouping Content with Panels

106

<p:ajax event="tabClose" listener="#{tabViewBean.onTabClose}"
 update=":mainForm:growl" />

The listener methods, onTabChange and onTabClose, receive an instance of org.
primefaces.event.TabChangeEvent and org.primefaces.event.TabCloseEvent,
respectively, as parameters:

public void onTabChange(TabChangeEvent event) {
 MessageUtil.addInfoMessage("tab.changed", "Title: " +
 event.getTab().getTitle());
}

public void onTabClose(TabCloseEvent event) {
 MessageUtil.addInfoMessage("tab.closed", "Closed Tab: " +
 event.getTab().getTitle());
}

Since the tabView component is an example of NamingContainer,
the value of the update attributes given in the previous example
define the ID of the form that wraps the component, which is
mainForm.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter4/tabView.jsf.

See also
For details about the MessageUtil class, see the Internationalization (i18n) and Localization
(L10n) recipe in Chapter 1, Getting Started with PrimeFaces.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 4

107

Grouping of buttons and more with toolbar
A horizontal grouping component, toolbar can be used to group commands and other
components. In this recipe, we will create a toolbar with two groups that bundle buttons and
menu items.

How to do it…
A definition of a toolbar with multiple groups would be as follows:

<p:toolbar>
 <p:toolbarGroup align="left">
 <p:commandButton type="push" value="New"
 icon="ui-icon-document" />
 <p:commandButton type="push" value="Open"
 icon="ui-icon-folder-open"/>
 <p:separator />
 <p:commandButton type="push" title="Save"
 icon="ui-icon-disk"/>
 <p:commandButton type="push" title="Delete"
 icon="ui-icon-trash"/>
 <p:commandButton type="push" title="Print"
 icon="ui-icon-print"/>
 </p:toolbarGroup>
 <p:toolbarGroup align="right">
 <p:menuButton value="Navigate">
 <p:menuitem value="Home" url="#" />
 <p:menuitem value="Logout" url="#" />
 </p:menuButton>
 </p:toolbarGroup>
</p:toolbar>

This definition will be visualized as shown in the following image:

By default, toolbar has two placeholders, left and right, which can be defined with the
toolbarGroup component or facet. There is no limit on the number of components that
can be put inside toolbarGroup or facet. The <p:toolbarGroup align="left">
component definition can also be defined as a facet, such as <f:facet name="left">.
The separator component can be used to visually separate the components from each
other, such as between the components inside the toolbarGroup component, as given in
the example.

Grouping Content with Panels

108

While using facet definitions, the usage of <p:separator> is
not supported. You can define the separator with span as follows:

 <span class="ui-icon
ui-icon-grip-dotted-vertical" />

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter4/toolbar.jsf.

The multipurpose output panel
The outputPanel component is a panel component that can be rendered as a div or span
HTML component. In this recipe, we will create an output panel that demonstrates deferred
loading and placeholder usage for a data table.

How to do it…
A basic definition of an output panel would be as follows:

<p:outputPanel layout="block">
 <h3>The Volkswagen CC (also known as the
 Volkswagen Passat CC)</h3>
 <p>is a four-door coupe version of the Volkswagen Passat.</p>
</p:outputPanel>

When the layout attribute is set to block, which is the default value, outputPanel
renders an HTML div. By setting layout as inline, we can render an HTML span instead
of the div.

There's more…
The outputPanel component supports deferred loading, where the content of the panel
is loaded after the page is loaded. The panel renders a loading animation while loading
its contents.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 4

109

By default, content gets loaded after the page load, but by setting deferredMode to
visible, it's possible to load the contents when the panel becomes visible with a scroll for
instance. The default value of deferredMode is load. The code for this is as follows:

<p:outputPanel deferred="true" deferredMode="visible">
 <h3>Loaded after the panel becomes visible
 on page scroll.</h3>
 <p>The Volkswagen CC is a four-door coupe version of
 the Volkswagen Passat.</p>
</p:outputPanel>

With deferred set to true, it's also possible to load the content of the panel with a delay.
The delay attribute defines this delay in milliseconds.

When the autoUpdate attribute of outputPanel is set to true, the
content of the panel gets updated with each AJAX request.

Using panel as a placeholder component
The PrimeFaces AJAX mechanism is basically based on IDs of the components. When those
components get rendered as HTML markups and viewed in the browser with specified IDs,
the JavaScript part of PrimeFaces will be responsible for updating the DOM according to the
given IDs.

This will work in most cases, but when conditional rendering takes place, such as the
dataTable component not being rendered on the page when it's empty, there will be no
way to update the markup of the table with the AJAX mechanism since its markup won't
exist within the content of the page.

To overcome this problem, we can use outputPanel as a placeholder component, which
wraps the datatable component. A sample definition is given here:

<p:outputPanel id="wrapper">
 <p:dataTable id="table" rendered="#{tableBean.condition}">
 ...
 </p:dataTable>
</p:outputPanel>

The action components should update the panel with the wrapper ID instead of the table
from now on.

Grouping Content with Panels

110

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter4/outputPanel.jsf.

Simulating the portal environment with
dashboard

A layout component, dashboard has the drag-and-drop ability to support reordering of the
panels. In this recipe, we will create a dashboard with predefined panels and then add new
ones.

How to do it…
A basic definition for a dashboard with six panels would be as follows:

<p:dashboard id="board" model="#{dashboardBean.model}">
 <p:ajax event="reorder" listener=
 "#{dashboardBean.handleReorder}" update="growl" />
 <p:panel id="calculator" header="Calculator">
 <h:outputText value="Content for Calculator" />
 </p:panel>
 <p:panel id="calendar" header="Calendar">
 <h:outputText value="Content for Calendar" />
 </p:panel>
 <p:panel id="contact" header="Contacts">
 <h:outputText value="Content for Contacts" />
 </p:panel>
 <p:panel id="dictionary" header="Dictionary">
 <h:outputText value="Weather Content for Dictionary" />
 </p:panel>
 <p:panel id="weather" header="Weather">
 <h:outputText value="Content for Weather" />
 </p:panel>
 <p:panel id="translation" header="Translation">
 <h:outputText value="Content for Translation" />
 </p:panel>
</p:dashboard>

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 4

111

A data model needs to be provided in order to preserve the panel order. The data model
depends on org.primefaces.model.DefaultDashboardModel. The model for the given
sample would be as follows:

DashboardColumn column1 = new DefaultDashboardColumn();
DashboardColumn column2 = new DefaultDashboardColumn();
DashboardColumn column3 = new DefaultDashboardColumn();

column1.addWidget("calculator");
column1.addWidget("calendar");
column1.addWidget("contact");
column2.addWidget("dictionary");
column3.addWidget("weather");
column3.addWidget("translation");

model.addColumn(column1);
model.addColumn(column2);
model.addColumn(column3);

The preceding definition of the dashboard contains three columns and six panels and will
look like the following image:

The dashboard component preserves its state whenever a widget is
reordered. So, you can easily store the changes made by the user in a
persistence layer, such as database management systems.

Grouping Content with Panels

112

There's more…
The dashboard component supports the reordering of the AJAX behavior event that will
be fired when a panel is dragged and dropped. The reorder event definition is given in
the previous sample. The handleReorder listener method defined next receives org.
primefaces.event.DashboardReorderEvent as its parameter:

public void handleReorder(DashboardReorderEvent event) {
 MessageUtil.addInfoMessageWithoutKey("Reordered: " +
 event.getWidgetId(),
 "Item index: " + event.getItemIndex() +
 ", Column index: " + event.getColumnIndex() +
 ", Sender column index: " +
 event.getSenderColumnIndex());
}

As seen in the method, the information about the drag-and-drop action is communicated
to the user by adding it as a PrimeFaces message. The order number of the panel can be
retrieved from the event.getItemIndex() method. The number of the column from
which the panel has been dragged can be retrieved by event.getColumnIndex(), and
the number of the column that the panel will be dragged onto can be retrieved from event.
getSenderColumnIndex().

Creating new widgets
To add new panels that reside outside of the dashboard, you can use the draggable
component. The following definition creates a new panel component and attaches a
draggable component that knows the panel and the dashboard, which the panel could be
dragged to:

<p:panel id="newWidget" style="width: 200px">
 <h:outputText value="Drag me and create a new widget" />
</p:panel>
<p:draggable for="newWidget" helper="clone" dashboard="board" />

Having fixed-sized columns
By default, if the user moves panels from one column to another and gets one column
empty, it cannot be filled again by dragging panels back. To have columns of a fixed size, the
ui-dashboard-column style should be defined with the preferred width, as shown in the
following code snippet:

.ui-dashboard-column {
 width:200px;
}

Chapter 4

113

Since dashboard contains panel components as its widgets, these panels
can be defined with the menu or can be stated as closable and toggle-able.
See the first recipe, Grouping content with a standard panel, in this chapter
for detailed usage.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter4/dashboard.jsf.

See also
For details about the MessageUtil class, see the Internationalization (i18n) and Localization
(L10n) recipe in Chapter 1, Getting Started with PrimeFaces.

Creating complex layouts
The layout component introduces a customizable border layout model that could easily be
used to create complex layouts. In this recipe, we will create layouts with five distinct regions
and a full-page layout that spans the whole page.

How to do it…
This customizable border layout model can be applied either to a full page or to a specific
element. A basic definition of a full-page layout would be as follows:

<p:layout fullPage="true">
 <p:layoutUnit position="north" size="100" header=
 "Top" resizable="true" closable="true" collapsible="true">
 <h:outputText value="Layout content for North" />
 </p:layoutUnit>
 <p:layoutUnit position="south" size="100" header="Bottom"
 resizable="true" closable="true" collapsible="true">
 <h:outputText value="Layout content for South" />
 </p:layoutUnit>
 <p:layoutUnit position="west" size="200" header=
 "Left" resizable="true" closable="true" collapsible="true">

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Grouping Content with Panels

114

 <h:outputText value="Layout content for West" />
 </p:layoutUnit>
 <p:layoutUnit position="east" size="200" header=
 "Right" resizable="true" closable="true" collapsible="true">
 <h:outputText value="Layout content for Right" />
 </p:layoutUnit>
 <p:layoutUnit position="center">
 <h:outputText value="Layout content for Center" />
 </p:layoutUnit>
</p:layout>

This will render five panels in full-page size as shown in the following image:

How it works…
The fullPage attribute defines whether the layout should span the full page or a specific
region. As layout is based on the border layout model, it contains five layout units: top, left,
center, right, and bottom. Layout units get placed to the positions respectively, that is, top
matches with north, left matches with west, bottom matches with south, right matches with
east, and the center unit matches with center, as shown in the following image:

Chapter 4

115

The layout component can contain the <p:layoutUnit> components for five different
positions according to the border layout. The position attribute defines this positioning of
the layout unit within the layout. The layoutUnit component can have the resizable,
closable, and collapsible attributes for interaction.

In addition, the layout state can be preserved with the stateful attribute. When enabled
by setting its value to true, the layout state is saved in a cookie with the name Layout. The
header and footer attributes define the text that will be rendered for the layout unit.

There's more…
When working with full-page layouts, using layout units within a form component is invalid.
Instead of this, a layout unit must have a form owned by itself. Also, instead of updating the
layout unit components directly, their content should be updated while doing a partial page
rendering. An invalid definition of usage of the form component is as follows:

<p:layout fullPage="true">
 <h:form>
 <p:layoutUnit position="north">
 <h:outputText value="Layout content for North" />
 </p:layoutUnit>
 <p:layoutUnit position="center">
 <h:outputText value="Layout content for Center" />
 </p:layoutUnit>
 </h:form>
</p:layout>

The gutter attribute defines the size of the space that will be left between the adjacent units
in pixels. The minSize and maxSize attributes define the minimum and maximum sizes of
the layout units that will be set after resizing.

Grouping Content with Panels

116

Element-based layouts
By setting the fullPage attribute to false, which is the default value, the layout can be
used as a component within the page, as shown in the following image:

With element-based layouts, CSS should be used for styling the layout component as defined
in the following code snippet:

<p:layout id="elementLayout" style="min-width:600px;min-
 height:400px;">
 ...
</p:layout>

Nested layouts
The layout unit components can also contain a layout component to provide nested layout
abilities:

<p:layout id="elementLayout"
 style="min-width:600px;min-height:400px;">
 <p:layoutUnit position="north" size="100"
 header="Top" resizable="true" closable="true"
 collapsible="true">
 <h:outputText value="Layout content for North" />
 </p:layoutUnit>

Chapter 4

117

 <p:layoutUnit position="south" size="100" header="Bottom"
 resizable="true" closable="true"
 collapsible="true">
 <h:outputText value="Layout content for South" />
 </p:layoutUnit>
 <p:layoutUnit position="center">
 <p:layout>
 <p:layoutUnit position="north" size="100"
 resizable="true" closable="true"
 collapsible="true">
 <h:outputText
 value="Layout content for Top of Center" />
 </p:layoutUnit>
 <p:layoutUnit position="center">
 <h:outputText value="Center of Center" />
 </p:layoutUnit>
 </p:layout>
 </p:layoutUnit>
</p:layout>

The visual output of the code will be as shown in the following image:

Grouping Content with Panels

118

AJAX behavior events on layout
The layout component provides the toggle, close, and resize AJAX behavior events, which
will be fired when the layout unit is toggled, closed, or resized. The definition of the event
listeners for the layout component would be as follows:

<p:ajax event="toggle" listener="#{layoutBean.handleToggle}"
 update="growl" />
<p:ajax event="close" listener="#{layoutBean.handleClose}"
 update="growl" />
<p:ajax event="resize" listener="#{layoutBean.handleResize}"
 update="growl" />

The listener methods, handleToggle, handleClose, and handleResize, receive an
instance of org. primefaces.event.ToggleEvent, org.primefaces.event.
CloseEvent, and org.primefaces.event.ResizeEvent, respectively, as parameters:

public void handleClose(CloseEvent event) {
 MessageUtil.addInfoMessageWithoutKey("Unit Closed",
 "Position:'" + ((LayoutUnit)
 event.getComponent()).getPosition());
}

public void handleToggle(ToggleEvent event) {
 MessageUtil.addInfoMessageWithoutKey(((LayoutUnit)event.
 getComponent()).getPosition() + " toggled", "Status:" +
 event.getVisibility().name());
}

public void handleResize(ResizeEvent event) {
 MessageUtil.addInfoMessageWithoutKey(((LayoutUnit)event.
 getComponent()).getPosition() + " resized", "Status:" +
 event.getComponent().getId());
}

The visibility of the layout unit can be retrieved from event.getVisibility().name(),
and the position of the layout unit can be retrieved by casting the component to the layout as
((LayoutUnit) event.getComponent()).getPosition().

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 4

119

When the server is running, the showcase for the recipe is available at the following URLs:

ff http://localhost:8080/pf-cookbook/views/chapter4/
fullPageLayout.jsf

ff http://localhost:8080/pf-cookbook/views/chapter4/elementLayout.
jsf

ff http://localhost:8080/pf-cookbook/views/chapter4/nestedLayout.
jsf

See also
For details about the MessageUtil class, see the Internationalization (i18n) and Localization
(L10n) recipe in Chapter 1, Getting Started with PrimeFaces.

Responsive layout with Grid CSS
Grid CSS is a lightweight stylesheet bundled with PrimeFaces that offers responsive layout
utilities for mobile devices and desktops. In this recipe, we will create a responsive user
interface with custom styling and also demonstrate them in a nested version.

How to do it…
A simple definition of a responsive grid is created with the help of HTML div components and
CSS classes as follows:

<div class="ui-grid ui-grid-responsive">
 <div class="ui-grid-row">
 <div class="ui-grid-col-1">1</div>
 <div class="ui-grid-col-1">1</div>
 <div class="ui-grid-col-1">1</div>
 <div class="ui-grid-col-1">1</div>
 <div class="ui-grid-col-1">1</div>
 <div class="ui-grid-col-1">1</div>
 <div class="ui-grid-col-1">1</div>
 <div class="ui-grid-col-1">1</div>
 <div class="ui-grid-col-1">1</div>
 <div class="ui-grid-col-1">1</div>
 <div class="ui-grid-col-1">1</div>
 <div class="ui-grid-col-1">1</div>
 </div>
 <div class="ui-grid-row">
 <div class="ui-grid-col-6">6</div>
 <div class="ui-grid-col-6">6</div>

Grouping Content with Panels

120

 </div>
 <div class="ui-grid-row">
 <div class="ui-grid-col-4">4</div>
 <div class="ui-grid-col-8">8</div>
 </div>
</div>

Grid CSS contains a built-in stylesheet definition for up to 12 columns, matching with
ui-grid-col-1 and onward up to ui-grid-col-12. If we have a sum of columns at a
fixed number, we can create combinations easily, as seen in the previous sample. But the
sum should not exceed 12. The ui-grid-row style class, which defines the style that will
be applied per row.

The visual of the sample will be as follows:

For demonstration purposes, we applied the following style to make the cells more distinct:

<style type="text/css">
 .ui-grid .ui-grid-row div {
 background-color: #cccccc;
 border: 1px solid #dddddd;
 padding: 10px 0;
 text-align: center;
 }
</style>

Chapter 4

121

There's more…
The ui-grid-responsive style class makes the div element respond to the screen
resizing as seen here:

Grouping Content with Panels

122

Nesting div elements
It's possible to nest div elements that have the ui-grid-responsive style. A sample
definition is as follows:

<div class="ui-grid ui-grid-responsive">
 <div class="ui-grid-row">
 <div class="ui-grid-col-3">3</div>
 <div class="ui-grid-col-9">9
 <div class="ui-grid ui-grid-responsive">
 <div class="ui-grid-row">
 <div class="ui-grid-col-4">4</div>
 <div class="ui-grid-col-4">4</div>
 <div class="ui-grid-col-4">4</div>
 </div>
 <div class="ui-grid-row">
 <div class="ui-grid-col-6">6</div>
 <div class="ui-grid-col-6">6</div>
 </div>
 </div>
 </div>
 </div>
</div>

We defined 12 columns separated by 3 to 9, and then within the second section, which
consists of 9 columns, we split it into 12, that is, by 4-4-4 and then by 6-6. The visual of the
nested definition will be as follows:

Chapter 4

123

For demonstration purposes, we applied the style as we did in the first example, but here we
define it with an immediate children declaration (>) as follows:

<style type="text/css">
 .ui-grid > .ui-grid-row > div {
 background-color: #cccccc;
 border: 1px solid #dddddd;
 padding: 10px 0;
 text-align: center;
 }
</style>

The PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

When the server is running, the showcase for the recipe is available at the following URLs:

ff http://localhost:8080/pf-cookbook/views/chapter4/gridCSS.jsf

ff http://localhost:8080/pf-cookbook/views/chapter4/gridCSSNested.
jsf

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

5
Data Iteration

Components

In this chapter, we will cover:

ff Selecting rows in dataTable

ff Sorting and filtering data in dataTable

ff In-cell editing with dataTable

ff Resizing, reordering, and toggling columns in dataTable

ff Making dataTable responsive

ff Using subTable for grouping

ff Handling tons of data – LazyDataModel

ff Listing data with dataList

ff Listing data with pickList

ff Listing data with orderList

ff Visualizing data with tree

ff Visualizing data with treeTable

ff Exporting data in various formats

ff Managing events with schedule by leveraging lazy loading

ff Visualizing data with dataScroller

Data Iteration Components

126

Introduction
In this chapter, we will cover the basic and advanced features to visualize data with the data
iteration components provided by PrimeFaces. We will start with the dataTable component
that offers extensive features, such as filtering, sorting, reordering, column resizing, and
toggling. We will then focus on various other components, such as dataList that renders
data in a listed format and pickList and orderList that provide data selection through
listed sets. The tree and treeTable components list data in a tree format, and they are
mostly based on the same data model. There is a sophisticated component called schedule
to visualize calendar data, and we will demonstrate its usage with its lazy loading feature. Our
final recipe for this chapter is based on dataScroller, which lazily loads data according to
the page scroll done by the user.

Selecting rows in dataTable
There are several ways to select a row or multiple rows, such as line selection and selection
with radio buttons and checkboxes, from the dataTable component. We will cover all the
possibilities in this recipe.

How to do it…
To make a single selection possible with a command component, such as commandLink or
commandButton, f:setPropertyActionListener can be used to set the selected row
as a parameter to the server side:

<p:dataTable id="withCommand" var="car"
 value="#{dataTableBean.cars}"
 selection="#{dataTableBean.selectedCar}">
 <p:column>
 <p:commandButton value="Select" update=":mainForm:display"
 oncomplete="carDialog.show()">
 <f:setPropertyActionListener value="#{car}"
 target="#{dataTableBean.selectedCar}" />
 </p:commandButton>
 </p:column>
 ...
</p:dataTable>

The selection attribute needs to be bound to an instance of the Car reference in order to get
the selected data.

Chapter 5

127

Instead of using <f:setPropertyActionListener>, it's also possible to set the selection
to the server side by passing a method parameter. The definition of the button and the
method is given as follows:

<p:commandButton value="Select" update=":mainForm:display"
 oncomplete="PF('carDialog').show()"
 action="#{dataTableBean.selectCar(car)}" />

public String selectCar(Car car) {
 this.selectedCar = car;
 return null;
}

The Car class is a simple data class that owns two attributes, year and name.

To pass the selection as a parameter to the method,
you need to use EL 2.2 at least.

There's more…
The selectionMode attribute could be used to enable the selection whenever a row is
clicked on. Its value should be single for the single selection mode. To select multiple items
with the modifier key (which is Ctrl in Windows and Command in Mac OS), selectionMode
should be set to multiple and selection needs to be bound to an array of the Car
reference.

<p:dataTable id="multipleSelection" var="car"
 value="#{dataTableBean.cars}" rowKey="#{car.name}"
 selection="#{dataTableBean.selectedCars}"
 selectionMode="multiple">
 ...
</p:dataTable>

It's also possible to select multiple rows using the
Shift key.

In multiple-selection mode, whenever a row is clicked on, the previous selection gets cleared.
This is the default behavior, and it can be customized by setting the rowSelectMode
attribute of the dataTable component to the add value. The default value of the attribute
is new.

Data Iteration Components

128

Single selection with a row click
It's possible to select a row with a click and then press commandButton to view the details
of the selection in a dialog box. This is possible by defining the rowKey attribute where its
value should point to a unique identifier. The button processes dataTable and displays
carDialog on completion of the event. The definition is given as follows:

<p:dataTable id="singleSelection" var="car"
 value="#{dataTableBean.cars}" rowKey="#{car.name}"
 selection="#{dataTableBean.selectedCar}"
 selectionMode="single">
 <p:column headerText="Year">#{car.year}</p:column>
 <p:column headerText="Name">#{car.name}</p:column>
 <f:facet name="footer">
 <p:commandButton id="viewButton1" value="View"
 icon="ui-icon-search" process="singleSelection"
 update=":mainForm:display"
 oncomplete="PF('carDialog').show()" />
 </f:facet>
</p:dataTable>

Single selection with radio buttons
The dataTable component supports single-row selection with the help of radio buttons out
of the box. This can be achieved by defining a column with the selectionMode attribute set
with the single value.

<p:dataTable id="withRadioButton" var="car"
 value="#{dataTableBean.cars}" rowKey="#{car.name}"
 selection="#{dataTableBean.selectedCar}">
 <p:column selectionMode="single"/>
 ...
</p:dataTable>

The table will be rendered as follows:

Chapter 5

129

Multiple selection with checkboxes
It's very easy to enable multiple-item selection with dataTable by defining a column with the
value of the selectionMode attribute set to multiple, as follows:

<p:dataTable id="multipleSelectionCheckbox" var="car"
 value="#{dataTableBean.cars}" rowKey="#{car.name}"
 selection="#{dataTableBean.selectedCars}">
 <p:column selectionMode="multiple" />
 ...
</p:dataTable>

For convenience, the component will also provide a checkbox in the header to select all the
checkboxes. The appearance of the table with multiple selection will be as follows:

Data Iteration Components

130

Instant row selection
The dataTable component supports AJAX behavior events on row selection/unselection. The
definition of the table, along with the AJAX events, is given here:

<p:dataTable id="ajaxBehavior" var="car" rowKey="#{car.name}"
 value="#{dataTableBean.cars}"
 selection="#{dataTableBean.selectedCar}"
 selectionMode="single">
 <p:column headerText="Year">#{car.year}</p:column>
 <p:column headerText="Name">#{car.name}</p:column>
 <p:ajax event="rowSelect" update=":mainForm:growl"
 listener="#{dataTableBean.onRowSelect}" />
 <p:ajax event="rowUnselect" update=":mainForm:growl"
 listener="#{dataTableBean.onRowUnselect}" />
</p:dataTable>

The rowSelect and rowUnselect AJAX events invoke the onRowSelect and
onRowUnselect methods respectively. Their implementations are given here:

public void onRowSelect(SelectEvent event) {
 MessageUtil.addInfoMessage("car.selected",
 ((Car) event.getObject()).getName());
}

public void onRowUnselect(UnselectEvent event) {
 MessageUtil.addInfoMessage("car.unselected",
 ((Car) event.getObject()).getName());
}

Instead of specifying the rowKey attribute for instant selection, one other option could be
defining a data model that extends javax.faces.model.DataModel and implements
org.primefaces.model.SelectableDataModel. A selectable car data model that
meets the requirements is given here:

public class CarDataModel extends ListDataModel<Car>
 implements SelectableDataModel<Car> {

 public CarDataModel(List<Car> data) {
 super(data);
 }

 @Override
 public Car getRowData(String rowKey) {

Chapter 5

131

 List<Car> cars = (List<Car>) getWrappedData();

 for(Car car : cars) {
 if(car.getName().equals(rowKey))
 return car;
 }
 return null;
 }

 @Override
 public Object getRowKey(Car car) {
 return car.getName();
 }
}

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter5/dataTableSelectRow.jsf.

See also
For details about the MessageUtil class, see the Internationalization (i18n) and Localization
(L10n) recipe in Chapter 1, Getting Started with PrimeFaces.

Sorting and filtering data in dataTable
The dataTable component provides AJAX-based built-in sorting and filtering based on
its columns.

How to do it…
The dataTable component provides sorting options based on AJAX by enabling the sortBy
attribute at the column level. The following is the definition of a table that lists the Car data;
sorting is enabled on the name and year attributes:

<p:dataTable id="sorting" var="car"
 value="#{dataTableBean.cars}">

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Data Iteration Components

132

 <p:column headerText="Year" sortBy="#{car.year}">
 <h:outputText value="#{car.year}" />
 </p:column>

 <p:column headerText="Name" sortBy="#{car.name}">
 <h:outputText value="#{car.name}" />
 </p:column>
</p:dataTable>

When sorting is enabled, the headers of those columns will have the sort direction
represented with small arrow icons as pointed out in this image:

The dataTable component provides filtering based on AJAX by enabling the filterBy
attribute for the columns. The following is the definition of a table that lists the Car data;
filtering is enabled on the name and year attributes:

<p:dataTable id="filtering" var="car"
 value="#{dataTableBean.cars}">
 <p:column headerText="Year" filterBy="#{car.year}">
 <h:outputText value="#{car.year}" />
 </p:column>
 <p:column headerText="Name" filterBy="#{car.name}">
 <h:outputText value="#{car.name}" />
 </p:column>
</p:dataTable>

When filtering is enabled in the headers of those columns, they will contain input text fields
in order to retrieve the filtering characters from the user. The appearance of the table will be
as follows:

Chapter 5

133

The dataTable component provides the filteredValue attribute where you can collect a
list of filtered elements through its value.

There's more…
Also, it is possible to set filter matching with custom matchers. The filterMatchMode
attribute enables this built-in matcher mechanism, which is set to startsWith by default.
The other possible values are listed as follows:

Attribute Value Action
contains This applies if the column value contains the filter value
endsWith This applies when the column value ends with the filter value

equals This applies if the column value equals the filter value
exact This applies if the text values of the column and the filter are the same
gt This applies if the column value is greater than the filter value
gte This applies if the column value is greater than or equal to the filter value
in This applies if the column value is in the collection of filter values that are

provided
lt This applies if the column value is less than the filter value
lte This applies if the column value is less than or equal to the filter value
startsWith This applies if the column value starts with the filter value

The filter text field can be positioned before or after the header text by setting the
filterPosition attribute. The values can be either top or bottom (the latter is the
default value).

Data Iteration Components

134

With the filterMaxLength attribute, it is possible to restrict the filter input according to the
given number of characters, for example, filterMaxLength="2".

It is recommended that you use a scope longer than request scope,
such as view scope, to keep the filteredValue so that the
filtered list is still accessible after filtering.

Custom filtering
When filterMatchMode is not enough, it's possible to provide custom filtering with the
filterFunction attribute. The method signature provided to the filterFunction
attribute should be stated as follows:

public boolean filterMethod(Object value, Object filter,
 Locale locale) {
}

Options for filtering
Filtering also supports a drop-down box as the filtering mechanism instead of the input
text field. This can be achieved by providing a list with the filterOptions attribute. The
definition of the column is given here:

<p:dataTable id="withFilterOptions" var="car"
 value="#{dataTableBean.cars}" style="width: 300px;">
 <p:column headerText="Year" filterBy="#{car.year}"
 filterMatchMode="startsWith">
 <h:outputText value="#{car.year}" />
 </p:column>
 <p:column headerText="Name" filterBy="#{car.name}"
 filterOptions="#{dataTableBean.carNamesAsOptions}">
 <h:outputText value="#{car.name}" />
 </p:column>
</p:dataTable>

Global filtering
The dataTable component provides global filtering by invoking the client-side method,
filter(). The global filter can be positioned at the header facet of the table, as shown in
the following code snippet:

<f:facet name="header">
 <p:outputPanel>
 <h:outputText value="Search all fields:" />

Chapter 5

135

 <p:inputText id="globalFilter"
 onkeyup="carsTable.filter()" />
 </p:outputPanel>
</f:facet>

Filtering will be triggered on the onkeyup event by invoking the mentioned filter() method
of the table, the widgetVar attribute of which is set to carsTable. The appearance of a
table with global filtering will be as follows:

Postprocessing events on sorting/filtering
It's possible to execute post-processing events with <f:event> that will invoke a method on
the backing bean defined with the listener attribute. The definition of dataTable with
postprocessors is given here:

<p:dataTable id="withPostEvents" var="car"
 value="#{dataTableBean.cars}">
 <f:event type="org.primefaces.event.data.PostSortEvent"
 listener="#{dataTableBean.postSort}" />
 <f:event type="org.primefaces.event.data.PostFilterEvent"
 listener="#{dataTableBean.postFilter}" />

 <p:column headerText="Year" sortBy="#{car.year}"
 filterBy="#{car.year}">
 <h:outputText value="#{car.year}" />
 </p:column>
 <p:column headerText="Name" sortBy="#{car.name}"
 filterBy="#{car.name}">
 <h:outputText value="#{car.name}" />
 </p:column>
</p:dataTable>

Data Iteration Components

136

The definitions of the listener methods are given as follows:

public void postSort(ComponentSystemEvent e) {
 System.out.println(((DataTable)
 e.getComponent()).getSortColumn().getHeaderText());
}

public void postFilter(ComponentSystemEvent e) {
 DataTable dt = (DataTable) e.getComponent();
 for (Iterator it =
 dt.getFilteredValue().iterator(); it.hasNext();) {
 Car car = (Car) it.next();
 System.out.println(car.getName());
 }
}

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter5/dataTableSortFilter.jsf.

In-cell editing with dataTable
The dataTable component supports the in-cell editing feature to update values within the
table without navigating to another page.

How to do it…
In order to enable editing, first we need to set the editable attribute of the table to true.
Each column definition that we need to be editable should contain the <p:cellEditor>
helper component that will contain two facets to render output components—one to
visualize the data for the user and the other to get input data from the user. The in-place
editor palette, which is the <p:rowEditor> component, also needs to be rendered in a
column of dataTable in order to activate editing with user interaction. Here's the code that
encapsulates the discussion in this paragraph:

<p:dataTable id="inCellEditing" var="car"
 value="#{dataTableBean.cars}" rowKey="#{car.name}"
 editable="true">
 <p:column headerText="Year">

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 5

137

 <p:cellEditor>
 <f:facet name="output">
 <h:outputText value="#{car.year}" />
 </f:facet>
 <f:facet name="input">
 <p:inputText value="#{car.year}" />
 </f:facet>
 </p:cellEditor>
 </p:column>
 <p:column headerText="Name">
 <p:cellEditor>
 <f:facet name="output">
 <h:outputText value="#{car.name}" />
 </f:facet>
 <f:facet name="input">
 <h:selectOneMenu value="#{car.name}">
 <f:selectItems value="#{dataTableBean.carNames}"
 var="name" itemLabel="#{name}"
 itemValue="#{name}" />
 </h:selectOneMenu>
 </f:facet>
 </p:cellEditor>
 </p:column>
 <p:column headerText="Actions">
 <p:rowEditor />
 </p:column>
</p:dataTable>

The components that reside in the input facet could be an inputText component as
well as a selectOneMenu component, which will render a drop-down list for the input. The
appearance of a table with output facets will be as follows:

Data Iteration Components

138

When the pencil icon is clicked on, the table will transit into edit mode and the input facets
will be rendered as follows:

Clicking on the "tick" icon will save the edited row, and clicking on the "cancel" icon will revert
all changes.

There's more…
By default, the edit mode for dataTable is row, where the whole row on the table gets
edited. One other possible approach is editing just a cell instead of a whole row. This can be
achieved by setting the editMode attribute to cell instead of row. The cell will switch to edit
mode when clicked on, and losing focus on the cell triggers an AJAX event to save the changed
value.

When the editMode attribute is set to cell, you won't need the extra
column that contains the <p:rowEditor> component since editing
can be easily triggered by clicking on a cell.

Editing rows according to a condition
The editingRow attribute defines whether cell editors of a row should be displayed as
editable or not. The definition given next will display rows of cars (as brands) that were
manufactured before the year 2000 in edit mode:

<p:dataTable id="editingRowMode" var="car"
 value="#{dataTableBean.cars}"
 rowKey="#{car.name}" editable="true"
 editingRow="#{car.year > 2000}">
</p:dataTable>

Chapter 5

139

AJAX behavior events
The dataTable component supports AJAX behavior events in order to handle the interactions
of the user on row editing and cancellation of the editing actions. The definition of the AJAX
behavior events should be placed within the table, as shown in the following code snippet:

<p:ajax event="rowEdit" listener="#{dataTableBean.onEdit}"
 update=":form:growl" />
<p:ajax event="rowEditCancel" listener="#{dataTableBean.onCancel}"
 update=":form:growl" />

The onEdit and onCancel methods retrieve org.primefaces.event.RowEditEvent
as the parameter. The object that is edited can be retrieved from the event as event.
getObject(). The following is the code for this discussion:

public void onEdit(RowEditEvent event) {
 MessageUtil.addInfoMessage("car.edit",
 ((Car) event.getObject()).getName());
}

public void onCancel(RowEditEvent event) {
 MessageUtil.addInfoMessage("car.edit.cancelled",
 ((Car) event. getObject()).getName());
}

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter5/dataTableInCellEdit.jsf.

See also
For details about the MessageUtil class, see the Internationalization (i18n) and Localization
(L10n) recipe in Chapter 1, Getting Started with PrimeFaces.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Data Iteration Components

140

Resizing, reordering, and toggling columns
in dataTable

The dataTable component offers enhanced features on its content, such as resizing
of columns, reordering of rows and columns via drag and drop, and toggling of columns
for visibility.

How to do it…
Resizing should be enabled by setting the resizableColumns attribute to true, as
shown here:

<p:dataTable id="resizing" var="car" value="#{dataTableBean.cars}"
 resizableColumns="true">
 <p:column headerText="Year">
 <h:outputText value="#{car.year}" />
 </p:column>
 <p:column headerText="Name">
 <h:outputText value="#{car.name}" />
 </p:column>
</p:dataTable>

After resizing, the state of the columns is preserved on the postback
of a page via cookie-based persistence.

Reordering of rows and columns is possible with the draggableRows and
draggableColumns attributes respectively. A sample definition is given here:

<p:dataTable value="#{dataTableBean.cars}" var="car"
 draggableRows="true" draggableColumns="true">
 ...
</p:dataTable>

While performing reordering, the user is assisted with placeholders, as seen in this image:

Chapter 5

141

Row toggling is supported by dataTable with the help of the <p:rowToggler> and
<p:rowExpansion> components. The rowToggler component renders an expanding/
toggling icon when placed in a column, and rowExpansion defines the content that will be
displayed beneath the expanded row. An AJAX call is made with the expansion. The definition
of the table will be as follows:

<p:dataTable id="rowToggle" var="car"
 value="#{dataTableBean.cars}">
 <p:column style="width: 20px">
 <p:rowToggler />
 </p:column>
 <p:column headerText="Year">
 <h:outputText value="#{car.year}" />
 </p:column>
 <p:column headerText="Name">
 <h:outputText value="#{car.name}" />

Data Iteration Components

142

 </p:column>

 <p:rowExpansion>
 <h:panelGrid id="display" columns="2" cellpadding="4">
 <f:facet name="header">
 <p:graphicImage
 value="/resources/images/autocomplete/#{car.name}.png"
 width="60" height="40" />
 </f:facet>

 <h:outputText value="Name:" />
 <h:outputText value="#{car.name}" />

 <h:outputText value="Year:" />
 <h:outputText value="#{car.year}" />
 </h:panelGrid>
 </p:rowExpansion>
</p:dataTable>

The visual output of the table with the first row expanded will be as follows:

The expandedRow attribute of dataTable with its value set to true, defines whether all
the rows of the table should be expanded by default. The rowExpandMode attribute with
the value single defines only whether one row should be expanded at a time. When set to
multiple, which is the default value, the expanded row will not be collapsed when a second
row gets expanded.

Chapter 5

143

There's more…
By default, while resizing a column by dragging it to the left-hand side or the right-hand side,
a helper column line is rendered to state the possible final position of the column's line. If you
want to resize the column in live mode without this helper, you can set liveResize to true
to see it in action instantly.

AJAX behavior events on resize
The dataTable component provides the colResize AJAX behavior event that will be fired
when a column is resized:

<p:dataTable id="resizingAJAX" var="car"
 value="#{dataTableBean.cars}" resizableColumns="true">
 <p:ajax event="colResize" listener="#{dataTableBean.onResize}"
 update=":mainForm:growl" />
</p:dataTable>

The onResize method will be invoked with an instance of org.primefaces.event.
ColumnResizeEvent. The width and height of the resized column can be retrieved from the
event instance. The definition for the onResize method is given here:

public void onResize(ColumnResizeEvent event) {
 MessageUtil.addInfoMessage("column.resized",
 "W:" + event.getWidth() + " - H:" + event.getHeight());
}

AJAX behavior events on row and column reordering
The dataTable component provides the rowReorder AJAX behavior event that will be fired
when a row is repositioned by dragging and dropping:

<p:dataTable id="reorderingAJAX" var="car"
 value="#{dataTableBean.cars}" draggableRows="true">
 <p:ajax event="rowReorder" update=":mainForm:growl"
 listener="#{dataTableBean.onRowReorder}" />
 ...
</p:dataTable>

Data Iteration Components

144

The onRowReorder method will be invoked with an instance of org.primefaces.event.
ReorderEvent. The start and end indices for the column that is repositioned can be
retrieved from the event. The definition for the onReorder method is given here:

public void onRowReorder(ReorderEvent event) {
 MessageUtil.addInfoMessage("row.reordered", "From:" +
 event.getFromIndex() + " - To:" + event.getToIndex());
}

The dataTable component also provides the colReorder AJAX behavior event that will be
fired when a column is repositioned by dragging and dropping. The column reorder doesn't
support ReorderEvent with the listener method at the moment; AjaxBehaviorEvent
should be used instead.

Toggling columns
With the <p:columnToggler> helper component, it's possible to toggle the visible columns
of the table. Here's how column toggling is used:

<p:dataTable id="colToggle" var="car"
 value="#{dataTableBean.cars}">
 <f:facet name="header">
 <p:commandButton id="toggler" type="button"
 value="Columns" />
 <p:columnToggler datasource="colToggle"
 trigger="toggler" />
 </f:facet>
 <p:column headerText="Year">
 <h:outputText value="#{car.year}" />
 </p:column>
 <p:column headerText="Name">
 <h:outputText value="#{car.name}" />
 </p:column>
</p:dataTable>

The id parameter of the table should be provided to the datasource attribute of
columnToggler. With the trigger attribute, columnToggler attaches itself to a button
where a list of all the columns will be rendered, along with a checkbox. By default, all the
header text values are rendered in the UI. So, if you do not want a column to be on that list for
toggling, you can set the toggleable attribute of that column to false.

It's advised that you do not use scrollable feature in a table that uses
columnToggler since they are not fully compatible.

Chapter 5

145

The visual output of columnToggler inside the header of the table is shown here:

AJAX behavior event on column toggling
The columnToggler component offers the toggle AJAX behavior event that will be fired
when a column is toggled:

<p:dataTable id="colToggleAJAX" var="car"
 value="#{dataTableBean.cars}">
 <f:facet name="header">
 <p:commandButton id="togglerAJAX" type="button"
 value="Columns" />
 <p:columnToggler datasource="colToggleAJAX"
 trigger="togglerAJAX">
 <p:ajax event="toggle" update=":mainForm:growl"
 listener="#{dataTableBean.onColumnToggle}" />
 </p:columnToggler>
 </f:facet>
 ...
</p:dataTable>

The onColumnToggle method will be invoked with an instance of org.primefaces.
event.ToggleEvent. The visibility of the column can be retrieved from the event as enum.
The definition for the onColumnToggle method is given here:

public void onColumnToggle(ToggleEvent e) {
 MessageUtil.addInfoMessage("col.toggled",
 "Visibility:" + e.getVisibility());
}

Data Iteration Components

146

Adding state for column toggling
By default, columnToggler is stateless. While doing sorting and filtering on columns of a
table where they are toggled, synchronization issues might occur, and this is because those
columns will come right back in after filtering or sorting.

To make column toggling with sorting or filtering work, we will set the visible attribute of
columns by binding them to a list from the backing bean here:

<p:dataTable id="colToggleAJAX" var="car"
 value="#{dataTableBean.cars}">
 <f:facet name="header">
 <p:commandButton id="togglerAJAX" type="button"
 value="Columns" />
 <p:columnToggler datasource="colToggleAJAX"
 trigger="togglerAJAX">
 <p:ajax event="toggle" update=":mainForm:growl"
 listener="#{dataTableBean.onColumnToggle}" />
 </p:columnToggler>
 </f:facet>
 <p:column headerText="Year"
 visible="#{dataTableBean.visibleList[0]}">
 <h:outputText value="#{car.year}" />
 </p:column>
 <p:column headerText="Name"
 visible="#{dataTableBean.visibleList[1]}">
 <h:outputText value="#{car.name}" />
 </p:column>
</p:dataTable>

The definition of the visible list and the onColumnToggle method on the backing bean is
shown here:

private List<Boolean> visibleList;

public void onColumnToggle(ToggleEvent e) {
 visibleList.set((Integer) e.getData(),
 e.getVisibility() == Visibility.VISIBLE);
}

Chapter 5

147

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
severs compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter5/dataTableResizeReorderToggle.jsf.

See also
For details about the MessageUtil class, see the Internationalization (i18n) and Localization
(L10n) recipe in Chapter 1, Getting Started with PrimeFaces.

Making dataTable responsive
Starting with PrimeFaces v5.2, it's possible to make the dataTable component act
responsively according to the resizing of the browser.

How to do it…
The priority attribute of <p:column> should be set to a value between 1 to 6, from the
highest priority to the lowest one. A definition of the priority attribute is given here:

<p:dataTable id="withPriority" var="car"
 value="#{dataTableBean.detailedCars}">
 <p:column headerText="Name">
 <h:outputText value="#{car.name}" />
 </p:column>
 <p:column headerText="Year" priority="1">
 <h:outputText value="#{car.year}" />
 </p:column>
 <p:column headerText="Color" priority="3">
 <h:outputText value="#{car.color}" />
 </p:column>
 <p:column headerText="Seat Number" priority="2">
 <h:outputText value="#{car.seatNumber}" />
 </p:column>
</p:dataTable>

Here, the color column has the lowest priority and will be dropped first when the browser is
resized to a smaller size.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Data Iteration Components

148

There's more…
By setting the reflow attribute of dataTable to true, it's possible to visualize the rows of
the table in stacked mode when the browser is resized to a smaller size. A visual output of the
table in default mode and in resized mode is given here:

Chapter 5

149

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter5/responsiveDataTable.jsf.

Using subTable for grouping
A helper component, subTable can be used to group row data inside a table.

How to do it…
A basic definition of a table that contains subTable is given here:

<p:dataTable value="#{dataTableBean.boxers}" var="boxer">
 <f:facet name="header">
 Boxers
 </f:facet>

 <p:columnGroup type="header">
 <p:row>
 <p:column rowspan="2" headerText="Boxer" />
 <p:column colspan="2" headerText="Stats" />
 </p:row>
 <p:row>
 <p:column headerText="Wins" />
 <p:column headerText="Losses" />
 </p:row>
 </p:columnGroup>

 <p:subTable var="stats" value="#{boxer.stats}">
 <f:facet name="header">
 <h:outputText value="#{boxer.name}" />
 </f:facet>
 <p:column>
 <h:outputText value="#{stats.match}" />
 </p:column>

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Data Iteration Components

150

 <p:column>
 <h:outputText value="#{stats.win}" />
 </p:column>
 <p:column>
 <h:outputText value="#{stats.loss}" />
 </p:column>
 <p:columnGroup type="footer">
 <p:row>
 <p:column footerText="Totals: "
 style="text-align:right"/>
 <p:column footerText="#{boxer.allWins}" />
 <p:column footerText="#{boxer.allLosses}" />
 </p:row>
 </p:columnGroup>
 </p:subTable>
</p:dataTable>

The columnGroup component is used to combine rows and columns in headers and footers
of the table. The model used within the table is briefly described here:

public class Boxer {
 private String name;
 private List<Stat> stats = new ArrayList<Stat>();
}

public class Stat {
 private String match;
 private int win;
 private int loss;
}

A visual output of the table is given here:

Chapter 5

151

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter5/subTable.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Data Iteration Components

152

Handling tons of data – LazyDataModel
The dataTable component provides support for displaying tons of data by enabling lazy
loading. In order to handle large datasets, a data model needs to be implemented based on
org.primefaces.model.LazyDataModel to support pagination, sorting, filtering, and
live scrolling.

How to do it…
First, the lazy attribute should be set to true for lazy loading to be enabled for the table,
and the abstract load method should be implemented in org.primefaces.model.
LazyDataModel. We must also implement the getRowData and getRowKey methods when
selection is enabled in the table. The lazy data model should be constructed with the list of
Car instances and be bound to the table:

List<Car> cars = new ArrayList<Car>(millions_of_cars);
LazyDataModel<Car>lazyModel = new LazyCarDataModel(cars);

The table calls the load method implementation with the following parameters when paging,
sorting, or filtering actions occur:

ff first: This is the index of the first data to display
ff pageSize: This is the number of data items to load on the page
ff sortField: This is the name of the sort field (for example, "name" for

sortBy="#{car.name}")
ff sortOrder: This is the org.primefaces.model.SortOrder enumeration; the

value could be either ASCENDING, DESCENDING, or UNSORTED
ff filter: This filters the map with a field name as the key (for example, "name" for

filterBy="#{car.name}") and the value

The total row count should also be set to the lazy data model in order to get the pagination
work done properly by invoking the setRowCount method of the data model.

There's more…
The field attribute is provided by <p:column>; this is where the name of the field is passed
to the load method in the sortField or filter method arguments according to the action
taken. If field is not provided, the name of the field will be extracted from the values of the
filterBy or sortBy attributes.

Integrating JPA's Criteria API with LazyDataModel is a good approach
to generalize the sorting and filtering features of every table.

Chapter 5

153

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter5/dataTableLazyDataModel.jsf.

Listing data with dataList
A collection of data in a list layout is presented by dataList with several display types and
features, such as AJAX pagination.

How to do it…
A basic definition of a data list with a header facet for listing the names of countries starting
with the letter "A" would be as follows:

<p:dataList id="simple" value="#{dataListBean.countriesShort}"
 var="country" itemType="disc">
 <f:facet name="header">
 Countries starting with 'A'
 </f:facet>
 <h:outputText value="#{country}" />
</p:dataList>

By default, the dataList component renders an unordered list, which corresponds to the
 HTML tag. The visual output is given here:

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Data Iteration Components

154

The bullet type can be customized with the itemType attribute, which has the default value
disc. For an unordered list, the other possible values are circle and square.

When type is set to ordered, dataList renders an ordered list, which corresponds to the
 HTML tag. The visual output is given here:

With ordered lists, the default value for the itemType is set to 1 to render a numerically
ordered list. The other possible values to render alphabetically ordered characters as bullets
in lowercase and uppercase are a and A, respectively. The last alternatives for rendering
roman numbers as bullets in lowercase and uppercase are i or I.

There's more…
The third type of the dataList component is definition, where an inline description can
be visualized for each item. The next definition displays a list of car names along with their
small images. The detailed definition should be provided with the facet named description.
The definition of definition is provided here:

<p:dataList id="withDescription" value="#{dataListBean.cars}"
 var="car" type="definition">
 Name: #{car.name}
 <f:facet name="description">
 <p:graphicImage
 value="/resources/images/autocomplete/#{car.name}.png"
 width="60" height="40" />
 </f:facet>
</p:dataList>

Chapter 5

155

Pagination
The dataList component has a built-in AJAX pagination that is enabled by setting the
paginator attribute to true. To support the pagination, the number of rows to display
per page should be set with the rows attribute. Its default value is 0, which indicates
that all the data available will be displayed. Pagination can be customized using the
paginatorTemplateOption attribute, which accepts keys to specify the content of
the paginator:

ff FirstPageLink

ff LastPageLink

ff PreviousPageLink

ff NextPageLink

ff PageLinks

ff CurrentPageReport

ff RowsPerPageDropdown

The default rendering for the pagination would be as shown here:

It would be the same as the pagination template, as shown in the following code snippet:

{FirstPageLink} {PreviousPageLink} {PageLinks} {NextPageLink}
{LastPageLink}

A more complex paginator definition is given here:

{CurrentPageReport} {FirstPageLink} {PreviousPageLink} {PageLinks}
{NextPageLink} {LastPageLink} {RowsPerPageDropdown}

Data Iteration Components

156

This will be rendered as shown here:

The {RowsPerPageDropdown} attribute has its own mechanism to produce templates,
and the mechanism should be provided in order to render the dropdown (for example,
rowsPerPageTemplate="5,10,15").

Also,{CurrentPageReport} has its own template defined with the
currentPageReportTemplate option.

We can use the {currentPage}, {totalPages}, {totalRecords}, {startRecord},
and{endRecord} keywords within currentPageReportTemplate. The default value is
{currentPage} of {totalPages}.

The pageLinks attribute defines the maximum number of page links to display. Its default
value is 10. For the complex paginator definition given previously, it's set to 3.The paginator
attribute can be positioned in three different locations by setting the paginatorPosition
attribute to top, bottom, or both (the last value being the default value). The
paginatorAlwaysVisible attribute defines whether the pagination should be hidden or not
when the total data count is less than the number of rows per page.

The content of paginator can also be customized with a custom facet definition,
as shown here:

<p:dataList value="#{dataListBean.countries}" var="country"
 rows="10" paginator="true"
 paginatorTemplate="{CurrentPageReport} {CustomContent}">

 <f:facet name="{CustomContent}">
 ..custom content..
 </f:facet>
 <f:facet name="header">
 Countries

Chapter 5

157

 </f:facet>
 <h:outputText value="#{country}" />
</p:dataList>

As seen in the example, the name of the facets should match with the name of the token
given in the template.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter5/dataList.jsf.

Listing data with pickList
The pickList dual list is an input component that is used to transfer data between two
different collections with drag-and-drop-based reordering, transition effects, POJO support,
client-server callbacks, and more.

How to do it…
The pickList component uses a custom data model, which is an instance of org.
primefaces.model DualListModel that contains two lists—one for the source and one
for the target. For a pickList implementation that would be used to select countries, the
data model could be as follows:

private List<String> countriesSource = new ArrayList<String>();
private List<String> countriesTarget = new ArrayList<String>();

countriesSource.add("England");
countriesSource.add("Germany");
countriesSource.add("Switzerland");
countriesSource.add("Turkey");

private DualListModel<String> countries =
 new DualListModel<String>(countriesSource, countriesTarget);

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Data Iteration Components

158

The definition of the component could be as follows:

<p:pickList id="simple" value="#{pickListBean.countries}"
 var="country"
 itemLabel="#{country}" itemValue="#{country}" />

The visual output (of the previous two code snippets) of the component will be two
containers—one for the source list and one for the target list—and will be as follows:

There's more…
The itemDisabled attribute specifies whether an item can be picked or not. When it is set to
true, the source and target list will be rendered as disabled so as to prevent the selection.

It's possible to add captions at the top of the source list and the target list. The captions
should be defined with the sourceCaption and targetCaption facets, as shown here:

<p:pickList id="withCaption" value="#{pickListBean.countries}"
 var="country" itemLabel="#{country}" itemValue="#{country}">
 <f:facet name="sourceCaption">Available</f:facet>
 <f:facet name="targetCaption">Selected</f:facet>
</p:pickList>

Control buttons visibility
The showSourceControls and showTargetControls attributes specify the visibility of
the reorder buttons of the source list and the target list.

Chapter 5

159

The labels for the control buttons can also be customized with the addLabel, addAllLabel,
removeLabel, removeAllLabel, moveUpLabel, moveTopLabel, moveDownLabel, and
moveBottomLabel attributes.

POJO support
The pickList component supports dealing with complex POJOs as well. The data model
should be based on org.primefaces.model.DualListModel as it's defined with the
example of strings. A converter for the Car class should also be implemented and used as
defined next. The following is a definition of a data model that contains a source list and target
list for the Car class:

DualListModel<Car> cars =
 new DualListModel<Car>(carsSource, carsTarget);

The <p:column> element could be used while visualizing the instances of Car within
pickList to clearly identify the attributes of the Car class:

<p:pickList id="pojoSupport" value="#{pickListBean.cars}"
 var="car" itemLabel="#{car.name}" itemValue="#{car}">
 <f:converter
 converterId="org.primefaces.cookbook.converter.CarConverter"
 />
 <p:column>
 <p:graphicImage
 value="/resources/images/autocomplete/#{car.name}.png"
 width="100" height="70" />
 </p:column>
 <p:column>
 #{car.name}
 </p:column>
</p:pickList>

Data Iteration Components

160

Transition effects
Effects can be applied with the effect attribute for content transition when a selection is
moved from the source list to the target list or vice versa. The default value of the effect
attribute is fade. The other possible values for the attribute are given here:

ff blind

ff bounce

ff clip

ff drop

ff explode

ff fold

ff highlight

ff puff

ff pulsate

ff scale

ff shake

ff size

ff slide

To customize the animation speed, effectSpeed can be used. Its default value is fast; the
other possible values are slow and normal.

Executing custom JavaScript on transfer
The pickList component supports the execution of a client-side callback when an item is
transferred from one list to another. This could be achieved by providing a JavaScript method
definition for the onTransfer attribute, as shown here:

<p:pickList id="withCustomJS" onTransfer="handleTransfer(e)"
 value="#{pickListBean.countries}" var="country"
 itemLabel="#{country}" itemValue="#{country}" />

The definition of the script method to list the values of the item that is transferred, the
definition of from- and to-lists, and so on, is given here:

<script type="text/javascript">
 function handleTransfer(e) {
 alert(e.item);
 alert(e.from);
 alert(e.to);
 alert(e.type);
 }
</script>

Chapter 5

161

The variable e provides access to the item transferred, the source and target unordered lists
(named from and to, as an instance of HTMLUListElement), and the type of action taken,
such as command, dblclick, or dragdrop.

AJAX behavior events
The pickList component provides the transfer AJAX behavior event that will be fired
when an item is moved from the source list to the target list or vice versa:

<p:pickList id="withAJAX" value="#{pickListBean.countries}"
 var="country"
 itemLabel="#{country}" itemValue="#{country}">
 <p:ajax event="transfer" update="growl"
 listener="#{pickListBean.handleTransfer}" />
</p:pickList>

The handleTransfer method will be invoked with org.primefaces.event.
TransferEvent. The items selected and the action taken can be identified through the
instance of this event. A sample definition for the handleTransfer method is given here:

public void handleTransfer(TransferEvent event) {
 MessageUtil.addInfoMessage("items.transferred",
 event.getItems());
 MessageUtil.addInfoMessage("is.added", event.isAdd());
 MessageUtil.addInfoMessage("is.removed", event.isRemove());
}

Be aware that if large datasets (approximately 1,000 items) are added
to the source list of pickList on IE or Chrome browsers, performance
drawbacks might arise and affect the user experience of your application.
As it's not a UIData component, pickList doesn't do server-side
processing for action and input handling. So, for example, using
checkboxes inside pickList will not work.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter5/pickList.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Data Iteration Components

162

See also
For details about the MessageUtil class, see the Internationalization (i18n) and Localization
(L10n) recipe in Chapter 1, Getting Started with PrimeFaces.

Listing data with orderList
The orderList component is used to sort a collection with the support of drag-and-drop
reordering, transition effects, and POJO support.

How to do it…
A basic definition for the orderList that sorts a collection of strings would be as
shown here:

<p:orderList id="simple" value="#{orderListBean.countries}"
 var="country" itemLabel="#{country}" itemValue="#{country}" />

The visual output of the component will be as shown here:

There's more…
To define a header on top of orderList, a facet with the name caption should be provided
as shown here:

<p:orderList id="withCaption" value="#{orderListBean.countries}"
 var="country" itemLabel="#{country}" itemValue="#{country}">

Chapter 5

163

 <f:facet name="caption">
 Countries
 </f:facet>
</p:orderList>

With the controlsLocation attribute, we can control the position of the controls. The
default value is left; the other possible values are right and none.

Transition effects
Effects can be applied with the effect attribute for content transition when a selection is
moved upwards or downwards. The default value of the effect attribute is fade. The other
possible values for the effect attribute are as follows:

ff blind

ff clip

ff drop

ff explode

ff fade

ff fold

ff puff

ff scale

ff slide

As orderList is not a UIData component, it doesn't do server-
side processing for action and input handling. So, for example, using
checkboxes inside orderList will not work.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter5/orderList.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Data Iteration Components

164

Visualizing data with tree
The tree component visualizes hierarchical data in the tree format.

How to do it…
The data for tree is provided as instances of org.primefaces.model.TreeNode, which
correspond to the nodes in the tree. A pure client-side tree might be useful to create tree-
based navigation menus. A basic data model for a tree could be constructed as follows:

TreeNode root = new DefaultTreeNode("Root", null);
TreeNode node1 = new DefaultTreeNode("Node1", root);
TreeNode node2 = new DefaultTreeNode("Node2", root);
TreeNode node11 = new DefaultTreeNode("Node1.1", node1);
TreeNode node12 = new DefaultTreeNode("Node1.2", node1);
TreeNode node21 = new DefaultTreeNode("Node2.1", node2);
TreeNode node211 = new DefaultTreeNode("Node2.1.1", node21);

The definition of tree for the previously mentioned model will be as shown here:

<p:tree id="simple" value="#{treeDataBean.root}" var="node">
 <p:treeNode>
 <h:outputText value="#{node}" />
 </p:treeNode>
</p:tree>

The visual of the tree will be as shown in the following screenshot. By default, the nodes will
not be expanded as given in the image; it's done for demonstration purposes.

Chapter 5

165

There's more…
If the hierarchical data model of tree contains too many nodes, it would be useful to
dynamically load the tree by setting the dynamic attribute to true in order to load a part of
tree when requested by expanding a node with a click.

Also, by enabling caching with setting the cache attribute to true, expanding a previously
loaded node will not result in an AJAX request to load its children again. Here's the code that
encapsulates this discussion:

<p:tree id="dynamic" value="#{treeDataBean.root}" var="node"
 dynamic="true" cache="true">
 <p:treeNode>
 <h:outputText value="#{node}" />
 </p:treeNode>
</p:tree>

Node type support
It's possible to provide different visuals for each node with custom node definitions. To achieve
this, the <p:treeNode> component could be used with defined node types. The following
definition contains two node definitions—one for expandable nodes with type="node"
and one for the leaf nodes with type="leaf". To differentiate the nodes visually, the tree
nodes use the ui-icon-minusthick icon for leaf nodes and ui-icon-plusthick for
expandable icons:

<p:tree id="customNodes" value="#{treeDataBean.rootWithType}"
 var="node">
 <p:treeNode type="node" icon="ui-icon-plusthick">
 <h:outputText value="#{node}" />
 </p:treeNode>
 <p:treeNode type="leaf" icon="ui-icon-minusthick">
 <h:outputText value="#{node}" />
 </p:treeNode>
</p:tree>

The integration is achieved with the type attribute where it matches the parameter given to
DefaultTreeNode. The code to construct the model is given here:

rootWithType = new DefaultTreeNode("node", "Root", null);
TreeNode node1_type = new DefaultTreeNode("node", "Node1",
 rootWithType);

Data Iteration Components

166

TreeNode node2_type = new DefaultTreeNode("node", "Node2",
 rootWithType);

TreeNode node11_type = new DefaultTreeNode("leaf", "Node1.1",
 node1_type);
TreeNode node12_type = new DefaultTreeNode("leaf", "Node1.2",
 node1_type);

TreeNode node21_type = new DefaultTreeNode("node", "Node2.1",
 node2_type);
TreeNode node211_type = new DefaultTreeNode("leaf", "Node2.1.1",
 node21_type);

If you want the node to react to an expand/collapse action by changing its icon, you can use
expandedIcon and collapsedIcon to display the different icons based on the status of
the node.

The definition of the <p:treeNode> component with type set to node is given here with the
aforementioned attributes:

<p:treeNode type="node" expandedIcon="ui-icon-minusthick"
 collapsedIcon="ui-icon-plusthick">
 <h:outputText value="#{node}" />
</p:treeNode>

Node selection
The tree component provides built-in selection with a single node or multiple nodes or with
a checkbox selection on the nodes. The selectionMode attribute enables selection with
its value set to single for the single selection mode, multiple for multiple node selection,
and checkbox to select nodes with checkboxes. The selected nodes are collected in the
selection attribute as an instance of TreeNode or as an array of TreeNode instances.
Here's the code that encapsulates this discussion:

<p:tree id="single" value="#{treeDataBean.root}" var="node"
 selectionMode="single"
 selection="#{treeDataBean.selectedNode}">
 <p:treeNode>
 <h:outputText value="#{node}" />
 </p:treeNode>
</p:tree>

<p:tree id="multiple" value="#{treeDataBean.root}" var="node"
 selectionMode="multiple"

Chapter 5

167

 selection="#{treeDataBean.selectedNodes}">
 <p:treeNode>
 <h:outputText value="#{node}" />
 </p:treeNode>
</p:tree>

PrimeFaces also provides the CheckboxTreeNode model class
that differs from the DefaultTreeNode model class with its
partialSelected property, where it provides hierarchical
selection. In order to modify selection behaviors, you can set the
propagateSelectionUp and propagateSelectionDown
attributes of tree that propagate upward selection to the root
element or downward selection to children, respectively.
It's also possible to select multiple nodes with a modifier key, which
would be Ctrl in Windows and Command in MacOS.

Drag and drop
Reordering is possible between the nodes of a tree with drag and drop. It's also possible
to drag nodes between multiple trees by placing them into a scope. Dragging and dropping
within a tree is exemplified here:

<p:tree id="dnd" value="#{treeDataBean.root}" var="node"
 draggable="true" droppable="true">
 <p:treeNode>
 <h:outputText value="#{node}" />
 </p:treeNode>
</p:tree>

Dragging a node between different trees is exemplified here:

<p:tree id="dndSource" value="#{treeDataBean.root}" var="node"
 selectionMode="single"
 selection="#{treeDataBean.selectedNode1}"
 draggable="true" droppable="true"
 dragdropScope="treeScope">
 <p:treeNode>
 <h:outputText value="#{node}" />
 </p:treeNode>
</p:tree>

<p:tree id="dndTarget" value="#{treeDataBean.root2}" var="node"
 selectionMode="single"
 selection="#{treeDataBean.selectedNode2}"

Data Iteration Components

168

 draggable="true" droppable="true"
 dragdropScope="treeScope">
 <p:treeNode>
 <h:outputText value="#{node}" />
 </p:treeNode>
</p:tree>

As seen in the code, dragdropScope should also be set to the same value for both trees.
The draggable and droppable attributes of both trees could be set to true to enable drag
and drop between the trees as well as between within the nodes of one tree.

Using drag and drop between multiple trees inside panel components
might lead to problems with the current version of the framework. Try to
implement the user interface by keeping it simple when drag and drop
between trees is a requirement.

AJAX behavior events
The tree component supports AJAX behavior events in order to handle node expand/collapse
or selection/unselection. The definition of the AJAX behavior events should be placed within
the tree, as shown in the following code snippet:

<p:tree id="withAJAX" value="#{treeDataBean.root}" var="node"
 selectionMode="single"
 selection="#{treeDataBean.selectedNode}">
 <p:ajax event="expand" update=":mainForm:growl"
 listener="#{treeDataBean.onNodeExpand}" />
 <p:ajax event="collapse" update=":mainForm:growl"
 listener="#{treeDataBean.onNodeCollapse}" />
 <p:ajax event="select" update=":mainForm:growl"
 listener="#{treeDataBean.onNodeSelect}" />
 <p:ajax event="unselect" update=":mainForm:growl"
 listener="#{treeDataBean.onNodeUnselect}" />
 <p:treeNode>
 <h:outputText value="#{node}" />
 </p:treeNode>
</p:tree>

Chapter 5

169

The events and their corresponding listener method's parameter types are given in the
following table; for all the events, the tree can be accessed with the event.getNode()
method call.

Action Event name Listener method parameter type
When a node is
expanded

expand org.primefaces.event.NodeExpandEvent

When a node is
collapsed

collapse org.primefaces.event.NodeCollapseEvent

When a node is
selected

select org.primefaces.event.NodeSelectEvent

When a node is
unselected

unselect org.primefaces.event.NodeUnselectEvent

Context menu support
The tree component easily integrates with the contextMenu component, and the context
menu can be assigned to the nodes for a right-click event. It is also possible to assign
different context menus with different tree nodes using the nodeType attribute.

There are two context menu definitions—one for the nodes of the tree that contain child nodes
and the other one for the leaf nodes that have no child nodes. They are given here with the
tree definition (the menus differ according to the given nodeType attribute):

<p:tree id="withContextMenu" var="node" selectionMode="single"
 value="#{treeDataBean.rootWithType}"
 selection="#{treeDataBean.selectedNode}">
 <p:treeNode type="node">
 <h:outputText value="#{node}" />
 </p:treeNode>

 <p:treeNode type="leaf">
 <h:outputText value="#{node}" />
 </p:treeNode>
</p:tree>

<p:contextMenu for="withContextMenu" nodeType="node">
 <p:menuitem value="View" update="dialogPanel"
 icon="ui-icon-search"
 oncomplete="PF('nodeDialog').show()" />

Data Iteration Components

170

</p:contextMenu>

<p:contextMenu for="withContextMenu" nodeType="leaf">
 <p:menuitem value="View" update="dialogPanel"
 icon="ui-icon-search"
 oncomplete="PF('nodeDialog').show()" />
 <p:menuitem value="Delete"
 actionListener="#{treeDataBean.deleteNode}"
 update="withContextMenu" icon="ui-icon-close" />
</p:contextMenu>

While only displaying the context menu with the view and delete actions for the leaf nodes of
the tree, the context menu with just a view action will be displayed for the nodes that contain
child nodes.

Horizontal layout
With the orientation attribute, it's possible to set the layout of the nodes as horizontal
by setting the attribute to horizontal. The default value of the attribute is vertical. The
visual output of the horizontal layout is given here. By default, the nodes will not be expanded
as given in the image; it's done for demonstration purposes.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter5/tree.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 5

171

Visualizing data with treeTable
The treeTable component visualizes tree where each tree item can have some additional
fields that could be displayed in a tabular format.

How to do it…
A basic implementation for treeTable with three columns would be as follows:

<p:treeTable id="simple" value="#{treeTableBean.root}"
 var="element">
 <f:facet name="header">Tree Table</f:facet>
 <p:column>
 <f:facet name="header">Name</f:facet>
 <h:outputText value="#{element.name}" />
 </p:column>
 <p:column>
 <f:facet name="header">Column 1</f:facet>
 <h:outputText value="#{element.column1}" />
 </p:column>
 <p:column>
 <f:facet name="header">Column 2</f:facet>
 <h:outputText value="#{element.column2}" />
 </p:column>
</p:treeTable>

The visual output of the table expanded on every node will be as shown here:

Data Iteration Components

172

The root element of the tree table will be an instance of org.primefaces.model.TreeNode.
The whole model provided to the tree table would be a collection of TreeTableElement
components wrapped by TreeNode instances. TreeTableElement is a simple class created
for demonstration purposes and is defined as follows:

public class TreeTableElement implements Serializable {
 private String name;
 private String column1;
 private String column2;

 // getters & setters
}

The implementation of constructing the table would be as follows:

root = new DefaultTreeNode("root", null);
TreeNode node1 = new DefaultTreeNode(new TreeTableElement("Node1",
 "1st Column", "2nd Column"), root);
TreeNode node2 = new DefaultTreeNode(new TreeTableElement("Node2",
 "1st Column", "2nd Column"), root);
TreeNode node11 = new DefaultTreeNode(new TreeTableElement(
 "Node1.1", "1st Column", "2nd Column"), node1);
TreeNode node12 = new DefaultTreeNode(new TreeTableElement(
 "Node1.2", "1st Column", "2nd Column"), node1);
TreeNode node21 = new DefaultTreeNode(new TreeTableElement(
 "Node2.1", "1st Column", "2nd Column"), node2);
TreeNode node211 = new DefaultTreeNode(new TreeTableElement(
 "Node2.1.1", "1st Column", "2nd Column"), node21);

There's more…
It's possible to make the table scrollable by setting the scrollable attribute to true. The
scrollWidth and scrollHeight attributes can be provided to constrain the view of the
table to a fixed width and height. Also, the width of the columns must be provided as fixed
integer values when the scrollable attribute is set to true in order to preserve the layout.

Node selection
The selectionMode attribute should be used to enable selection whenever a row is clicked
on. Its value should be single for the single selection mode, and the selection attribute
should be bound to an instance of TreeNode. To select multiple items with the modifier key
(for example, Ctrl in Windows/Linux or Command in MacOS), the selectionMode attribute
should be set to multiple and the selection attribute needs to be bound to an array of
the TreeNode class.

Chapter 5

173

It's also possible to handle selection with checkboxes by setting selectionMode to
checkbox. As with multiple-selection mode, the selection attribute needs to be bound to
an array of the TreeNode class.

Sorting
It's possible to enable sorting for the columns of a table by setting the sortBy attribute:

<p:treeTable id="sorted" value="#{treeTableBean.root}"
 var="element" style="width: 400px;">
 <f:facet name="header">Tree Table</f:facet>
 <p:column sortBy="#{element.name}">
 <f:facet name="header">Name</f:facet>
 <h:outputText value="#{element.name}" />
 </p:column>
 ...
<p:treeTable>

When sorting is enabled, the headers of those columns will have the sort direction
represented with small arrow icons, as shown here:

Context menu support
The treeTable component easily integrates with the contextMenu component, and the
context menu can be assigned to the nodes for a right-click event. Using the nodeType
attribute, it is also possible to assign different context menus with different nodes.

There are two context menu definitions—one for the nodes of the table that contain child
nodes and the other one for the leaf nodes that have no child nodes. The definitions are
given as follows with the tree table definition; the menus differ according to the given
nodeType attribute:

<p:treeTable id="withContextMenu" value="#{treeTableBean.root}"
 var="element" selectionMode="single"
 selection="#{treeTableBean.selectedItemForContextMenu}">
 <f:facet name="header">Tree Table</f:facet>
 <p:column>
 <f:facet name="header">Name</f:facet>

Data Iteration Components

174

 <h:outputText value="#{element.name}" />
 </p:column>
 <p:column>
 <f:facet name="header">Column 1</f:facet>
 <h:outputText value="#{element.column1}" />
 </p:column>
 <p:column>
 <f:facet name="header">Column 2</f:facet>
 <h:outputText value="#{element.column2}" />
 </p:column>
</p:treeTable>

<p:contextMenu for="withContextMenu" nodeType="node">
 <p:menuitem value="View" update="dialogPanel"
 icon="ui-icon-search"
 oncomplete="PF('nodeDialog').show()"/>
</p:contextMenu>

<p:contextMenu for="withContextMenu" nodeType="leaf">
 <p:menuitem value="View" update="dialogPanel"
 icon="ui-icon-search"
 oncomplete="PF('nodeDialog').show()"/>
 <p:menuitem value="Delete"
 actionListener="#{treeTableBean.deleteNode}"
 update="withContextMenu" icon="ui-icon-close"/>
</p:contextMenu>

The nodeType attribute is given while constructing the treeTable data model.

TreeNode node1 = new DefaultTreeNode("node", new
TreeTableElement("Node1", "1st Column", "2nd Column"), root);
...
TreeNode node11 = new DefaultTreeNode("leaf", new
TreeTableElement("Node1.1", "1st Column", "2nd Column"), node1);
...

While only displaying the context menu with view and delete actions for the leaf nodes of the
table, the context menu with just the view action will be displayed for the nodes that contain
child nodes.

Chapter 5

175

The visual output of the table with the context menu triggered on a leaf is given here:

AJAX behavior events
It's possible to invoke server-side methods instantly according to user interactions such as
expanding, collapsing, and selecting a node. The declaration for the node's expand event of
the table is given here:

<p:treeTable id="withAJAX" value="#{treeTableBean.root}"
 var="element">
 <p:ajax event="expand" update=":mainForm:growl"
 listener="#{treeTableBean.onNodeExpand}" />
 <p:ajax event="collapse" update=":mainForm:growl"
 listener="#{treeTableBean.onNodeCollapse}" />
 <p:ajax event="select" update=":mainForm:growl"
 listener="#{treeTableBean.onNodeSelect}" />
 <p:ajax event="unselect" update=":mainForm:growl"
 listener="#{treeTableBean.onNodeUnselect}" />
</p:treeTable>

The definition of the onNodeExpand method is given here:

public void onNodeExpand(NodeExpandEvent event) {
 MessageUtil.addInfoMessageWithoutKey("Expanded",
 event.getTreeNode().getData().toString());
}

Data Iteration Components

176

The list of all possible events with their listener parameters is as follows:

Event name Parameter of the listener method When it gets executed
colResize org.primefaces.event.

ColumnResizeEvent

This gets executed when
the column is resized

collapse org.primefaces.event.

NodeCollapseEvent

This gets executed when
the node is collapsed

expand org.primefaces.event.
NodeExpandEvent

This gets executed when
the node is expanded

select org.primefaces.event.

NodeSelectEvent

This gets executed when
the node is selected

unselect org.primefaces.event.

NodeUnselectEvent

This gets executed when
the node is unselected

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
severs compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter5/treeTable.jsf.

Exporting data in various formats
The dataExporter component allows us to export the content of the table into various
formats such as XLS, PDF, CSV, and XML. It also supports the exporting of the current data
on a page. It also supports only selected data of the table by providing the ability to exclude
particular columns and manipulate the exported data with pre- and post-processors.

How to do it…
A basic definition of dataExporter is given here:

<h:commandLink>
 <p:graphicImage value="/resources/images/export/pdf.png" />
 <p:dataExporter type="pdf" target="countriesTable"
 fileName="countries" />
</h:commandLink>

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 5

177

How it works…
The dataExporter component should be nested in a UICommand component, such as
commandLink or commandButton. In the previous definition, target defines the server-
side ID of the table, the data of which will be exported. The type attribute defines the export
type, the values of which could be xls, pdf, csv, or xml. The fileName attribute defines the
filename of the generated export file; by default, the server-side ID of dataTable is used as
the filename.

The target attribute must point to a PrimeFaces
dataTable component.
The necessary libraries should be available in the classpath
to export to PDF or XLS. See the Setting up and configuring
the PrimeFaces library recipe in Chapter 1, Getting Started
with PrimeFaces, for details on dependencies.

There's more…
By default, the export is done for the whole dataset. But, it could also be done for the current
page by setting the pageOnly attribute to true or for only the selected data by setting the
selectionOnly attribute to true.

The <p:column> component provides the exportable attribute where it defines whether
the column should be exported or not.

Character encoding can also be set while exporting by setting the encoding attribute to the
corresponding encoding value. The default encoding is UTF-8.

While exporting to Excel, dataExporter only creates string-based cells.
So, exporting numeric data into numeric cells is not currently supported.

Preprocessing and postprocessing of documents
The dataExporter component enables preprocessing and postprocessing on the document
for customization, such as adding logos, captions, headers/footers, and so on. Preprocessors
are executed before the data is exported, and postprocessors are processed after the data is
included in the document. The document object is passed to the processor methods as a Java
object so that it can be easily cast to the appropriate class. An example of a preprocessor that
adds a footer to page numbers of a PDF document is given here:

<p:dataExporter type="pdf" target="countriesTable"
 fileName="countries"

Data Iteration Components

178

 preProcessor="#{dataExportBean.preProcessPDF}" />

public void preProcessPDF(Object document) {
 Document pdf = (Document) document;
 HeaderFooter footer =
 new HeaderFooter(new Phrase("This is page:"), true);
 pdf.setFooter(footer);
}

Monitoring export status
Data export is a non-AJAX process, so in order to monitor the status, PrimeFaces provides
the client-side method monitorDownload. The method could be bound to the onclick
event of a command component that wraps the dataExporter, as seen in the following
code snippet:

<h:commandLink
 onclick="PrimeFaces.monitorDownload(showStatus, hideStatus)">
 <p:graphicImage value="/resources/images/export/csv.png" />
 <p:dataExporter type="csv" target="countriesTable"
 fileName="countries" />
</h:commandLink>

While the exporting process occurs, the method will trigger two JavaScript methods,
showStatus and hideStatus, whose names are passed as parameters. These are
two simple methods to show and hide a dialog box component and their implementations,
along with the dialog, are given here:

<script type="text/javascript">
 function showStatus() {
 statusDialog.show();
 }
 function hideStatus() {
 statusDialog.hide();
 }
</script>

<p:dialog modal="true" widgetVar="statusDialog" header="Status"
 draggable="false" closable="false">
 <p:graphicImage value="/resources/images/ajax-loader.gif" />
</p:dialog>

Chapter 5

179

While the exporting process occurs, the dataExporter component only
recognizes values from the outputText component.
Data exporting also works collaboratively when sorting and filtering is
enabled on columns.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter5/dataExport.jsf.

Managing events with schedule by
leveraging lazy loading

The Schedule component provides a calendar to manage events, such as Outlook Calendar
and iCal. By default, a whole set of events is eagerly provided via the ScheduleModel class.
That means all events are loaded at once on page load. The lazy loading feature helps to
improve performance if we have a huge dataset of events or if events take too much time to
load. In the lazy loading mode, only events that belong to the displayed timeframe are fetched.

In this recipe, we will implement a small example for the Schedule component's lazy
loading feature.

How to do it…
A basic definition of schedule would be as shown here:

<p:schedule id="lazySchedule"
 value="#{scheduleBean.lazyScheduleModel}"/>

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Data Iteration Components

180

The visual output of the component with two randomly generated events will be as shown here:

By default, the month view is displayed, so the user sees a whole month and can switch
between months. Assume that we have to load events for 12 months and every month
requires, on average, 1.5 seconds for event loading. The default eager mode would take
18 seconds (12 x 1.5) to load all events. This is too long, so using the lazy loading feature
is recommended to improve performance. The ScheduleBean bean definition with lazy
model construction is given next; for the sake of simplicity, the loading time is simulated
with Thread.sleep(1500):

@Named
@ViewScoped
public class ScheduleBean implements Serializable {

 private ScheduleModel lazyEventModel;

 @PostConstruct

Chapter 5

181

 public void initialize() {
 lazyEventModel = new LazyScheduleModel() {

 @Override
 public void loadEvents(Date start, Date end) {
 try {
 // simulate a long running task
 Thread.sleep(1500);
 } catch (Exception e) {
 }

 clear();

 Date random = getRandomDate(start);
 addEvent(new DefaultScheduleEvent("Lazy Event 1",
 random, random));

 random = getRandomDate(start);
 addEvent(new DefaultScheduleEvent("Lazy Event 2",
 random, random));
 }
 };
 }

 public Date getRandomDate(Date base) {
 Calendar date = Calendar.getInstance();
 date.setTime(base);
 date.add(Calendar.DATE, ((int) (Math.random() * 30)) + 1);

 return date.getTime();
 }

 public ScheduleModel getLazyScheduleModel() {
 return lazyEventModel;
 }
}

How it works…
To enable lazy loading of the schedule component's events, we need to provide an instance
of org.primefaces.model.LazyScheduleModel and implement the loadEvents
method. This method is called with new date boundaries every time the displayed timeframe
is changed. Events are now loaded on demand on the initial page load or during switching
between months. That means the maximum delay for the event's loading is not longer than
1.5 seconds.

Data Iteration Components

182

There's more…
The Schedule component offers five different views, which are month, agendaWeek,
agendaDay, basicWeek, and basicDay. The default view is month, and the rest of the
modes are given here with their visual outputs:

Agenda week view

Chapter 5

183

Agenda day view

Basic week view

Data Iteration Components

184

Basic day view

AJAX behavior events
The schedule component supports AJAX behavior events in order to handle the interactions
of the user by date selection, event selection/deselection, or movement and view change.
The definitions of the AJAX behaviors are shown in the following code snippet (they should be
defined inside the schedule component):

<p:ajax event="dateSelect" listener="#{scheduleBean.onDateSelect}"
 update=":mainForm:growl" />
<p:ajax event="eventSelect" update=":mainForm:growl"
 listener="#{scheduleBean.onEventSelect}"/>
<p:ajax event="eventMove" listener="#{scheduleBean.onEventMove}"
 update=":mainForm:growl" />
<p:ajax event="eventResize" update=":mainForm:growl"
 listener="#{scheduleBean.onEventResize}" />
<p:ajax event="viewChange" listener="#{scheduleBean.onViewChange}"
 update=":mainForm:growl" />

Chapter 5

185

The method definitions are listed here:

public void onDateSelect(SelectEvent event) {
 MessageUtil.addInfoMessage("date.selected", event.getObject());
}

public void onEventSelect(SelectEvent event) {
 MessageUtil.addInfoMessage("event.selected",
 ((DefaultScheduleEvent)event.getObject()).getTitle());
}

public void onEventMove(ScheduleEntryMoveEvent event) {
 MessageUtil.addInfoMessage("event.moved",
 event.getScheduleEvent().getTitle(), event.getDayDelta(),
 event.getMinuteDelta());
}

public void onEventResize(ScheduleEntryResizeEvent event) {
 MessageUtil.addInfoMessage("event.resized",
 event.getScheduleEvent().getTitle(), event.getDayDelta(),
 event. getMinuteDelta());
}

public void onViewChange(SelectEvent event) {
 MessageUtil.addInfoMessage("view.changed", event.getObject());
}

Locale support
Defining the locale value to the locale attribute provides the localization of schedule.
The locale attribute can either take a String or java.util.Locale instance as the
key. By default, all labels provided by the schedule are in English, so you need to provide the
other translations manually. The PrimeFaces community implements the translations, and
they are available as JavaScript objects. Please refer to https://code.google.com/p/
primefaces/wiki/PrimeFacesLocales to access the translations.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter5/scheduleLazyLoad.jsf.

https://code.google.com/p/primefaces/wiki/PrimeFacesLocales
https://code.google.com/p/primefaces/wiki/PrimeFacesLocales
https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Data Iteration Components

186

See also
For details about the MessageUtil class, see the Internationalization (i18n) and Localization
(L10n) recipe in Chapter 1, Getting Started with PrimeFaces.

Visualizing data with dataScroller
The dataScroller component offers lazy loading of a collection via AJAX when the page is
scrolled down.

How to do it…
A basic definition of the dataScroller component would be as shown here:

<p:dataScroller value="#{dataScrollerBean.cars}"
 var="car" chunkSize="10">
 #{car.name}
</p:dataScroller>

The data gets loaded with specified chunks where its size is determined with the chunkSize
attribute, and then the retrieved content will be appended at the bottom of the component.

There's more…
The AJAX loading takes place when the page is scrolled down, and this is achieved by
monitoring the vertical scrollbar. This can be modified by the mode attribute, which has
document as its default value. When its value is set to inline, the component starts to
listen to the scroll event of the dataScroller container.

Providing buffer
The buffer attribute states the percentage height of the buffer between the bottom of the
page and the scroll position to initiate the load for the new chunk. Its value is defined as an
integer and the default is 10, which means that the load would happen after 90 percent of
the viewport is scrolled down.

Chapter 5

187

Loading with a button
Instead of instant loading, a button could be used to trigger the loading. When a button is
placed in a facet named loader, it will enable the loading. The definition given next uses this
facet and also contains columns to display data:

<p:dataScroller value="#{dataScrollerBean.cars}" var="car"
 chunkSize="3">
 <p:column>
 <p:graphicImage width="400" height="250"
 value="/resources/images/autocomplete/#{car.name}.png" />
 </p:column>
 <p:column>
 <h:outputText value="#{car.name}" style="font-size: 80px" />
 </p:column>
 <f:facet name="loader">
 <p:commandButton type="button" value="View More" />
 </f:facet>
</p:dataScroller>

It's also possible to define a header facet that will be rendered as a header to the data list.

Lazy loading
When the lazy attribute is set to true and a lazy data model is provided, dataScroller
will list large amounts of data with scrolling. An example is given here:

<p:dataScroller value="#{dataScrollerBean.lazyCarModel}"
 var="car" chunkSize="10" lazy="true">
 #{car.name}
</p:dataScroller>

For further information about the lazy data model, please refer to the Handling tons of data –
LazyDataModel recipe in this chapter.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
severs compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter5/dataScroller.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

6
Endless Menu Variations

In this chapter, we will cover the following topics:

ff Statically and dynamically positioned menus

ff Creating programmatic menus

ff The context menu with nested items

ff Integrating the context menu

ff Breadcrumb – providing contextual information about page hierarchy

ff SlideMenu – menu in the iPod style

ff TieredMenu – submenus in nested overlays

ff MegaMenu – the multicolumn menu

ff PanelMenu – hybrid of accordion and tree

ff MenuButton – multiple items in a popup

ff Accessing commands via menubar

ff Displaying checkboxes in selectCheckboxMenu

Introduction
In this chapter, we will learn about menu components. These days, every website contains
menus. Usually, a menu is presented to a user as a list of links to be navigated or commands
to be executed. Menus are sometimes organized hierarchically, allowing navigation through
different levels of the menu structure. Arranging menu items in logical groups makes it easy
for users to quickly locate the related tasks. PrimeFaces' menus fulfill all major requirements.
They come with various facets, such as static, dynamic, tiered, iPod-styled, and so on, and
leave nothing to be desired.

Endless Menu Variations

190

Several menu variations are covered in the recipes of this chapter. We will see a lot of recipes
that will discuss menu structure, configuration options, customizations, and integration with
other components. At the end of this chapter, we should know what kind of menu to choose
and how to put it on a page for various use cases.

Statically and dynamically positioned menus
A menu can be positioned on a page in two ways: statically and dynamically. A menu is
static by default. This means that the menu is in the normal page flow. A dynamic menu, in
contrast, is not in the normal page flow and overlays other elements. In terms of CSS, it is
absolutely positioned.

In this recipe, we will see how we can develop these two kinds of positioned menus. But first,
we will meet submenus and menu items.

How to do it…
A menu is composed of submenus and menu items. Submenus group single menu items.
Grouped menu items can be presented in the same page flow or in an overlay over other
elements. This behavior depends on the type of menu. The simple p:menu menu shows
grouped menu items in the same page flow. Let's define an example structure of a
static menu:

<p:growl id="growl"/>

<p:menu>
 <p:submenu label="JavaScript Libraries">
 <p:menuitem value="jQuery" url="http://jquery.com"/>
 <p:menuitem value="Yahoo UI" url="http://yuilibrary.com"/>
 <p:menuitem value="Prototype"
 url="http://prototypejs.org"/>
 </p:submenu>
 <p:submenu label="Operations">
 <p:menuitem value="Save"
 actionListener="#{positionedMenuBean.save}"
 update="growl"/>
 <p:menuitem value="Update"
 actionListener="#{positionedMenuBean.update}"
 update="growl"/>
 <p:menuitem value="Delete"
 actionListener="#{positionedMenuBean.delete}"
 update="growl"/>
 </p:submenu>
</p:menu>

Chapter 6

191

A dynamic menu is created by setting the overlay option to true and defining a trigger to
show the menu. For example, a command button from the following code snippet acts as
such a trigger. It will display a menu, the top-left corner of which is aligned with the bottom-left
corner of the button when the user clicks on it. The following code snippet shows this:

<p:growl id="growl"/>

<p:menu overlay="true" trigger="btn" my="left top" at="bottom
 left">
 <p:menuitem value="Do something (ajax)"
 action="#{positionedMenuBean.doSomething}"
 update="growl"/>
 <p:menuitem value="Do something (non ajax)"
 action="#{positionedMenuBean.doSomething}"
 ajax="false"/>
 <p:menuitem value="Navigate" url="http://primefaces.org"/>
</p:menu>

<p:commandButton id="btn" value="Show dynamic menu"
 type="button"/>

The following screenshot shows both these types of menus. The dynamic menu is opened
after the user has clicked on the Show dynamic menu button:

Place the most frequently used items at the top of the menu. The top of the
menu tends to be the most visible part of the menu because users often
see it first. Avoid combining semantically different actions/navigations in the
same group. Avoid displaying an icon for every menu item. Include them only
for menu items for which they add significant value. A menu that includes too
many icons can appear cluttered and be hard to read.

Endless Menu Variations

192

How it works…
We saw that p:menuitem can be placed either under p:submenu or directly under p:menu.
As the menu uses menu items, it is easy to invoke actions or action listeners with or without
AJAX (ajax="false") as well as navigate. Navigation means a GET request that causes
a switch to another page. This is always a full page refresh and only works when the url
attribute on p:menuitem is set. In this case, the menu item is rendered as a normal HTML
link element. If the url attribute is missing, only POST requests (with AJAX or without) can
be sent.

The location of the dynamic menu on a page is relative to the trigger and is defined by the my
and at attributes, which take a combination of two values from the following:

ff left

ff right

ff bottom

ff top

There's more…
We can also specify an icon for the menu item and design attractive menus. There are two
ways to specify an icon—either using any predefined jQuery ThemeRoller style class (http://
jqueryui.com/themeroller) that is a part of PrimeFaces themes or by providing our own
style class for the <p:menuitem icon="home" .../> icon attribute. The following code
shows this:

.home {
 background: url("#{resource['images:home.png']}") no-repeat;
 height:16px;
 width:16px;
}

You may want to expand and collapse submenus on click. This feature can be achieved by
setting toggleable="true" on p:menu.

See also
See the MenuItem section in PrimeFaces User's Guide (http://primefaces.org/
documentation.html) to learn more about menu item capabilities.

http://jqueryui.com/themeroller
http://jqueryui.com/themeroller
http://primefaces.org/documentation.html
http://primefaces.org/documentation.html

Chapter 6

193

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter6/positionedMenus.jsf.

Creating programmatic menus
Programmatic menus offer a more flexible way in comparison with the declarative approach.
The whole menu structure can be created in Java and bound as a model to the p:menu
tag. Programmatic menu creation is the best choice when we load a menu definition from a
database or XML file, and if the menu structure is not known beforehand.

In this recipe, we will learn about the PrimeFaces menu model and create a programmatic
menu.

How to do it…
Every programmatically created menu instance should implement the org.primefaces.
model.MenuModel Java interface. PrimeFaces provides a default implementation, org.
primefaces.model.DefaultMenuModel, that is sufficient to use in most cases. Your own
customized implementations of MenuModel are possible as well. Let's create a static menu
from the Statically and dynamically positioned menus recipe in a programmatic way:

@Named
@ViewScoped
public class ProgrammaticMenuBean implements Serializable {

 private MenuModel model;

 @PostConstruct
 protected void initialize() {
 model = new DefaultMenuModel();

 // first submenu
 DefaultSubMenu submenu = new DefaultSubMenu();
 submenu.setLabel("JavaScript Libraries");

 // menu items
 DefaultMenuItem item = new DefaultMenuItem();

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Endless Menu Variations

194

 item.setValue("jQuery");
 item.setUrl("http://jquery.com");
 submenu.addElement(item);

 item = new DefaultMenuItem();
 item.setValue("Yahoo UI");
 item.setUrl("http://yuilibrary.com");
 submenu.addElement(item);

 item = new DefaultMenuItem();
 item.setValue("Prototype");
 item.setUrl("http://prototypejs.org");
 submenu.addElement(item);

 model.addElement(submenu);

 // second submenu
 submenu = new DefaultSubMenu();
 submenu.setLabel("Operations");

 // menu items
 item = new DefaultMenuItem();
 item.setValue("Save");
 item.setCommand("#{positionedMenuBean.save}");
 item.setUpdate("growl");
 submenu.addElement(item);

 item = new DefaultMenuItem();
 item.setValue("Update");
 item.setCommand("#{positionedMenuBean.update}");
 item.setUpdate("growl");
 submenu.addElement(item);

 item = new DefaultMenuItem();
 item.setValue("Delete");
 item.setCommand("#{positionedMenuBean.delete}");
 item.setUpdate("growl");
 submenu.addElement(item);

 model.addElement(submenu);

Chapter 6

195

 }

 public MenuModel getModel() {
 return model;
 }
}

The created menu can easily be bound to the corresponding component tag by means of the
model attribute:

<p:menu model="#{programmaticMenuBean.model}"/>

How it works…
After an instance of the DefaultMenuModel class is created, we create the Submenu and
MenuItem instances using new DefaultSubMenu() and new DefaultMenuItem(),
respectively. The MenuItem instances are children of Submenu and should be added
as submenu.addElement(item). Submenu itself is added to the model as model.
addElement(submenu). URLs are set by item.setUrl() as String objects. The methods
to be invoked are set by item.setCommand() as String representations of EL expressions.

For UI components, such as p:menuitem, p:submenu, and
p:separator, there exist default implementations in the
MenuModel API so that the component's counterparts can be
created in Java programmatically.

There's more…
If you need to pass parameters in AJAX or non-AJAX commands, use the setParam(key,
value) method. Parameters can be extracted again from DefaultMenuItem in the invoked
methods. DefaultMenuItem is a property of MenuActionEvent. A code sample for a bean
named ParametrizedCommandBean exemplifies this:

@PostConstruct
protected void initialize() {
 model = new DefaultMenuModel();

 DefaultMenuItem item = new DefaultMenuItem();
 item.setValue("Command with parameters");
 item.setCommand("#{parametrizedCommandBean.command}");
 item.setUpdate("growl");

Endless Menu Variations

196

 item.setIcon("ui-icon-play");
 item.setParam("book", "PrimeFaces Cookbook");
 item.setParam("edition", "Second Edition");

 model.addElement(item);
}

public void command(MenuActionEvent event) {
 DefaultMenuItem item = (DefaultMenuItem) event.getMenuItem();
 Map<String, List<String>> params = item.getParams();

 FacesMessage msg = new FacesMessage(
 FacesMessage.SEVERITY_INFO,
 params.get("book").get(0) + ", " +
 params.get("edition").get(0), null);
 FacesContext.getCurrentInstance().addMessage(null, msg);
}

The XHTML snippet is easy and is given here:

<p:menu model="#{parametrizedCommandBean.model}"
 style="width:200px"/>

The preceding XHTML code results in the following output:

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter6/programmaticMenu.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 6

197

The context menu with nested items
The context menu is displayed when the mouse is right-clicked. It replaces the native context
menu in the browser and gives web applications a desktop-like feel and behavior. PrimeFaces'
context menu provides an overlay with submenus and menu items.

In this recipe, we will develop a context menu with nested items and see how to attach it to
any component. For example, we will attach the context menu to a panel component.

How to do it…
The context menu is defined by the p:contextMenu tag. We would like to define two
submenus—one with menu items having URLs (they send GET requests) and one with AJAX-ified
menu items (they send POST requests). AJAX-ified menu items perform the CRUD operations
and update p:growl. The context menu is attached to p:panel. That means only a right-click
on the panel component displays the defined context menu. A click anywhere else displays the
native web browser's context menu. This is shown in the following code:

<p:growl id="growl"/>

<p:panel id="dummyPanel" header="Please click somewhere on panel
 to see a context menu">
 <h:panelGroup layout="block" style="height:100px;"/>
</p:panel>

<p:contextMenu for="dummyPanel">
 <p:submenu label="JavaScript Libraries">
 <p:menuitem value="jQuery" url="http://jquery.com"/>
 <p:menuitem value="Yahoo UI" url="http://yuilibrary.com"/>
 <p:menuitem value="Prototype" url="http://prototypejs.org"/>
 </p:submenu>
 <p:separator/>
 <p:submenu label="Operations">
 <p:menuitem value="Save"
 actionListener="#{contextMenuBean.save}"
 update="growl"/>
 <p:menuitem value="Update"
 actionListener="#{contextMenuBean.update}"
 update="growl"/>
 <p:menuitem value="Delete"
 actionListener="#{contextMenuBean.delete}"
 update="growl"/>
 </p:submenu>
</p:contextMenu>

Endless Menu Variations

198

The following screenshot shows the result of the preceding code:

How it works…
By default, contextMenu without the defined for attribute is attached to the whole page.
That means a right-click somewhere on the page will display the menu. The for attribute
defines a component that contextMenu is attached to. The value of for specifies a search
expression, which, in this case, is the ID of p:panel.

Chapter 1, Getting Started with PrimeFaces, provides more details
on search expressions.

There's more…
Context menus can also be created programmatically and bound to p:contextMenu by the
model attribute. Programmatic menus are discussed in the Creating programmatic menus
recipe of this chapter.

See also
Data iteration components have an exclusive integration with the context menu. Refer to the
Integrating the context menu recipe to learn more about such integrations

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter6/contextMenu.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 6

199

Integrating the context menu
Data iteration components, such as dataTable, tree, and treeTable, have a special
integration with the context menu. These components can display a context menu for every
right-click of the mouse on any row in dataTable or any node in tree.

In this recipe, we will integrate a context menu with the tree component. Integration with
dataTable or treeTable is similar and described well in the PrimeFaces User's Guide
documentation (http://primefaces.org/documentation.html).

How to do it…
We will develop a context menu with two menu items—View and Delete. A View item shows
the currently selected tree node, and the Delete item removes it. We would like to implement
this behavior for all tree nodes. The following listing demonstrates the integration of
p:contextMenu with p:tree:

<p:growl id="growl" showDetail="true"/>

<p:contextMenu for="fileSystem">
 <p:menuitem value="View" update="growl"
 actionListener="#{contextMenuBean.viewNode}"
 icon="ui-icon-search"/>
 <p:menuitem value="Delete" update="fileSystem"
 actionListener="#{contextMenuBean.deleteNode}"
 icon="ui-icon-close"/>
</p:contextMenu>

<p:tree id="fileSystem" value="#{contextMenuBean.root}"
 var="node" dynamic="true"
 cache="false" selectionMode="single"
 selection="#{contextMenuBean.selectedNode}">
 <p:ajax event="select"
 listener="#{contextMenuBean.onNodeSelect}"/>
 <p:ajax event="unselect"
 listener="#{contextMenuBean.onNodeUnselect}"/>
 <p:treeNode>
 <h:outputText value="#{node}"/>
 </p:treeNode>
</p:tree>

http://primefaces.org/documentation.html

Endless Menu Variations

200

We can see the context menu over tree nodes in the following screenshot. The View item that
has been clicked on shows a growl notification.

The view-scoped CDI bean, ContextMenuBean, creates tree. The bean implements all
listener methods. This is shown in the following code:

@Named
@ViewScoped
public class ContextMenuBean implements Serializable {

 private TreeNode root;
 private TreeNode selectedNode;

 @PostConstruct
 protected void initialize() {
 root = new DefaultTreeNode("Root", null);

 TreeNode node0 = new DefaultTreeNode("Folder 0", root);
 ...
 }

 public TreeNode getRoot() {
 return root;
 }

 public TreeNode getSelectedNode() {

Chapter 6

201

 return selectedNode;
 }

 public void setSelectedNode(TreeNode selectedNode) {
 this.selectedNode = selectedNode;
 }

 public void onNodeSelect(NodeSelectEvent event) {
 selectedNode = event.getTreeNode();
 }

 public void onNodeUnselect(NodeUnselectEvent event) {
 selectedNode = null;
 }

 public void viewNode() {
 if (selectedNode == null) {
 return;
 }

 FacesMessage msg = new FacesMessage(
 FacesMessage.SEVERITY_INFO,
 "Selected", selectedNode.getData().toString());
 FacesContext.getCurrentInstance().addMessage(null, msg);
 }

 public void deleteNode() {
 if (selectedNode == null) {
 return;
 }

 selectedNode.getChildren().clear();
 selectedNode.getParent().getChildren().
 remove(selectedNode);
 selectedNode.setParent(null);
 selectedNode = null;
 }
}

Endless Menu Variations

202

How it works…
When a menu item is clicked on, the whole tree component gets processed and the currently
selected node is stored in the ContextMenuBean bean via the #{contextMenuBean.
selectedNode} EL expression. After that, an action listener is called and can access
the selected node. The viewNode() action listener only generates a message with the
name of the selected node. The subsequent AJAX response updates p:growl. We see a
growl notification. The deleteNode() action listener deletes the selected node from
the tree model. The subsequent AJAX response updates p:tree (see <p:menuitem …
update="fileSystem"/>). We see the tree updated without the deleted node.

There's more…
The nodeType attribute is featured by p:contextMenu. This attribute specifies the type
of tree nodes to attach to. It matches the type attribute of p:treeNode. Hence, different
menus can be attached to particular tree nodes by matching the menu's nodeType to the
tree node's type.

The matching occurs in a manner similar to that for the for attribute
of a label (h:outputLabel or p:outputLabel), linking it to an
input component.

See also
Explore data iteration components in Chapter 5, Data Iteration Components. You will find
many tips to use p:tree, p:dataTable, and p:treeTable.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter6/contextMenuIntegration.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 6

203

Breadcrumb – providing contextual
information about page hierarchy

Breadcrumb is a navigation component that provides contextual information about the page
hierarchy. It allows users to keep track of their locations within the workflow.

In this recipe, we will develop a simple breadcrumb with a handy configuration attribute.

How to do it…
The breadcrumb component is represented as the p:breadCrumb tag with nested menu
items. We will use the same CDI bean as in the Statically and dynamically positioned menus
recipe of this chapter. This is shown in the following code:

<p:breadCrumb>
 <p:menuitem value="PrimeFaces" url="http://primefaces.org"/>
 <p:menuitem value="jQuery" url="http://jquery.com"/>
 <p:menuitem value="Yahoo UI" url="http://yuilibrary.com"/>
 <p:menuitem value="Save"
 actionListener="#{positionedMenuBean.save}"
 update="growl"/>
 <p:menuitem value="Update"
 actionListener="#{positionedMenuBean.update}"
 update="growl"/>
</p:breadCrumb>

A "home page" icon is shown at the root link, but display of text is possible too. The following
code shows this:

<p:breadCrumb homeDisplay="text">
 ...
</p:breadCrumb>

The next image demonstrates these two cases:

Endless Menu Variations

204

How it works…
Single items within p:breadCrumb are defined as p:menuitem. You can either set the url
attribute to navigate to another page or define action/actionListener to invoke a server-
side method.

The appearance of the root link is controlled by the homeDisplay attribute. It is set to the
icon value by default. Setting homeDisplay="text" will display the text instead of the icon.

There's more…
A breadcrumb can be created programmatically as well. This approach is described in the
Creating programmatic menus recipe of this chapter.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter6/breadcrumb.jsf.

SlideMenu – menu in the iPod style
A slide menu displays nested submenus as slides with animation similar to the iPod menu.
A slide menu features the same common behaviors as every PrimeFaces menu. It consists
of (nested) submenus and menu items that can be built declaratively or programmatically by
the model. The main difference from other menu types is a slide animation when displaying
submenus. The positioning of the slide menu is static by default, but it can also be positioned
relative to a trigger that shows the menu.

In this recipe, we will develop a slide menu with a button acting as the trigger. When the user
pushes the button, the menu will be displayed in an overlay.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 6

205

How to do it…
We will take p:commandButton as the trigger. The p:slideMenu tag, representing a slide
menu, has a trigger attribute that points to the ID of p:commandButton. The slide menu
consists of submenus (slides) with menu items sending AJAX, non-AJAX (ajax="false"), and
GET requests (url is not null). The following code shows this:

<p:commandButton id="btn" value="Show Slide Menu" type="button"/>

<p:slideMenu overlay="true" trigger="btn"
 my="left top" at="left bottom" style="width:190px;">
 <p:submenu label="CRUD Operations" icon="ui-icon-play">
 <p:menuitem value="Save"
 actionListener="#{slideMenuBean.save}"
 icon="ui-icon-disk" update="growl"/>
 <p:menuitem value="Update"
 actionListener="#{slideMenuBean.update}"
 icon="ui-icon-arrowrefresh-1-w" update="growl"/>
 <p:menuitem value="Delete"
 actionListener="#{slideMenuBean.delete}"
 icon="ui-icon-trash" update="growl"/>
 </p:submenu>
 <p:submenu label="Other Operations" icon="ui-icon-play">
 <p:menuitem value="Do something"
 actionListener="#{slideMenuBean.doSomething}"
 ajax="false" icon="ui-icon-check"/>
 <p:menuitem value="Go Home" action="/views/home"
 ajax="false" icon="ui-icon-home"/>
 </p:submenu>

 <p:submenu label="JSF Links" icon="ui-icon-extlink">
 <p:submenu label="JSF Components">
 <p:menuitem value="PrimeFaces" url="http://primefaces.org"/>
 <p:menuitem value="PrimeFaces Extensions"
 url="http://primefaces-extensions.github.io"/>
 <p:menuitem value="RichFaces" url=
 "http://jboss.org/richfaces"/>
 </p:submenu>
 <p:menuitem value="JSF API"
 url="http://javaserverfaces.java.net/nonav/docs/2.2"/>
 </p:submenu>
</p:slideMenu>

Endless Menu Variations

206

The following screenshot shows how the slide menu looks when it is open (the left part
of the screenshot) and after a click on the Other Operations menu item (the right part of
the screenshot):

How it works…
By default, the slideMenu component is positioned statically in the normal page flow. To
position it dynamically, relative to a trigger component, we need to set overlay="true".
The preceding sample attaches a slideMenu component to the button so that whenever the
button is clicked, the menu will display itself in an overlay. The dynamic menu's position can
be controlled by the my and at attributes. The my attribute specifies a corner of the menu to
align with the trigger element, and the at attribute specifies a corner of the trigger to align
with the menu element.

There's more…
There is also a triggerEvent attribute. It defines an event name for the trigger that will
show the dynamically positioned menu. The default value is click.

SlideMenu can also be opened manually by the client-side API. The menu's widget exposes
the show() and hide() methods to show and hide, respectively, the overlay menu.

See also
See the Statically and dynamically positioned menus recipe in this chapter to get some basic
knowledge of statically and dynamically positioned menus

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter6/slideMenu.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 6

207

TieredMenu – submenus in nested overlays
A tiered menu displays nested submenus as overlays. A tiered menu features the same
common behaviors as every PrimeFaces menu—it consists of (nested) submenus and menu
items that can be built declaratively or programmatically by modeling. The main difference
from the default menu described in the Statically and dynamically positioned menus recipe
of this chapter is the part about displaying with overlays. The positioning of the tiered menu is
static by default, but it can also be positioned relative to a trigger that shows the menu.

In this recipe, we will develop static and dynamic tiered menus. A dynamic tiered menu will
be shown after a click on a button acting as the trigger. Furthermore, you will learn about the
autodisplay feature.

How to do it…
The following code listing demonstrates three tiered menus: static (default), static without
the autodisplay feature, and dynamic. As the trigger for the dynamic menu, we will take a
p:commandButton tag. The p:tieredMenu tag, representing a tiered menu, has a trigger
attribute that points to the ID of p:commandButton. Here's the code that shows this:

<p:growl id="growl"/>

<h3>Default TieredMenu</h3>

<p:tieredMenu style="width:190px;">
 <ui:include src="/views/chapter6/tieredMenuStructure.xhtml"/>
</p:tieredMenu>

<h3>TieredMenu without autoDisplay</h3>

<p:tieredMenu autoDisplay="false" style="width:190px;">
 <ui:include src="/views/chapter6/tieredMenuStructure.xhtml"/>
</p:tieredMenu>

<h3>TieredMenu on Overlay</h3>

<p:commandButton id="btn" value="Show Tiered Menu" type="button"/>

<p:tieredMenu overlay="true" trigger="btn"
 my="left top" at="left bottom" style="width:190px;">
 <ui:include src="/views/chapter6/tieredMenuStructure.xhtml"/>
</p:tieredMenu>

Endless Menu Variations

208

The tiered menu consists of submenus with menu items sending AJAX, non-AJAX
(ajax="false"), and GET requests (url is not null). The following code shows this:

<p:submenu label="CRUD Operations" icon="ui-icon-play">
 <p:menuitem value="Save"
 actionListener="#{tieredMenuBean.save}"
 icon="ui-icon-disk" update="growl"/>
 <p:menuitem value="Update"
 actionListener="#{tieredMenuBean.update}"
 icon="ui-icon-arrowrefresh-1-w" update="growl"/>
 <p:menuitem value="Delete"
 actionListener="#{tieredMenuBean.delete}"
 icon="ui-icon-trash" update="growl"/>
</p:submenu>
<p:submenu label="Other Operations" icon="ui-icon-play">
 <p:menuitem value="Do something"
 actionListener="#{tieredMenuBean.doSomething}"
 ajax="false" icon="ui-icon-check"/>
 <p:menuitem value="Go Home" action="/views/home"
 ajax="false" icon="ui-icon-home"/>
</p:submenu>
<p:submenu label="JSF Links" icon="ui-icon-extlink">
 <p:submenu label="JSF Components">
 <p:menuitem value="PrimeFaces" url="http://primefaces.org"/>
 <p:menuitem value="PrimeFaces Extensions"
 url="http://primefaces-extensions.github.io"/>
 <p:menuitem value="RichFaces"
 url="http://jboss.org/richfaces"/>
 </p:submenu>
 <p:menuitem value="JSF API"
 url="http://javaserverfaces.java.net/nonav/docs/2.2"/>
</p:submenu>

The following screenshot shows how the static tiered menu looks when we open
nested submenus:

Chapter 6

209

How it works…
By default, the tieredMenu component is positioned statically in a normal page flow. There
are two modes: with and without the autodisplay feature. If autoDisplay is set to true
(default), the content of the submenu is displayed when the mouse is over it. A menu with
autoDisplay set to false requires a click on a submenu to display its menu items.

A dynamically positioned menu is defined by setting overlay to true. The preceding sample
attaches a tieredMenu component to the button so that whenever the button is clicked on,
the menu will display itself in an overlay. A dynamic menu position can be controlled by the my
and at attributes, where my specifies a corner of the menu to align with the trigger element
and at specifies a corner of the trigger to align with the menu element.

There's more…
There is also a triggerEvent attribute. It defines an event name for the trigger that will
show the dynamically positioned menu. The default value is click.

A tieredMenu can also be opened manually by the client-side API. The menu's widget
exposes the show() and hide() methods to show or hide the overlay menu.

See also
See the Statically and dynamically positioned menus recipe in this chapter to get some basic
knowledge of statically and dynamically positioned menus

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter6/tieredMenu.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Endless Menu Variations

210

MegaMenu – the multicolumn menu
A mega menu, sometimes also called a mega drop-down menu, is designed to enhance
the scannability and categorization of its contents. PrimeFaces' mega menu is a horizontal
navigation component that displays menu items grouped in submenus. The main advantage
of such a kind of menu is that everything is visible at once—no scrolling is required.

In this recipe, we will design and implement a mega menu for an imaginary online shop
selling clothes.

How to do it…
The layout of the megaMenu component is grid-based. That means root items require
columns as children to define each section in a grid. Root items are direct submenus
under p:megaMenu.

We will design four root items. The first one will show women's clothing, the second one will
show men's clothing, the third one will show a color guide (pictures with available clothing
colors), and the last one will show the shopping cart in a dialog. The following code shows this:

<p:megaMenu>
 <p:submenu label="Women's Clothing" icon="ui-icon-person">
 <p:column>
 <p:submenu label="Shoes">
 <p:menuitem value="Size UK 3-5" url="#"/>
 ...
 </p:submenu>
 <p:submenu label="Jeans">
 <p:menuitem value="Curve" url="#"/>
 ...
 </p:submenu>
 <p:submenu label="Nightwear">
 <p:menuitem value="Calvin Klein" url="#"/>
 ...
 </p:submenu>
 </p:column>
 <p:column>
 <p:submenu label="Leggings">
 <p:menuitem value="Long Sleeve" url="#"/>
 ...
 </p:submenu>

Chapter 6

211

 <p:submenu label="Skirts">
 <p:menuitem value="American Apparel" url="#"/>
 ...
 </p:submenu>
 </p:column>
 </p:submenu>

 <p:submenu label="Men's Clothing" icon="ui-icon-person">
 <p:column>
 <p:submenu label="Shoes">
 <p:menuitem value="Size UK 3-5" url="#"/>
 ...
 </p:submenu>
 <p:submenu label="T-Shirts">
 <p:menuitem value="Addict" url="#"/>
 ...
 </p:submenu>
 </p:column>
 <p:column>
 <p:submenu label="Leather Jackets">
 <p:menuitem value="Diesel" url="#"/>
 ...
 </p:submenu>
 <p:submenu label="Jeans">
 <p:menuitem value="Curve" url="#"/>
 ...
 </p:submenu>
 <p:submenu label="Swimwear">
 <p:menuitem value="Boss Black" url="#"/>
 ...
 </p:submenu>
 </p:column>
 </p:submenu>

 <p:submenu label="Color Guide" icon="ui-icon-image">
 <p:column>
 <h:graphicImage library="images" name="colors.gif"/>
 </p:column>
 </p:submenu>

 <p:menuitem value="Shopping Cart"
 onclick="PF('wdgtShoppingCart').show();"

Endless Menu Variations

212

 update="shoppingCartGrp" icon="ui-icon-cart"/>
</p:megaMenu>

<p:dialog id="shoppingCart" header="Shopping Cart"
 widgetVar="wdgtShoppingCart">
 <h:panelGroup id="shoppingCartGrp" layout="block"
 style="padding:20px;">
 <h:outputText value="#{megaMenuBean.items}"/>
 </h:panelGroup>
 <p:commandButton value="Close" type="button"
 onclick="PF('wdgtShoppingCart').hide();"/>
</p:dialog>

The following screenshot shows the designed mega menu:

How it works…
Direct submenus of p:megaMenu require p:column to be represented in a multicolumn
grid. Not only submenus, but also any content can be placed inside columns. In the preceding
example, we can see <h:graphicImage library="images" name="colors.gif"/>
under p:column.

Chapter 6

213

Except for p:column, the structure of p:megaMenu is the same for every PrimeFaces'
menu component—it consists of submenus and menu items. A menu item as a root item is
supported as well. In the designed example, it is the Shopping Cart menu item:

There's more…
MegaMenu has the autodisplay feature. This feature defines whether submenus will
be displayed on a mouseover event or not. If autoDisplay is set to true (default),
the content of the submenu is displayed when the mouse is over it. A menu with the
autoDisplay="false" setting requires a click on a submenu to display its menu items.

MegaMenu is horizontal by default. If you want a vertically oriented menu for root menu items,
change its orientation as <p:megaMenu orientation="vertical">. The next screenshot
shows a vertical mega menu:

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter6/megaMenu.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Endless Menu Variations

214

PanelMenu – hybrid of accordion and tree
A panel menu is a hybrid of the accordion and tree components used for navigation and
action. It renders a vertical menu structure with support for nested menu items.

In this recipe, we will develop a panel menu with three top submenus acting as accordion tabs
and nested menu items with a tree-like look and feel.

How to do it…
A panel menu is rendered by the p:panelMenu tag. Top-level submenus define accordion-
like tabs. A click on such a tab expands or collapses the subordinated content. The menu
structure is similar to every PrimeFaces' menu component—it consists of submenus and menu
items. Menu items can call actions, action listeners, or trigger navigations. The following code
shows this:

<p:panelMenu style="width:200px">
 <p:submenu label="Ajax Operations">
 <p:menuitem value="Save"
 actionListener="#{panelMenuBean.save}"
 icon="ui-icon-disk"/>
 <p:menuitem value="Update"
 actionListener="#{panelMenuBean.update}"
 icon="ui-icon-arrowrefresh-1-w"/>
 </p:submenu>
 <p:submenu label="Non-Ajax Operations">
 <p:menuitem value="Delete"
 actionListener="#{panelMenuBean.delete}"
 ajax="false" icon="ui-icon-close"/>
 </p:submenu>
 <p:separator/>
 <p:submenu label="Navigations">
 <p:submenu label="Links" icon="ui-icon-extlink">
 <p:submenu label="Prime Products">
 <p:menuitem value="Prime UI" icon="ui-icon-home"
 url="http://primefaces.org/primeui"/>
 <p:menuitem value="Prime Mobile" icon="ui-icon-signal"
 url="http://primefaces.org/showcase/mobile/
 index.xhtml"/>
 </p:submenu>
 <p:submenu label="Prime Resources">
 <p:menuitem value="Docs" icon="ui-icon-document"
 url="http://primefaces.org/documentation.html"/>

Chapter 6

215

 <p:menuitem value="Download" icon="ui-icon-arrowthick-1-s"
 url="http://primefaces.org/downloads.html"/>
 </p:submenu>
 </p:submenu>
 </p:submenu>
</p:panelMenu>

The result of the preceding code listing is shown in the following screenshot. This screenshot
demonstrates the same menu in two states—completely collapsed on the left-hand side and
completely expanded on the right-hand side.

How it works…
We see that direct children of p:panelMenu are normally several p:submenu tags with
labels describing the accordion-like tabs. Tabs can be styled by the .ui-panelmenu h3
selector. In this recipe, we will use the following definition:

.ui-panelmenu h3 {
 font-size: 1em;
}

Endless Menu Variations

216

As the menu uses menu items, it is easy to invoke actions or action listeners with or without
AJAX (ajax="false") as well as navigate. Navigation means that a GET request causes
a switch to another page. This is always a full page refresh and only works when the url
attribute on p:menuitem is set. In this case, the menu item is rendered as a normal HTML
link element. If the url attribute is missing, only POST requests (with AJAX or without) can
be sent.

There's more…
The panelMenu component keeps the open or closed state of submenus across web pages.
The state is saved in cookies. This means that when the user enters the same page again,
panelMenu will be displayed in the same state as when he/she had last interacted with it.
This feature is pretty useful, but sometimes, it is not desirable, for example, when multiple
users with different accounts work on the same PC. In this case, we can either call the widget
method clearState() (a client-side solution) or clear the cookie on logging out in the
response (a server-side solution). The cookie name is panelMenu-<id>, where <id> is the
client ID of p:panelMenu.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter6/panelMenu.jsf.

MenuButton – multiple items in a popup
A menu button is a button that displays multiple menu items in a popup when it is clicked on
or pressed. A popup is an absolutely positioned element (overlay) in terms of CSS.

In this recipe, we will learn the structure of p:menuButton—a JSF tag for the menuButton
component.

How to do it…
The p:menuButton tag incorporates one or more menu items. The following code snippet
demonstrates four menu items that send AJAX and GET requests:

<p:menuButton value="CRUD Operations" iconPos="right">
 <p:menuitem value="Save"
 actionListener="#{menuButtonBean.save}"

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 6

217

 icon="ui-icon-disk" update="growl"/>
 <p:menuitem value="Update"
 actionListener="#{menuButtonBean.update}"
 icon="ui-icon-arrowrefresh-1-w" update="growl"/>
 <p:menuitem value="Delete"
 actionListener="#{menuButtonBean.delete}"
 icon="ui-icon-close" update="growl"/>
 <p:separator/>
 <p:menuitem value="PrimeFaces" url="http://primefaces.org"/>
</p:menuButton>

The open menu looks as shown in the screenshot:

How it works…
Only p:menuitem and p:separator are allowed as child tags by p:menuButton. The
iconPos attribute defines the position of the displayed icon. The valid values are left
(default) and right. We set the right value in the example.

There's more…
There is also the appendTo attribute that defines the element that the pop-up menu is
appended to. The value of this attribute is a search expression in terms of Search Expression
Framework described in Chapter 1, Getting Started with PrimeFaces. A missing value means
that the pop-up menu is appended to the document body. The document body is a good place
for any kind of overlays when working with layouts such as p:layout.

Menus can be created programmatically as well. This approach is described in the Creating
programmatic menus recipe of this chapter.

Endless Menu Variations

218

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter6/menuButton.jsf.

Accessing commands via menubar
Menubar is a horizontal navigation component with drop-down menus that are displayed
on mouseover or on clicking. Menubar features the same common behaviors as every
PrimeFaces menu. It consists of (nested) submenus, menu items, and custom content
that can be built declaratively or programmatically by modeling.

In this recipe, we will build a declarative menu bar with various commands as nested and
direct menu items. The possibility of including any custom content, such as input, select,
and button components, will be illustrated as well.

How to do it…
We will create a menu bar as shown in the following screenshot.

In the screenshot, the submenu Create New contains three menu items, Folder, Video
File, and HTML File. The following complete code listing shows p:menubar with submenus
p:submenu and menu items p:menuitem inside. An input component and a button
component are included via f:facet with name="options" as well. The following code
shows this:

<p:growl id="growl"/>

<p:menubar>
 <p:submenu label="File" icon="ui-icon-document">

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 6

219

 <p:submenu label="Create New">
 <p:menuitem value="Folder"
 actionListener="#{menubarBean.createFolder}"
 icon="ui-icon-folder-collapsed" update="growl"/>
 <p:menuitem value="Video File"
 actionListener="#{menubarBean.createVideo}"
 icon="ui-icon-video" update="growl"/>
 <p:menuitem value="HTML File"
 actionListener="#{menubarBean.createHTML}"
 icon="ui-icon-script" update="growl"/>
 </p:submenu>
 <p:separator/>
 <p:menuitem value="Quit" url="#"/>
 </p:submenu>
 <p:submenu label="Edit" icon="ui-icon-pencil">
 <p:menuitem value="Cut" actionListener="#{menubarBean.cut}"
 icon="ui-icon-scissors" update="growl"/>
 <p:menuitem value="Copy" actionListener="#{menubarBean.copy}"
 icon="ui-icon-copy" update="growl"/>
 <p:menuitem value="Paste" actionListener="#
 {menubarBean.paste}"
 icon="ui-icon-clipboard" update="growl"/>
 </p:submenu>
 <p:submenu label="View" icon="ui-icon-pencil">
 <p:menuitem value="Zoom In"
 actionListener="#{menubarBean.zoomIn}"
 icon="ui-icon-zoomin" update="growl"/>
 <p:menuitem value="Zoom Out"
 actionListener="#{menubarBean.zoomOut}"
 icon="ui-icon-zoomout" update="growl"/>
 <p:submenu label="View Mode" icon="ui-icon-search">
 <p:menuitem value="View Icons"
 actionListener="#{menubarBean.viewIcons}"
 update="growl"/>
 <p:menuitem value="View Compact"
 actionListener="#{menubarBean.viewCompact}"
 update="growl"/>
 <p:menuitem value="View Details"
 actionListener="#{menubarBean.viewDetails}"
 update="growl"/>
 </p:submenu>
 </p:submenu>

Endless Menu Variations

220

 <p:menuitem value="Info" action="#{menubarBean.info}"
 ajax="false" icon="ui-icon-help"/>

 <f:facet name="options">
 <p:inputText style="margin:0 10px 0 10px; vertical-
 align:middle;"
 placeholder="Search"/>
 <p:commandButton value="Logout" type="button"
 icon="ui-icon-extlink"/>
 </f:facet>
</p:menubar>

<p:dialog visible="#{flash.helpVisible}" header="Info Dialog">
 PrimeFaces Menubar brings desktop menubar to JSF
 applications.

 Combine submenus and menu items to execute ajax, non-ajax and
 navigations.
</p:dialog>

Menubar can also support menu items as root items. In the developed example, this is
the Info menu item. A click on Info shows an information dialog. The following screenshot
shows this:

How it works…
Submenus and menu items as child components are required to compose a menu bar. A
menu bar with a higher depth consists of nested submenus in parent submenus. Any custom
content within a menubar should be placed in <f:facet name="options">.

Chapter 6

221

The info dialog is only visible when the visible="#{flash.helpVisible}" EL expression
returns true. The non-AJAX info action uses the JSF FlashScope variable to pass the value
(true) of the helpVisible variable to the same page with a full-page request. The following
code shows this:

public String info() {
 FacesContext.getCurrentInstance().getExternalContext().
 getFlash().put("helpVisible", true);

 return "/views/chapter6/menubar.xhtml";
}

There's more…
The autoDisplay attribute featured by p:menubar defines whether the first level of
submenus will be displayed on mouseover or on click. When it is set to false (default), a
click event is required to display the first level of submenus.

The toggleEvent attribute specifies the event to toggle the submenus. The valid values are
hover (mouseover) and click. If it is not set, as in this example, the submenus are toggled
on hover.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter6/menubar.jsf.

Displaying checkboxes in
selectCheckboxMenu

A multiselect input component, SelectCheckboxMenu is based on checkboxes in an
overlay menu. Although it is an input component, it is presented to users as a menu so that it
makes sense to handle selectCheckboxMenu in this chapter.

In this recipe, we will implement a selectCheckboxMenu component in both simple and
advanced forms. In the advanced case, we will learn about the built-in filtering feature. After
submitting the selected items, they will be shown in a dialog.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Endless Menu Variations

222

How to do it…
The usage of p:selectCheckboxMenu is the same as the usage of
p:selectManyCheckbox. Checkbox items can be attached via several f:selectItem tags
or one f:selectItems tag. In the following simple example, we will use f:selectItems to
display colors:

<p:selectCheckboxMenu label="Colors"
 value="#{checkboxMenuBean.selectedColors}">
 <f:selectItems value="#{checkboxMenuBean.colors}"/>
</p:selectCheckboxMenu>

The label attribute defines text shown to the user. The advanced p:selectCheckboxMenu
component comes with a filtering feature. The feature is activated by setting filter to true.
The following code shows this:

<p:selectCheckboxMenu label="Languages" filter="true"
 value="#{checkboxMenuBean.selectedLanguages}">
 <f:selectItems value="#{checkboxMenuBean.languages}"/>
 <f:converter
 converterId="org.primefaces.cookbook.converter.
 LocaleConverter"/>
</p:selectCheckboxMenu>

<p:commandButton value="Submit" update="display"
 oncomplete="PF('dlg').show()"
 style="margin-top:20px; display:block;"/>

<p:dialog header="Selected colors and languages" widgetVar="dlg">
 <h:panelGroup id="display">
 <p:dataList value="#{checkboxMenuBean.selectedColors}"
 var="color">
 #{color}
 </p:dataList>
 <p:dataList value="#{checkboxMenuBean.selectedLanguages}"
 var="lang">
 #{lang}
 </p:dataList>
 </h:panelGroup>
</p:dialog>

Chapter 6

223

The following screenshot shows the simple and advanced cases as well as a dialog with the
selected values:

How it works…
The available checkbox items are created in the CheckboxMenuBean CDI bean. Items
for colors are stored in a HashMap class, and items for languages are stored in a list of
SelectItem objects. The following code shows this:

@Named
@ViewScoped
public class CheckboxMenu implements Serializable {

 private List<SelectItem> languages;
 private Map<String, String> color;
 private List<Locale> selectedLanguages;
 private List<String> selectedColors;

 public List<SelectItem> getLanguages() {
 if (languages == null) {
 languages = new ArrayList<SelectItem>();

Endless Menu Variations

224

 languages.add(
 new SelectItem(new Locale("de"), "German"));
 ...
 }

 return languages;
 }

 public Map<String, String> getColors() {
 if (color == null) {
 color = new HashMap<String, String>();
 color.put("Red", "Red");
 ...
 }

 return color;
 }

 // getters / setters
 ...
}

After submitting the form, the selected items get set in the selectedColors and
selectedLanguages variables, respectively. Their values are displayed as lists in the dialog.

There's more…
There are various configuration settings for the filter functionality in SelectCheckboxMenu.
They are tag attributes described in the following table:

Selector Applies

filterMatchMode

This is the match mode for filtering. The valid values are
startsWith, contains, endsWith, and custom (if
the value for filterFunction exists). The default value
is startsWith.

filterFunction This is the client-side function to use in custom filtering.

caseSensitive
This defines whether filtering would be case sensitive. The
default value is false.

Chapter 6

225

An example of filterMatchMode="custom" is a custom JavaScript function that leverages
fuzzy matching (http://dustindiaz.com/autocomplete-fuzzy-matching). The
following code shows this:

function customFilter(itemLabel, filterValue) {
 var reg = new RegExp(filterValue.split('').join('\\w*'), 'i');
 if (itemLabel.match(reg)) {
 // return true to accept
 return true;
 }

 // return false to reject
 return false;
}

This function can be used by setting filterFunction="customFilter".

In the advanced example, we used LocaleConverter—a JSF converter—to convert java.
util.Locale to String and vice versa. The LocaleConverter class can be found
on GitHub (https://github.com/ova2/primefaces-cookbook/tree/second-
edition) in the org.primefaces.cookbook.converter package.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter6/checkboxMenu.jsf.

http://dustindiaz.com/autocomplete-fuzzy-matching
https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

7
Working with Files,

Images, and Multimedia

In this chapter, we will cover the following topics:

ff Basic, automatic, drag and drop, and multiple file uploading

ff Downloading files

ff Cropping images

ff Creating dynamic image streaming programmatically

ff Displaying a collection of images with galleria

ff Displaying a collection of images with imageSwitch

ff Displaying a collection of images with contentFlow

ff Embedding the multimedia content in JSF pages

ff Capturing images with photoCam

Working with Files, Images, and Multimedia

228

Introduction
In this chapter, we will cover the management of file operations, such as uploading and
downloading, and image operations, such as capturing, cropping, and showing a collection
of images with various components.

Basic, automatic, drag and drop, and
multiple file uploading

The fileUpload component provides a file upload mechanism with enhanced features
compared to the basic HTML <input type="file"> file upload definition. The component
provides an HTML5-powered UI with capabilities such as drag-and-drop, uploading multiple
files, and progress tracking; it also supports legacy browsers (for IE 8+) for compatibility by
degrading gracefully.

How to do it…
A basic definition for the file upload would be as follows:

<h:form enctype="multipart/form-data">
 <p:fileUpload value="#{fileBean.file}" mode="simple" />
 <p:commandButton value="Upload" ajax="false"/>
</h:form>

The fileUpload component will be rendered as in the following image with a Choose File
button and a text button stating no file selected:

In the simple mode, PrimeFaces renders the <input type="file">
HTML element. In this case, the no file selected label that is seen right
next to the file picker button is a browser-centric one, and not applicable
for internationalization.

Since the commandButton will not work in AJAX mode, the selected file will be uploaded
to the server and set to file property in the backing bean, which is defined as org.
primefaces.model.UploadedFile.

Chapter 7

229

How it works…
For the upload mechanism, PrimeFaces offers support for both the Servlet 3.X and Commons
Fileupload implementations. It does the selection seamlessly by detecting the existence of
JSF 2.2 or Commons FileUpload APIs respectively on the classpath. We can also force it to
use our API selection with a context parameter configuration in web.xml.

<context-param>
 <param-name>primefaces.UPLOADER</param-name>
 <param-value>auto | native | commons</param-value>
</context-param>

The value of the parameter could be as follows:

ff auto

ff native

ff commons

The default value is auto and PrimeFaces tries to detect the best method for uploading. If
JSF 2.2 runtime gets detected on the classpath, the native uploading mechanism shipping
with the Servlet 3.x is used. Otherwise, the commons file-upload mechanism is used.

With native, the native uploading mechanism shipping with Servlet 3.x is used. If the
version of JSF runtime is below 2.2, an exception gets thrown.

With commons, the commons file-upload mechanism is used. This is more appropriate to
use with the Servlet 2.5 environments where Java EE5 is being used. With this configuration,
PrimeFaces FileUpload Filter needs to be defined in the web.xml deployment descriptor file.

<filter>
 <filter-name>PrimeFaces FileUpload Filter</filter-name>
 <filter-class>
 org.primefaces.webapp.filter.FileUploadFilter
 </filter-class>
</filter>
<filter-mapping>
 <filter-name>PrimeFaces FileUpload Filter</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
</filter-mapping>

Working with Files, Images, and Multimedia

230

The filter definition could either be done by matching filter-mapping with the name of the
FacesServlet name, or by defining its URL pattern. The filter has two default settings which
are the threshold size for the uploaded file and the location of the uploaded file.

<filter>
 <filter-name>PrimeFaces FileUpload Filter</filter-name>
 <filter-class>
 org.primefaces.webapp.filter.FileUploadFilter
 </filter-class>
 <init-param>
 <param-name>thresholdSize</param-name>
 <param-value>51200</param-value>
 </init-param>
 <init-param>
 <param-name>uploadDirectory</param-name>
 <param-value>/Users/primefaces/temp</param-value>
 </init-param>
</filter>

The thresholdSize parameter sets the minimum size in bytes for the files that will be
written directly to the disk, and the uploadDirectory parameter sets the directory used
to temporarily store those files. The files will be stored in memory if they are smaller than the
thresholdSize parameter. If the size is exceeded, they will be stored in the place specified
by uploadDirectory, which is System.getProperty("java.io.tmpdir") by default.

In order to use the commons upload mechanism, dependencies for commons-fileupload
and commons-io should be declared in the project as follows:

<dependency>
 <groupId>commons-fileupload</groupId>
 <artifactId>commons-fileupload</artifactId>
 <version>1.3</version>
</dependency>
<dependency>
 <groupId>commons-io</groupId>
 <artifactId>commons-io</artifactId>
 <version>2.2</version>
</dependency>

The versions listed above are compatible with PrimeFaces 5.2 that has been officially
announced. Please check for possible new releases on the commons-fileupload and
commons-io projects at http://commons.apache.org/fileupload/download_
fileupload.cgi and http://commons.apache.org/io/download_io.cgi
respectively.

http://commons.apache.org/fileupload/download_fileupload.cgi
http://commons.apache.org/fileupload/download_fileupload.cgi
http://commons.apache.org/io/download_io.cgi

Chapter 7

231

There's more…
The fileUpload component provides the mode attribute, which can be either simple or
advanced; it makes the component work in the simple mode like a normal HTML upload
component, or in an advanced mode with HTML5 features. The default mode of the component
is advanced. A definition and visual for the advanced file upload will be as follows:

<p:fileUpload value="#{fileBean.file}"
 fileUploadListener="#{fileBean.handleFileUpload}"
 update="growl" />

The visual of the fileUpload in advanced mode will be as follows:

An image selected for upload will be previewed in the component as given next. The width of
the previewed image can be adjusted with the previewWidth attribute.

Starting with the PrimeFaces version 5.2, image preview is also
applicable without the case sensitivity of the file extensions.

Accessing files with a listener
Defining a file upload listener is a way to access the uploaded files. The definition of the
handleFileUpload method is given next. The method receives an instance of org.
primefaces.event.FileUploadEvent as a parameter.

public void handleFileUpload(FileUploadEvent event) {
 UploadedFile file = event.getFile();
 MessageUtil.addInfoMessage("upload.successful",
 file.getFileName() + " is uploaded.");
}

Working with Files, Images, and Multimedia

232

Texts for the upload and cancel buttons can be customized with the uploadLabel and
cancelLabel attributes. The showButtons attribute enables/disables the visibility of the
upload and cancel buttons in the button bar of the component. The auto attribute enables
automatic file upload. A file will be uploaded automatically when it is selected or dragged-and-
dropped to the component.

Restricting file upload by type
The fileUpload component allows us to restrict the file selection only to the types
configured with the allowTypes attribute. The allowTypes attribute accepts a JavaScript
regular expression that will be used to match against the name of the file to be uploaded. The
following definition only accepts image files with an extension of gif, jpg, jpeg, or png:

<p:fileUpload fileUploadListener="#{fileBean.handleFileUpload}"
 allowTypes="/(\.|\/)(gif|jpe?g|png)$/" />

When an incorrect type of file is selected or dragged-and-dropped onto the fileUpload
component, the component renders an error message to alert the user to the wrong file type.
The following image shows the error message that occurred when a file with type flv was
selected for upload:

The error message Invalid file type can also be customized with the invalidFileMessage
attribute.

Specifying allowTypes only does a check on the client side, so for security
concerns, it's advisable to implement a server-side control for an additional
file type check, such as verifying the type of the file by checking it against its
content. Frameworks like simplemagic, http://256.com/sources/
simplemagic, can be used to achieve this.

Limiting maximum size
With the sizeLimit attribute, it's possible to restrict the maximum file upload size. The
following definition limits the file size to a maximum of 10 KB:

<p:fileUpload fileUploadListener="#{fileBean.handleFileUpload}"
 sizeLimit="10240" />

http://256.com/sources/simplemagic
http://256.com/sources/simplemagic

Chapter 7

233

The following image shows the error message that occurred when a file with size 2.6 MB was
selected for upload:

The error message Invalid file size can be customized with the invalidSizeMessage
attribute.

As of version 4.0, the default value for sizeLimit is set to
Long.MAX_VALUE, which is 263-1.

Uploading multiple files
By default, selecting multiple files for uploading, via browsing after clicking on the Choose
button, is not supported by the component. Setting the multiple attribute to true enables
multiple upload for the advanced version of the component. In the multiple mode, files get
uploaded in the selected order and the method bound with the fileUploadListener
attribute gets called for each uploaded file.

<p:fileUpload id="multipleUpload" multiple="true" update="growl"
 fileUploadListener="#{fileBean.handleFileUpload}" />

There was a known limitation of using multiple advanced file upload
components in the same form. This limitation has been eliminated,
starting with the PrimeFaces version 4.0.

Handling upload with client-side callbacks
The fileUpload component supports hooking custom JavaScript methods when the upload
process starts and ends. The following code snippet shows the upload component with the
onstart and oncomplete attributes showing a progress dialog box while doing the upload:

<p:fileUpload fileUploadListener="#{fileBean.handleFileUpload}"
 onstart="showStatus()" oncomplete="hideStatus()" />

Working with Files, Images, and Multimedia

234

The showStatus and hideStatus methods are two simple methods for showing and hiding
a dialog box component, which is also a PrimeFaces component.

<script type="text/javascript">
 function showStatus() {
 PF('statusDialog').show();
 }
 function hideStatus() {
 PF('statusDialog').hide();
 }
</script>

<p:dialog modal="true" widgetVar="statusDialog" header="Status"
 draggable="false" closable="false">
 <p:graphicImage value="/resources/images/ajax-loader.gif" />
</p:dialog>

Uploading files with drag-and-drop
In supported browsers, a file can also be dragged-and-dropped for uploading with
fileUpload, and the component itself will be the drop zone. The dragDropSupport
attribute defines whether or not to enable drag-and-drop from the file system. By default, the
value of this attribute is true. In order to provide drag-and-drop support, the fileUpload
component should be in advanced mode, which is also the default mode. The definition of the
fileUpload component for uploading files with drag-and-drop would be as follows:

<p:fileUpload id="upload" value="#{fileBean.file}"
 dragDropSupport="true"
 update="growl"
 fileUploadListener="#{fileBean.handleFileUpload}" />

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, and build and deploy the WAR file on every Servlet
3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available at the URLs listed in the following table:

Showcase example URL
Basic and advanced
file upload

http://localhost:8080/primefaces-cookbook/
views/chapter7/fileUpload.jsf

Multiple file upload http://localhost:8080/primefaces-cookbook/
views/chapter7/fileUploadMultiple.jsf

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 7

235

Showcase example URL
Filtering file types for
file upload

http://localhost:8080/primefaces-cookbook/
views/chapter7/fileUploadFiltering.jsf

Limiting file size for
file upload

http://localhost:8080/primefaces-cookbook/
views/chapter7/fileUploadSizeLimit.jsf

Client-side callback
for file upload

http://localhost:8080/primefaces-cookbook/
views/chapter7/fileUploadCallback.

jsf

Uploading files with
drag-and-drop

http://localhost:8080/pf-cookbook/views/
chapter7/fileUploadDND.jsf

See also
For details about the MessageUtil class, see the Internationalization (i18n) and Localization
(L10n) recipe in Chapter 1, Getting Started with PrimeFaces.

Downloading files
The fileDownload component can be used to stream binary contents, such as files
to requesting browsers, by wrapping the components with any JSF command component,
such as a button or link.

How to do it…
The value of the fileDownload component should be an instance of org.primefaces.
model.StreamedContent. The concrete class org.primefaces.model.
DefaultStreamedContent could be used in your implementation, which is also suggested
by us.

The following is the backing bean implementation for the file download:

public class FileBean implements Serializable {
 private StreamedContent file;

 public FileBean() {
 InputStream stream = this.getClass().
 getResourceAsStream("/chapter7/PFSamplePDF.pdf");

Working with Files, Images, and Multimedia

236

 file = new DefaultStreamedContent(stream,
 "application/pdf", "PFSample.pdf");
 }

 public StreamedContent getFile() {
 return file;
 }

 public StreamedContent getDownloadFile() {
 return downloadFile;
 }
}

The fileDownload component is wrapped by commandButton. The definition is given
as follows:

<p:commandButton value="Download" ajax="false">
 <p:fileDownload value="#{fileBean.file}" />
</p:commandButton>

Since the file download progress is non-AJAX, the ajax attribute for
PrimeFaces command components that are used for wrapping the
fileDownload component should be set to false.

There's more…
By default, the disposition of the downloadable content will be done with a download dialog
box, which is the attachment mode, but setting the contextDisposition attribute to
inline will make the browser try to open the file within itself without any prompt.

Content disposition is not part of the HTTP standard, but it's widely
adopted by the browsers.

Monitoring download status
File download is a non-AJAX process. So, in order to monitor the status, PrimeFaces provides
the client-side monitorDownload method since we cannot use the <p:ajaxStatus>
component for monitoring purposes. The method can be bound to an onclick event of a
command component, as seen in the following code snippet:

<h:commandLink onclick="PrimeFaces.monitorDownload(showStatus,
 hideStatus)">

Chapter 7

237

 <p:graphicImage
 value="/resources/images/download/fileDownload.png" />
 <p:fileDownload value="#{fileBean.downloadFile}" />
</h:commandLink>

This method will trigger two methods, showStatus and hideStatus, when the download
process occurs.

The showStatus and hideStatus are two simple methods for showing and hiding a dialog
box component. These methods are described in the following code snippet:

<script type="text/javascript">
 function showStatus() {
 statusDialog').show();
 }
 function hideStatus() {
 PF('statusDialog').hide();
 }
</script>

The definition of the dialog box is given as follows:

<p:dialog modal="true" widgetVar="statusDialog" header="Status"
 draggable="false" closable="false">
 <p:graphicImage value="/resources/images/ajax-loader.gif" />
</p:dialog>

File download needs a cookie named primefaces.download for
handling monitoring purposes, so session cookies should be enabled
within the browser for proper usage.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, and build and deploy the WAR file on every Servlet
3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available under http://localhost:8080/pf-cookbook/
views/chapter7/fileDownload.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Working with Files, Images, and Multimedia

238

Cropping images
The imageCropper component provides image-cropping functionality by allowing us to
crop a certain region of an image, which could either be a local image or an external image.
After cropping, a new image is created. It contains the cropped region and it is assigned to a
CroppedImage instance.

How to do it...
The org.primefaces.model.CroppedImage class belongs to the PrimeFaces API, and
the structure of the class is as follows:

public class CroppedImage {
 String originalFilename;
 byte[] bytes;
 int left;
 int top;
 int width;
 int height;
}

A simple definition of the image cropper for cropping a local image would be as shown in the
following code line. The value of the component is bound with an instance of CroppedImage.

<p:imageCropper value="#{imageCropBean.croppedImageSimple}"
 image="/resources/images/crop/primefaces.jpg" />

When hovered over the image, the cursor of the mouse will change to crosshairs for making
the crop region selection. When the region is selected, it will be highlighted with a dashed
canvas and the section left outside the region will be grayed out.

Currently, image cropping is supported on an image provided with a
relative path. Cropping cannot be applied on an image presented by
a graphicImage component.

Chapter 7

239

How it works…
The action method for the actual crop is defined in the following code snippet. This method
retrieves the cropped image and converts it to an instance of the org.primefaces.model.
StreamedContent class to display the image with the p:graphicImage component.

StreamedContent graphicText;

public String cropSimple() throws IOException {
 graphicText = new DefaultStreamedContent(new
 ByteArrayInputStream(croppedImage.getBytes()));
 return null;
}

Then the cropped image could be easily displayed by using the following code snippet:

<p:commandButton value="Crop" action="#{imageCropBean.cropSimple}"
 update="localCroppedImage"/>

The graphicText property created within the cropSimple method is an instance of
StreamedContent, and it will be visualized with the <p:graphicImage> component.

The backing bean containing the graphicText property should be
defined in the session scope. The reason behind it is that the image will
be fetched in a separate request from the rest of the page content and in
order to retrieve the cropped image, the content should be stored in the
session context.
When the graphicImage component is fed with an image created
dynamically, as it is done in the cropping examples, its cache attribute
should be set to false in order to tell the regarding browser to disable
caching on the resource.
The image that will be cropped should be shown in full size in order to be
processed, so there is no way to limit the size of the image with a given
width/height.

One other possible implementation for cropping the image could be for saving the
image to the disk and showing the saved image via a media display component,
such as graphicImage.

public String cropWithSave() {
 ServletContext servletContext = (ServletContext)
 FacesContext.getCurrentInstance().getExternalContext().
 getContext();

Working with Files, Images, and Multimedia

240

 String newFileName = servletContext.getRealPath("") +
 File.separator + "resources" + File.separator + "images" +
 File.separator + "cropped.jpg";

 FileImageOutputStream imageOutput;
 try {
 imageOutput = new FileImageOutputStream(
 new File(newFileName));
 imageOutput.write(croppedImageSimple.getBytes(), 0,
 croppedImageSimple.getBytes().length);
 imageOutput.close();
 }
 catch (Exception e) {
 throw new FacesException(
 "Error in writing cropped image.", e);
 }
 return null;
}

There's more…
The initial coordinates of the cropped region drawn on the canvas of the image can be defined
with the initialCoords attribute. The notation of the attribute should follow the x, y, w, h
format, where x and y stand for the x and y coordinate values, and w and h stand for width
and height.

The backgroundColor attribute defines the color of the background container with the
default value as black. The backgroundOpacity attribute defines the opacity of the outer
image while cropping. Its default value is 0.6, and the value should be between 0 and 1.

The minSize and maxSize attributes define the minimum width and height for the cropped
region in pixels with the notation [width, height].

The aspectRatio attribute defines the ratio of the cropped region as width to height. To
make it a square, the value should be set to 1.

The imageCropper component provides the ability to crop external images as well. By
providing the absolute URL to the image with the image attribute, it is possible to crop
the image.

Chapter 7

241

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, and build and deploy the WAR file on every Servlet
3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available under http://localhost:8080/pf-cookbook/
views/chapter7/cropImage.jsf.

Creating dynamic image streaming
programmatically

The graphicImage component can also render an image that is created programmatically in
the server-side backing bean.

How to do it…
The following is an example that renders a PrimeFaces logo, which is read with the resource
streaming mechanism:

<p:graphicImage value="#{dynaImageBean.graphicText}" />

public StreamedContent getGraphicText() throws IOException {
 InputStream stream =this.getClass()
 .getResourceAsStream("/chapter7/primefaces.jpg");
 return new DefaultStreamedContent(stream);
}

How it works...
As seen, the getGraphicText() method returns an instance of StreamedContent.
PrimeFaces also provides a default implementation for the stream content, which is org.
primefaces.model.DefaultStreamedContent. The backing bean containing the
graphicText getter method should be defined in the session scope. The reason behind this
is that the image will be fetched in a separate request from the rest of the page content, and
in order to retrieve the logo image, the content should be stored in the session context.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Working with Files, Images, and Multimedia

242

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, and build and deploy the WAR file on every Servlet
3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available under http://localhost:8080/pf-cookbook/
views/chapter7/dynaImage.jsf.

Displaying a collection of images with
galleria

The galleria component can be used to display a collection of images with a transition effect.

How to do it…
A basic definition for the galleria component for viewing a static list of car images would be
as follows:

<p:galleria>
 <p:graphicImage value="/resources/images/autocomplete/CC.png" />
 <p:graphicImage
 value="/resources/images/autocomplete/Golf.png" />
 <p:graphicImage
 value="/resources/images/autocomplete/Polo.png" />
 <p:graphicImage
 value="/resources/images/autocomplete/Touareg.png" />
</p:galleria>

How it works…
The definition of the galleria component renders a car image in a panel and four other
small images in a filmstrip right below it. This component also provides built-in iteration
effects for the transition to occur between the images, which are provided by the autoPlay
attribute, set as true by default. The transition happens within 4000 milliseconds and can
be customized with the transitionInterval attribute.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 7

243

There's more…
The visibility of the filmstrip is enabled by default with the showFilmstrip attribute set as
true. You can disable it by setting the attribute to false.

The width and height of the galleria canvas can be customized with panelWidth and
panelHeight attributes. The width and height of the frames, visualized in the filmstrip, can
be also be customized with the frameWidth and frameHeight attributes respectively. All
values should be provided in pixels.

Transition effects
While iterating through the images, it is possible to apply transition effects. The effect
attribute can have the values blind, bounce, clip, drop, explode, fade (the default),
fold, highlight, puff, pulsate, scale, shake, size, slide, and transfer. The
effectSpeed attribute can also be used to decide on the duration of the transition. Its
default value is 500 milliseconds.

Displaying a collection of images
It is also possible to visualize a collection of car images that is bound through the value
attribute of the galleria component as a collection. The galleria component offers data
iteration on the collection with the var attribute.

<p:galleria id="withData" value="#{galleriaBean.cars}"
 var="car" panelWidth="380" panelHeight="220">
 <p:graphicImage
 value="/resources/images/autocomplete/#{car.name}.png" />
</p:galleria>

Working with Files, Images, and Multimedia

244

Displaying captions on items
The galleria attribute can also display detailed information about the image as an overlay
that is placed at the bottom of the image. The title of this overlay can be retrieved from the
image's title attribute and its description can be retrieved from the alt attribute.

<p:galleria id="withDataAndCaption" value="#{galleriaBean.cars}"
 var="car" panelWidth="380" panelHeight="220"
 showCaption="true">
 <p:graphicImage
 value="/resources/images/autocomplete/#{car.name}.png"
 alt="Detail about #{car.name}" title="#{car.name}" />
</p:galleria>

The visual of the component will be given as follows:

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, and build and deploy the WAR file on every Servlet
3.x compatible application, server such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available under http://localhost:8080/pf-cookbook/
views/chapter7/galleria.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 7

245

Displaying a collection of images with
imageSwitch

The imageSwitch component can be used to display a collection of images with
transition effects.

How to do it…
A basic definition for the imageSwitch for viewing a static list of car images would be
as follows:

<p:imageSwitch id="simple">
 <p:graphicImage value="/resources/images/autocomplete/CC.png" />
 <p:graphicImage
 value="/resources/images/autocomplete/Golf.png" />
 <p:graphicImage
 value="/resources/images/autocomplete/Polo.png" />
 <p:graphicImage
 value="/resources/images/autocomplete/Touareg.png" />
</p:imageSwitch>

The snippet will be visualized as follows:

The preceding image is seen as a static image; by default, imageSwitch will do a slideshow
on page load between the images defined. Setting the slideshowAuto attribute to false can
disable this behavior. The speed of the transition can be defined by the slideshowSpeed
attribute. Its default value is 3000 milliseconds.

Working with Files, Images, and Multimedia

246

The imageSwitch attribute uses effects for transition between images, and it supports
over 25 different effects. The effect can be provided with the effect attribute and its speed
can be defined by the speed attribute, which has 500 milliseconds as the default value. If
no effect is specified, the built-in fade effect is used for transition. The list of the supported
effects are given as follows:

ff blindX

ff blindY

ff blindZ

ff cover

ff curtainX

ff curtainY

ff fade

ff fadeZoom

ff growX

ff growY

ff none

ff scrollUp

ff scrollDown

ff scrollLeft

ff scrollRight

ff scrollVert

ff shuffle

ff slideX

ff slideY

ff toss

ff turnUp

ff turnDown

ff turnLeft

ff turnRight

ff uncover

ff wipe

ff zoom

Chapter 7

247

There's more…
With the client side API provided, it's also possible to do manual transition between the
images of the imageSwitch. To trigger the slide change, two command buttons are defined,
and the JavaScript defined with their onclick attribute executes the navigation between
the images. The previous() and next() methods are provided by the imageSwitch
component, which invokes the cycle method of jQuery Cycle Plugin with the prev and next
parameters respectively.

<p:commandButton type="button"
 onclick="PF('manualSwitch').previous();"
 icon="ui-icon-circle-triangle-w" id="prev" />
<p:commandButton type="button"
 onclick="PF('manualSwitch').next();"
 icon="ui-icon-circle-triangle-e" id="next" />
<p:imageSwitch id="manual" widgetVar="manualSwitch"
 slideshowAuto="false">
 <p:graphicImage
 value="/resources/images/autocomplete/CC.png" />
 <p:graphicImage
 value="/resources/images/autocomplete/Golf.png" />
 <p:graphicImage
 value="/resources/images/autocomplete/Polo.png" />
 <p:graphicImage
 value="/resources/images/autocomplete/Touareg.png" />
</p:imageSwitch>

The visual of the component will be as follows:

Working with Files, Images, and Multimedia

248

In buttons, we are accessing the imageSwitch component via JavaScript through the value
of the widgetVar attribute.

slideshowAuto should be set to false for enabling
manual transition.

Displaying a collection of images
imageSwitch supports the use of <ui:repeat> in order to provide a collection of car
images dynamically.

<p:imageSwitch id="withData">
 <ui:repeat value="#{imageSwitchBean.cars}" var="car">
 <p:graphicImage
 value="/resources/images/autocomplete/#{car.name}.png" />
 </ui:repeat>
</p:imageSwitch>

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, and build and deploy the WAR file on every Servlet
3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available under http://localhost:8080/pf-cookbook/
views/chapter7/imageSwitch.jsf.

Displaying a collection of images with
contentFlow

The contentFlow component can be used to display a collection of images horizontally as a
cover flow animation.

How to do it…
A basic definition for contentFlow for viewing a static list of car images would be as follows:

<p:contentFlow id="simple">
 <p:graphicImage value="/resources/images/autocomplete/CC.png"
 styleClass="content" />

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 7

249

 <p:graphicImage value="/resources/images/autocomplete/Golf.png"
 styleClass="content" />
 <p:graphicImage value="/resources/images/autocomplete/Polo.png"
 styleClass="content" />
 <p:graphicImage
 value="/resources/images/autocomplete/Touareg.png"
 styleClass="content" />
</p:contentFlow>

The visual of the component will be as follows:

The style class content should be applied to all of the nested images within the component.
It's a built-in style implementation shipping with PrimeFaces.

There's more…
It is also possible to visualize a collection of car images that is bound through the value
attribute of the component as a collection. The contentFlow component offers data
iteration on the collection with the var attribute.

<p:contentFlow id="withData" value="#{contentFlowBean.cars}"
 var="car">
 <p:graphicImage
 value="/resources/images/autocomplete/#{car.name}.png"
 styleClass="content" />
</p:contentFlow>

Working with Files, Images, and Multimedia

250

Displaying captions with images
By defining a div as a sibling to the image given, contentFlow offers adding captions
as information.

<p:contentFlow id="withCaption" value="#{contentFlowBean.cars}"
 var="car">
 <p:graphicImage
 value="/resources/images/autocomplete/#{car.name}.png"
 styleClass="content" />
 <div class="caption">#{car.name}</div>
</p:contentFlow>

The style class caption should be applied to div. It's a built-in style implementation shipping
with PrimeFaces.

It's viable to apply the actions while handling user clicks on the caption. A sample that invokes
a server-side method on the caption would be as follows:

<p:contentFlow id="withCaptionLink"
 value="#{contentFlowBean.cars}" var="car">
 <p:graphicImage
 value="/resources/images/autocomplete/#{car.name}.png"
 styleClass="content" />
 <div class="caption">
 <p:commandLink action="#{contentFlowBean.showMessage}"
 update="growl">
 #{car.name}
 </p:commandLink>
 </div>
</p:contentFlow>

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, and build and deploy the WAR file on every Servlet
3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available under http://localhost:8080/pf-cookbook/
views/chapter7/contentFlow.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 7

251

Embedding the multimedia content in
JSF pages
The media component offers ways for embedding various multimedia content into a
JSF page.

How to do it…
A simple definition of media component for displaying a QuickTime movie will be as follows:

<p:media value="/resources/media/sample_iTunes.mov"
 width="700" height="500" />

The visual output of the player will be as follows:

Use the width and height attributes of the media component in order
to declare the viewport of the player.

Working with Files, Images, and Multimedia

252

How it works…
By default, the media component renders the regarding HTML markup into the page according
to the extension of the given file. The players and the matching extensions are listed as follows:

Player Supported types
Flash FLV, MP3, and SWF
PDF PDF
QuickTime AIF, AIFF, AAC, AU, BMP, GSM, MOV, MID, MIDI, MPG, MPEG, MP4, M4A,

PSD, QT, QTIF, QIF, QTI, SND, TIF, TIFF, WAV, 3G2, and 3PG
Real RA, RAM, RM, RPM, RV, SMI, and SMIL
Windows ASX, ASF, AVI, WMA, and WMV

If the player cannot be resolved from the file type, for cases like when a YouTube video
URL is provided to the component, the player attribute can be used to set the type of the
player explicitly.

<p:media value="http://www.youtube.com/v/5aTFiNxzXF4"
 player="flash"/>

The visual output of the player will be as follows:

Make sure that the URL is directly pointing to the YouTube video
rather than its landing page. The URL syntax should be something
like http://www.youtube.com/v/{id_of_video}.

http://www.youtube.com/v/{id_of_video}

Chapter 7

253

There's more…
Parameters can be passed to the players according to their specification. The following is an
example provided for the configuration of QuickTime player with parameters:

<p:media value="/resources/media/sample_iTunes.mov"
 player="quicktime" width="700" height="500">
 <f:param name="autoPlay" value="false" />
 <f:param name="controller" value="true" />
 <f:param name="volume" value="20" />
</p:media>

Different proprietary players might have different configuration
parameters. Please refer to the documentation of the players for
further information.

Dynamic content streaming
media can also stream binary content provided as an instance of StreamedContent.
Component declaration, along with method definition, is given as follows:

<p:media value="#{mediaBean.media}" player="quicktime" />

public StreamedContent getMedia() throws IOException {
 InputStream stream = this.getClass()
 .getResourceAsStream("/chapter7/sample_iTunes.mov");
 return new DefaultStreamedContent(stream, "video/quicktime");
}

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, and build and deploy the WAR file on every Servlet
3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available under http://localhost:8080/pf-cookbook/
views/chapter7/media.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Working with Files, Images, and Multimedia

254

Capturing images with photoCam
Taking images with the attached camera and sending them to the JSF backend data model is
supported by photoCam.

How to do it…
A simple definition for capturing an image with the photoCam would be as follows:

<p:photoCam widgetVar="pc" listener="#{photoCamBean.onCapture}"
 update="capturedImage"/>

<p:graphicImage id="capturedImage"
 value="#{photoCamBean.capturedImage}" cache="false"/>

<p:commandButton type="button" value="Capture"
 onclick="PF('pc').capture()"/>

How it works…
The captured image is triggered via the client-side JavaScript method, capture. The button
declared in the preceding sample invokes the capture method via the widget variable
defined for the photoCam component. A method expression, which will be invoked when an
image is captured, is bound to the attribute. This method will handle the image captured on
the server side. A sample definition for the method is as follows:

StreamedContent capturedImage;

public void onCapture(CaptureEvent captureEvent) {
 byte[] data = captureEvent.getData();
 capturedImage = new DefaultStreamedContent(new
 ByteArrayInputStream(data));
}

Since capturedImage is an instance of StreamedContent and it will be visualized with
the p:graphicImage component, the backing bean containing the capturedImage object
should be defined in the session scope. The reason behind that is that the image will be
fetched in a separate request from the rest of the page content and in order to retrieve the
captured image, the content should be stored in the session context.

Chapter 7

255

When the graphicImage component is fed with an image created
dynamically, its cache attribute should be set to false in order to tell the
regarding browser to disable caching on the resource.
With PrimeFaces version 5.2, the photoCam component is re-implemented
with an HTML5 powered version where it gracefully degrades to a Flash
Player. With this version, HTML5 browser support will not be available.

There's more…
One other possible implementation for capturing the image could be saving the image to the
disk and showing the saved image via a media display component such as graphicImage.

public void onCaptureWithSave(CaptureEvent captureEvent) {
 byte[] data = captureEvent.getData();
 ServletContext servletContext = (ServletContext)
 FacesContext.getCurrentInstance().getExternalContext()
 .getContext();
 String newFileName = servletContext.getRealPath("") +
 File.separator + "resources" + File.separator + "images" +
 File.separator + "captured.png";
 FileImageOutputStream imageOutput;
 try {
 imageOutput = new FileImageOutputStream(new
 File(newFileName));
 imageOutput.write(data, 0, data.length);
 imageOutput.close();
 }
 catch(Exception e) {
 throw new FacesException
 ("Error in writing captured image.", e);
 }
}

On arbitrary calls to the onCaptureWithSave method, the file created on
the server will be overwritten by each method call. In order to prevent this, the
name of the file can be suffixed with the current time in milliseconds or with a
random number generated by java.util.UUID.

Working with Files, Images, and Multimedia

256

Authorizing access to the camera
In order to capture the image, the user might need to authorize the settings of the HTML5
Player or Flash Player, by allowing access to the camera and the microphone. The user
will be notified with a dialog box of the browser or of the Flash Player before viewing the
current image. The images for notifications are given as follows:

Notification of HTML5 Player

Notification of Adobe Player

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, and build and deploy the WAR file on every Servlet
3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available under http://localhost:8080/pf-cookbook/
views/chapter7/captureImage.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

8
Drag Me, Drop Me

In this chapter, we will cover the following topics:

ff Making a component draggable

ff Restricting dragging by axis, grid, and containment

ff Snapping to the edges of nearest elements

ff Defining droppable targets

ff Restricting dropping by tolerance and acceptance

ff AJAX-enhanced drag and drop

ff Integrating drag and drop with data iteration components

Introduction
Drag and drop is an action, which means grabbing an object and dragging it to a different
location. The components capable of being dragged and dropped enrich the Web and make a
solid base for modern UI patterns. The drag and drop utilities in PrimeFaces allow us to create
draggable and droppable user interfaces efficiently. They make it abstract for the developers
to deal with the implementation details at the browser level.

In this chapter, we will learn about PrimeFaces' drag and drop utilities—draggable and
droppable. AJAX-enhanced drag and drop, and a special integration with data iteration
components, will be explained as well.

Drag Me, Drop Me

258

Making a component draggable
Any component can be enhanced with the draggable behavior. To enable the draggable
functionality on any PrimeFaces component, we always need a component called draggable.

In this recipe, we will see how to make a component draggable and learn some basic
features of draggable. To demonstrate these features, we will make several p:panel
components draggable.

How to do it…
A component can be made draggable by using p:draggable. The value of the for
attribute specifies a search expression for the draggable target. In our case, it matches
the ID of p:panel.

Chapter 1, Getting Started with PrimeFaces, provides more details
on search expressions.

If the for attribute is omitted, the parent component will be selected as a draggable target.
Let us make some panel components draggable and apply some basic features:

<p:panel id="pnl" header="Draggable panel with default settings">
 Drag me around
</p:panel>
<p:draggable for="pnl"/>

<p:panel id="hpnl" header="Draggable panel by handle">
 I can be only dragged by my header
</p:panel>
<p:draggable for="hpnl" handle=".ui-panel-titlebar"/>

<p:panel id="cpnl" header="Draggable panel with clone">
 I display a clone as helper while being dragged
</p:panel>
<p:draggable for="cpnl" helper="clone"/>

<p:panel id="rpnl" header="Draggable panel with revert">
 I will be returned to my start position when dragging stops
</p:panel>
<p:draggable for="rpnl" revert="true"/>

<p:panel id="opnl" header="Draggable panel with opacity">

Chapter 8

259

 I use opacity for helper while being dragged
</p:panel>
<p:draggable for="opnl" opacity="0.5"/>

The following screenshot shows the five panels. The last panel is being dragged. Its opacity
has been changed to 0.5 after the dragging starts.

How it works…
By default, any point in a dragged component can be used as a handle. To restrict the drag-
start click to a specified element(s), we can use the handle option, which is a jQuery selector.
The second panel is dragged by using its header only.

By default, the actual component is used as a drag indicator. The helper option allows
keeping the component at its original location during dragging. This can be achieved with
helper set to clone for the third panel.

If the revert option is set to true, the component will return to its starting position when
the dragging stops, and the draggable component is not dropped onto a matching droppable
component. The fourth panel features this behavior.

Opacity for helper, while it is being dragged, is another useful option to give the user a
visual feedback. The opacity of the fifth panel is reduced when dragging.

Drag Me, Drop Me

260

There's more…
Other basic features are related to the attributes cursor and stack. cursor is a CSS cursor
that is to be displayed when dragging. It is handy to set its value to move. stack is a jQuery
selector. It controls the z-index of the set of draggable elements that match the selector
and always brings them to the front. That means the draggable component always overlays
the other draggables.

See also
Refer to the Restricting dragging by axis, grid, and containment and Snapping to the edges of
nearest elements recipes discussed later in this chapter to learn the advanced features
of Draggable.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, and build and deploy the WAR file on every Servlet
3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter8/draggable.jsf.

Restricting dragging by axis, grid, and
containment

The dragging behavior can be limited with some configurable constraints.

In this recipe, we will see how to drag an element, either horizontally or vertically, on a grid or
inside a certain section of the page.

How to do it…
The next example demonstrates three draggable panels and one draggable image. The first
panel can be dragged only horizontally, the second one only vertically, and the third panel
is dragged on a grid. Dragging on a grid means the dragging helper snaps to a grid—every
specific x and y pixel. The image is placed within an h:panelGroup tag, which acts as a
container for dragging. The image cannot go outside this container.

<p:panel id="hpnl" header="Only horizontal draggable panel">
 I can be only dragged horizontally.
</p:panel>

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 8

261

<p:draggable for="hpnl" axis="x"/>

<p:panel id="vpnl" header="Only vertical draggable panel">
 I can be only dragged vertically
</p:panel>
<p:draggable for="vpnl" axis="y"/>

<p:panel id="gpnl" header="Draggable panel in grid [40,50]">
 I can be only dragged in a grid
</p:panel>
<p:draggable for="gpnl" grid="40,50"/>

The image below can be only dragged within its parent's boundaries
<h:panelGroup layout="block"
 styleClass="dragContainer ui-widget-content">
 <h:graphicImage id="pic" library="images" name="logo.png"/>
</h:panelGroup>
<p:draggable for="pic" containment="parent"/>

The following screenshot shows the result achieved with the preceding code snippet.
Especially, we can see that the image has stayed in its boundaries although the cursor
has gone outside.

Drag Me, Drop Me

262

How it works…
Horizontal or vertical dragging is possible by setting the axis attribute as axis="x" or
axis="y", which means that the draggable element can be dragged only horizontally or only
vertically, respectively.

Dragging on a grid is defined by the grid attribute. The value for dragging on a grid takes
comma-separated dimensions. For instance, grid="40,50" means that the draggable
element can be dragged in only 40 pixel steps horizontally and 50 vertically.

The containment attribute constraints dragging within the boundaries of the containment
element. Possible string values are parent, document, window, and [x1, y1, x2, y2].
The setting containment="parent" in the preceding example means that the draggable
element cannot go outside its parent.

See also
Refer to the Snapping to the edges of nearest elements recipe to learn about the more
advanced features of Draggable.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, and build and deploy the WAR file on every Servlet
3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter8/advancedDraggable.jsf.

Snapping to the edges of nearest elements
With PrimeFaces, we can snap the dragged component to the inner or outer boundaries
of another component (a component's DOM element).

In this recipe, we will discuss snapping and its options in detail. As an example, we
will develop a big h:panelGroup component as a snap target and three other small
h:panelGroup components as draggable components, with various snapping options.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 8

263

How to do it…
Generally, the snapping behavior is activated by setting the attribute snap to true. The
snapping behavior is configurable with two options—snapMode and snapTolerance. The
first option, snapMode, determines which edges of snap elements the draggable component
will snap to. The second option, snapTolerance, determines a distance in pixels the
draggable component must be from the element when snapping is invoked.

<h:panelGroup id="snaptarget" layout="block"
 styleClass="ui-widget-content"
 style="height:150px;width:450px;">
 <p class="ui-widget-header" style="margin:0;padding:5px;">
 I'm a snap target to play with me
 </p>
 <p:draggable/>
</h:panelGroup>

<h:panelGroup id="defsnap" layout="block"
 styleClass="dragSnap ui-widget-content">
 <p>I'm with default snap and snap to all edges
 of other draggable elements</p>
</h:panelGroup>
<p:draggable for="defsnap" snap="true"/>

<h:panelGroup id="outersnap" layout="block"
 styleClass="dragSnap ui-widget-content">
 <p>I only snap to the outer edges - try with the big box</p>
</h:panelGroup>
<p:draggable for="outersnap" snap="true" snapMode="outer"/>

<h:panelGroup id="innersnap" layout="block"
 styleClass="dragSnap ui-widget-content">
 <p>I only snap to the inner edges - try with the big box</p>
</h:panelGroup>
<p:draggable for="innersnap" snap="true"
 snapMode="inner" snapTolerance="15"/>

Drag Me, Drop Me

264

The following screenshot shows the snapping for the last h:panelGroup tag. The component
can be snapped only to the inner edges of the snap target when it is being dragged.

How it works…
The snapping is enabled by setting snap to true. If the snap attribute is set to false
(default), no snapping occurs. The first small h:panelGroup has no snapping options. It
snaps to the inner as well as outer boundaries of other draggable components. The second
h:panelGroup sets snapMode and can only snap to the outer boundaries. Possible values
of snapMode are inner, outer, and both. The third h:panelGroup also has a custom
snapTolerance parameter in addition to snapMode, set to inner. This is the distance in
pixels from the snap element's edges at which the snapping should occur. The default value is
20 pixels, but we have set it to 15.

In the current PrimeFaces implementation, a draggable component with
snap set to true snaps to all other draggable components. This is a little
bit different from jQuery's Draggable (http://jqueryui.com/
draggable), where we can also specify the elements that the draggable
component will snap to when it is close to the edge of such an element.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, and build and deploy the WAR file on every Servlet
3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter8/snapping.jsf.

http://jqueryui.com/draggable
http://jqueryui.com/draggable
https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 8

265

Defining droppable targets
Any component can be enhanced with the droppable behavior. Droppable components
are targets for draggable ones. To enable the droppable functionality on any PrimeFaces
component, we always need a component called droppable.

In this recipe, we will see how to define droppable targets and will learn a client-side
callback onDrop.

How to do it…
A component can be made droppable by using p:droppable. The component ID must match
the for attribute of p:droppable. If the for attribute is omitted, the parent component will
be selected as a droppable target. We will take two h:panelGroup components and make
them droppable and draggable, respectively. In addition, we will define a client-side callback
that gets invoked when a draggable component is dropped. This can be accomplished by the
onDrop attribute, which points to a JavaScript function.

<h:panelGroup id="drop" layout="block" styleClass="ui-widget-
 content"
 style="height:150px; width:300px;">
 <p class="ui-widget-header" style="margin:0; padding:5px;">
 Drop here
 </p>
 <p:droppable onDrop="handleDrop"/>
</h:panelGroup>

<h:panelGroup id="drag" layout="block"
 styleClass="dragDiv ui-widget-content">
 <p>Drag me to my target</p>
</h:panelGroup>
<p:draggable for="drag"/>

The client-side callback highlights the droppable h:panelGroup component and adds the
text Dropped! to the paragraph tag p, when invoked.

function handleDrop(event, ui) {
 $(event.target).addClass("ui-state-highlight").
 find("p").html("Dropped!");
}

Drag Me, Drop Me

266

The following screenshot shows the result after dropping the draggable h:panelGroup
component onto the droppable one:

How it works…
The onDrop callback gets two parameters: event and ui, which are objects holding
information about the drag and drop event. The droppable target is accessible by event.
target. We use this fact to add the style class ui-state-highlight to the target. This
class is defined by jQuery ThemeRoller.

The event parameter is the original browser event, and ui is a prepared
object with the following properties:

ff ui.draggable: This is the current draggable element, a jQuery
object

ff ui.helper: This is the current draggable helper, a jQuery object
ff ui.position: This is the current position of the draggable helper

as the {top, left} object
ff ui.offset: This is the current absolute position of the draggable

helper as the {top, left} object

See also
ff The most important style classes defined by jQuery ThemeRoller are described in the

Understanding structural and skinning CSS recipe in Chapter 2, Theming Concepts

ff Advanced configuration and use cases of droppable will be discussed in the
remaining three recipes of this chapter, that is, Restricting dropping by tolerance and
acceptance, AJAX-enhanced drag and drop, and Integrating drag and drop with data
iteration components

Chapter 8

267

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, and build and deploy the WAR file on every Servlet
3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter8/droppable.jsf.

Restricting dropping by tolerance and
acceptance

Droppable behavior is highly configurable. There are a lot of options to restrict dropping. They
are useful in matching the draggable and droppable components more precisely.

In this chapter, we will meet options for tolerance and acceptance. We will take several
h:panelGroup components and make them droppable with different tolerance and
acceptance values.

How to do it…
Tolerance specifies which mode to use for testing if a draggable component is over
a droppable target. There are four different tolerance modes. They can be chosen by
the tolerance attribute of p:droppable. The following code snippet shows four
h:panelGroup components with settings for tolerance:

<h:panelGrid columns="4">
 <h:panelGroup id="dropFit" layout="block"
 styleClass="dropTarget ui-widget-content">
 <p class="ui-widget-header">Drop here (tolerance = fit)</p>
 <p:droppable onDrop="handleDrop" tolerance="fit"/>
 </h:panelGroup>

 <h:panelGroup id="dropIntersect" layout="block"
 styleClass="dropTarget ui-widget-content">
 <p class="ui-widget-header">Drop here (tolerance =
 intersect)</p>
 <p:droppable onDrop="handleDrop" tolerance="intersect"/>
 </h:panelGroup>

 <h:panelGroup id="dropPointer" layout="block"
 styleClass="dropTarget ui-widget-content">

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Drag Me, Drop Me

268

 <p class="ui-widget-header">Drop here (tolerance =
 pointer)</p>
 <p:droppable onDrop="handleDrop" tolerance="pointer"/>
 </h:panelGroup>

 <h:panelGroup id="dropTouch" layout="block"
 styleClass="dropTarget ui-widget-content">
 <p class="ui-widget-header">Drop here (tolerance = touch)</p>
 <p:droppable onDrop="handleDrop" tolerance="touch"/>
 </h:panelGroup>
</h:panelGrid>

<h:panelGroup id="drag" layout="block"
 styleClass="dragDiv ui-widget-content">
 <p>Drag me to my target</p>
 <p:draggable/>
</h:panelGroup>

The scope attribute is used for acceptance. Its aim is to group sets of the draggable and
droppable components. Only a draggable component with the same scope value as a
droppable one will be accepted during drag and drop. The following code snippet shows two
draggable h:panelGroup components with different scope values. Only one can be dropped
onto the droppable h:panelGroup component with the ID dropTarget2.

<h:panelGroup id="dropTarget2" layout="block"
 styleClass="ui-widget-content"
 style="height:120px; width:300px;">
 <p class="ui-widget-header" style="margin:0;padding:5px;">
 Drop here
 </p>
 <p:droppable onDrop="handleDrop" scope="dnd"/>
</h:panelGroup>

<h:panelGrid columns="2">
 <h:panelGroup id="drag1" layout="block"
 styleClass="dragDiv ui-widget-content">
 <p>Drag me to my target</p>
 <p:draggable scope="dnd"/>

Chapter 8

269

 </h:panelGroup>

 <h:panelGroup id="drag2" layout="block"
 styleClass="dragDiv ui-widget-content">
 <p>I'm draggable, but can't be dropped</p>
 <p:draggable scope="dummy"/>
 </h:panelGroup>
</h:panelGrid>

The following screenshot demonstrates that the handleDrop callback is not invoked when
the h:panelGroup with scope set to dummy gets dropped onto the h:panelGroup with
scope set to dnd:

How it works…
The following table lists four tolerance modes that define the way to accept a draggable:

Mode Description

fit
Draggable component should overlap the droppable
component entirely

intersect
Draggable component should overlap the droppable
component by at least 50 percent

pointer Mouse pointer should overlap the droppable
touch Draggable should overlap the droppable by any amount

Drag Me, Drop Me

270

There's more…
In addition to scope, there is also the accept attribute. This is the jQuery selector that
defines the accepted components. Only the draggable components matching the selector will
be accepted by the droppable component.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, and build and deploy the WAR file on every Servlet
3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter8/advancedDroppable.jsf.

AJAX-enhanced drag and drop
The user's client-side drag and drop interactions can be posted to the server. Drag and drop
has only one (default) AJAX behavior event provided by the droppable component, which is
processed when a valid draggable component is dropped. That is the drop event. If we define
a listener, it will be invoked by passing an event instance of the type org.primefaces.
event.DragDrop as parameter. This parameter holds information about the dragged and
dropped components. Through this information, the server-side state of the draggable/
droppable items can be updated.

In this recipe, we will develop a workflow simulating the process of pizza ordering. The pizza
ordering should occur by drag and drop. Users should be able to select any available Turkish
pizza and drag and drop it onto the order list. The remove functionality, capable of drag and
drop, should be included as well. For this purpose, we will implement a trash for the items
removed from the pizza items in the order list.

How to do it…
The following screenshots demonstrate the entire workflow:

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 8

271

The first screenshot shows the dragging process from the list of available pizzas to the
order list.

Drag Me, Drop Me

272

The second screenshot shows what happens when the dragged pizza image is dropped into
the order list. A growl component is displayed with the currently selected pizza name.

The last screenshot demonstrates the removal process. One pizza has been dragged from the
order list and dropped into the trash list.

We will make the five pizza image tags h:graphicImage draggable.

<p:growl id="growl" escape="false"/>

<h:panelGrid id="selectPizza" columns="1">
 <h:outputText value="Kiymali Pide" styleClass="text"/>
 <h:graphicImage id="pizza1" styleClass="pizzaimage"
 library="images" name="dragdrop/pizza1.png"
 title="Kiymali Pide"/>

 <h:outputText value="Kusbasi Pide" styleClass="text"/>
 <h:graphicImage id="pizza2" styleClass="pizzaimage"
 library="images" name="dragdrop/pizza2.png"
 title="Kusbasi Pide"/>

 <h:outputText value="Sucuklu Ve Yumurtali Pide"
 styleClass="text"/>
 <h:graphicImage id="pizza3" styleClass="pizzaimage"
 library="images" name="dragdrop/pizza3.png"
 title="Sucuklu Ve Yumurtali Pide"/>

 <h:outputText value="Peynirli Pide" styleClass="text"/>

Chapter 8

273

 <h:graphicImage id="pizza4" styleClass="pizzaimage"
 library="images" name="dragdrop/pizza4.png"
 title="Peynirli Pide"/>

 <h:outputText value="Ispanakli Pide" styleClass="text"/>
 <h:graphicImage id="pizza5" styleClass="pizzaimage"
 library="images" name="dragdrop/pizza5.png"
 title="Ispanakli Pide"/>
</h:panelGrid>

<p:draggable for="pizza1" helper="clone" revert="true"
 cursor="move"/>
<p:draggable for="pizza2" helper="clone" revert="true"
 cursor="move"/>
<p:draggable for="pizza3" helper="clone" revert="true"
 cursor="move"/>
<p:draggable for="pizza4" helper="clone" revert="true"
 cursor="move"/>
<p:draggable for="pizza5" helper="clone" revert="true"
 cursor="move"/>

Two h:panelGroup tags will be made droppable. One h:panelGroup tag is intended
to be used for the order list and one is for items removed from the order list. Droppable
p:droppable tags will get AJAX behaviors p:ajax attached with corresponding listeners in
each case. One listener should be invoked on pizza ordering and another on pizza removal.

<h:panelGroup id="order" layout="block" styleClass="ui-widget-
 content"
 style="width:350px; padding:1px;">
 <p class="ui-widget-header" style="margin:0;padding:5px;">
 Order
 </p>

 <h:panelGroup layout="block" style="padding:10px;"
 rendered="#{empty ajaxDragDrop.orderedPizza}">
 Please drag and drop any available pizza to order it
 </h:panelGroup>

 <p:dataList id="orderedPizza"
 value="#{ajaxDragDrop.orderedPizza}" var="op"
 rendered="#{not empty ajaxDragDrop.orderedPizza}">
 <h:panelGroup id="op" styleClass="text" layout="block">
 <f:attribute name="pizza" value="#{op}"/>

Drag Me, Drop Me

274

 <h:outputText value="#{op}"/>
 </h:panelGroup>

 <p:draggable for="op" revert="true" cursor="move"
 scope="trash"/>
 </p:dataList>

 <p:droppable id="drop1" for="order" accept=".pizzaimage"
 tolerance="touch" activeStyleClass="ui-state-default"
 hoverStyleClass="ui-state-hover">
 <p:ajax listener="#{ajaxDragDrop.onPizzaOrder}"
 update="order growl"/>
 </p:droppable>
</h:panelGroup>

<p:commandButton value="Send order" action="#
 {ajaxDragDrop.sendOrder}"
 update="growl" style="margin:10px 0 20px 0;"/>

<h:panelGroup id="trash" layout="block" styleClass="ui-widget-
 content"
 style="width:350px; padding:1px;">
 <p class="ui-widget-header" style="margin:0;
 padding:5px;">Trash</p>

 <h:panelGroup layout="block" style="padding:10px;"
 rendered="#{empty ajaxDragDrop.removedPizza}">
 Drag and drop a pizza from the ordered list to remove it
 </h:panelGroup>

 <p:dataList value="#{ajaxDragDrop.removedPizza}" var="rp"
 rendered="#{not empty ajaxDragDrop.removedPizza}">
 <h:panelGroup styleClass="text" layout="block">
 <h:outputText value="#{rp}"/>
 </h:panelGroup>
 </p:dataList>

 <p:droppable id="drop2" for="trash" scope="trash"
 tolerance="touch"
 activeStyleClass="ui-state-default"
 hoverStyleClass="ui-state-hover">
 <p:ajax listener="#{ajaxDragDrop.onPizzaRemove}"
 update="order trash growl"/>
 </p:droppable>
</h:panelGroup>

Chapter 8

275

The corresponding CDI bean AjaxDragDrop adds an ordered pizza to the orderedPizza
list, and moves the pizza to the removedPizza list when it gets removed. This happens in the
listeners onPizzaOrder and onPizzaRemove, respectively.

@Named
@ViewScoped
public class AjaxDragDrop implements Serializable {

 private List<String> orderedPizza = new ArrayList<String>();
 private List<String> removedPizza = new ArrayList<String>();

 public List<String> getOrderedPizza() {
 return orderedPizza;
 }

 public List<String> getRemovedPizza() {
 return removedPizza;
 }

 public void onPizzaOrder(DragDropEvent event) {
 HtmlGraphicImage image = (HtmlGraphicImage) event.
 getComponent().findComponent(event.getDragId());
 String pizza = image != null ? image.getTitle() : "";

 orderedPizza.add(pizza);

 FacesMessage msg = new FacesMessage
 (FacesMessage.SEVERITY_INFO,
 "Selected pizza: " + pizza, null);
 FacesContext.getCurrentInstance().addMessage(null, msg);
 }

 public void onPizzaRemove(DragDropEvent event) {
 DataList dataList = (DataList) event.
 getComponent().findComponent("orderedPizza");

 FacesContext fc = FacesContext.getCurrentInstance();
 dataList.invokeOnComponent(fc, event.getDragId(),
 new ContextCallback() {
 public void invokeContextCallback(FacesContext fc,
 UIComponent comp) {
 HtmlPanelGroup pGroup = (HtmlPanelGroup)comp;

Drag Me, Drop Me

276

 String pizza = pGroup != null ?
 (String) pGroup.getAttributes().get("pizza") :
 "";

 orderedPizza.remove(pizza);
 removedPizza.add(pizza);

 FacesMessage msg = new FacesMessage(
 FacesMessage.SEVERITY_INFO,
 "Removed pizza: " + pizza, null);
 fc.addMessage(null, msg);
 }
 });
 }

 public String sendOrder() {
 StringBuilder sb = new StringBuilder("You have ordered:");
 for (String pizza : orderedPizza) {
 sb.append("
");
 sb.append(pizza);
 }

 FacesMessage msg = new FacesMessage(
 FacesMessage.SEVERITY_INFO, sb.toString(), null);
 FacesContext.getCurrentInstance().addMessage(null, msg);

 return null;
 }
}

How it works…
To make h:graphicImage draggable, we use p:draggable with proper options:
helper="clone", revert="true", and cursor="move". The draggable images have
the title attributes set to the pizza names. This is important for getting the dropped
pizza's name in the onPizzaOrder listener by means of the findComponent() call.
The draggable h:panelGroup tag in the order list has, in contrast to h:graphicImage,
f:attribute with the pizza name as the value. This allows us to get the dropped pizza's
name from the component's attribute map in the onPizzaRemove listener by means of
the invokeOnComponent() call. Client IDs of draggable/droppable components can be
accessed by getDragId() or getDropId() on a DragDropEvent instance.

Chapter 8

277

Refer to the JSF 2 API documentation (http://javaserverfaces.
java.net/nonav/docs/2.2/javadocs/javax/faces/
component/UIComponent.html) to read more about
findComponent() and invokeOnComponent().

Last but not least, we use different ways to accept draggable. In the case of images, we set
accept to .pizzaimage. The accept attribute defines a jQuery selector for the accepted
draggable components. In the case of items in the order list, we set scope to trash. The
scope attribute is an alternative way to match the droppable and accepted draggable
components. What is easier to use in each particular case depends on the code.

There's more…
We used two style classes with p:droppable:

ff activeStyleClass set to ui-state-default

ff hoverStyleClass set to ui-state-hover

They are used for better visual effects when dragging/dropping. If activeStyleClass is
specified, the class will be added to the droppable component while an acceptable draggable
component is being dragged. If hoverStyleClass is specified, the class will be added to the
droppable component while an acceptable draggable component is being dragged over it.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, and build and deploy the WAR file on every Servlet
3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter8/ajaxDragDrop.jsf.

Integrating drag and drop with data iteration
components

The droppable component has a special integration with the data iteration components
extending javax.faces.component.UIData. Such PrimeFaces components are
dataTable, dataGrid, dataList, dataScroller, carousel, and ring. The
component tag p:droppable defines a data source option as an ID of the data iteration
component that needs to be connected with droppable.

http://javaserverfaces.java.net/nonav/docs/2.2/javadocs/javax/faces/component/UIComponent.html
http://javaserverfaces.java.net/nonav/docs/2.2/javadocs/javax/faces/component/UIComponent.html
http://javaserverfaces.java.net/nonav/docs/2.2/javadocs/javax/faces/component/UIComponent.html
https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Drag Me, Drop Me

278

In this recipe, we will introduce a dataGrid component containing some imaginary
documents and make these documents draggable in order to drop them onto a recycle bin.
The dataGrid component will act as a data source for the droppable Recycle Bin.

How to do it…
For the purpose of better understanding the developed code, pictures come first. The first
screenshot shows what happens when we start to drag a document. The Recycle Bin area
gets highlighted as follows:

What it looks like after dropping three documents onto the Recycle Bin is reproduced in the
following screenshot:

Chapter 8

279

Available documents are represented as images within p:dataGrid. They are placed in
the panel components, which are made draggable. The dragging occurs via the panel's
titlebar. The titlebar contains the document's title (name). The recycle bin is represented by a
p:fieldset tag with the ID deletedDocs. Fieldset is made droppable. It also contains
a p:dataTable with the currently deleted document items. Whenever a document is being
dragged and dropped into the Recycle Bin, an AJAX listener is invoked. In the listener, the
dropped document is removed from the list of all available documents and added to the list of
deleted documents. Data iteration components will be updated after that in order to display
the correct data. The code snippet, in XHTML, looks as follows:

<p:fieldset legend="Available Documents">
 <p:dataGrid id="availableDocs" columns="3" var="doc"
 value="#{integrationDragDrop.availableDocs}">
 <p:column>
 <p:panel id="pnl" header="#{doc.title}"
 style="text-align:center">
 <h:graphicImage library="images"
 name="dragdrop/#{doc.extension}.png"/>
 </p:panel>
 <p:draggable for="pnl" revert="true"
 handle=".ui-panel-titlebar"

Drag Me, Drop Me

280

 stack=".ui-panel" cursor="move"/>
 </p:column>
 </p:dataGrid>
</p:fieldset>

<p:fieldset id="deletedDocs" legend="Recycle Bin" style="margin-
 top:20px">
 <p:outputPanel id="dropArea">
 <h:outputText value="Drop documents into the recycle bin to
 delete them"
 rendered="#{empty integrationDragDrop.deletedDocs}"
 style="font-size:20px;"/>

 <p:dataTable var="doc"
 value="#{integrationDragDrop.deletedDocs}"
 rendered="#{not empty integrationDragDrop.deletedDocs}">

 <p:column headerText="Title">
 <h:outputText value="#{doc.title}"/>
 </p:column>
 <p:column headerText="Size (bytes)">
 <h:outputText value="#{doc.size}"/>
 </p:column>
 <p:column headerText="Creator">
 <h:outputText value="#{doc.creator}"/>
 </p:column>
 <p:column headerText="Creation Date">
 <h:outputText value="#{doc.creationDate}">
 <f:convertDateTime pattern="dd.MM.yyyy"/>
 </h:outputText>
 </p:column>
 </p:dataTable>
 </p:outputPanel>
</p:fieldset>

<p:droppable id="droppable" for="deletedDocs" tolerance="touch"
 activeStyleClass="ui-state-highlight"
 datasource="availableDocs">
 <p:ajax listener="#{integrationDragDrop.onDocumentDrop}"
 update="dropArea availableDocs"/>
</p:droppable>

Chapter 8

281

The model class Document contains the document properties.

public class Document implements Serializable {

 private String title;
 private int size;
 private String creator;
 private Date creationDate;
 private String extension;

 public Document(String title, int size, String creator,
 Date creationDate, String extension) {
 this.title = title;
 this.size = size;
 this.creator = creator;
 this.creationDate = creationDate;
 this.extension = extension;
 }

 // getters / setters
 ...
}

The bean IntegrationDragDrop creates available documents (they can be loaded from a
document management system, database, or filesystem), holds two lists for the data iteration
components, and provides the AJAX listener onDocumentDrop.

@Named
@ViewScoped
public class IntegrationDragDrop implements Serializable {

 private List<Document> availableDocs =
 new ArrayList<Document>();
 private List<Document> deletedDocs =
 new ArrayList<Document>();

 @PostConstruct
 public void initialize() {
 availableDocs.add(new Document("Perl script", 120,
 "Sara Schmidt", getCreationDate(), "perl"));
 ...
 }

 public List<Document> getAvailableDocs() {
 return availableDocs;

Drag Me, Drop Me

282

 }

 public List<Document> getDeletedDocs() {
 return deletedDocs;
 }

 public void onDocumentDrop(DragDropEvent ddEvent) {
 Document doc = (Document) ddEvent.getData();
 deletedDocs.add(doc);
 availableDocs.remove(doc);
 }

 private Date getCreationDate() {
 Random random = new Random();
 int day = random.nextInt(30);
 int month = random.nextInt(Calendar.DECEMBER + 1);
 int year = 2014;
 GregorianCalendar calendar =
 new GregorianCalendar(year, month, day);

 return calendar.getTime();
 }
}

How it works…
We make the second p:fieldset tag droppable, and connect it to the p:dataList tag
with the ID availableDocs. This is done by setting datasource to availableDocs on
p:droppable. The AJAX listener onDocumentDrop, attached by the p:ajax tag, is invoked
on the drop event. Thanks to datasource, we can now access the dropped document
instance in the listener: Document doc = (Document)ddEvent.getData().

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, and build and deploy the WAR file on every Servlet
3.x compatible application server, such as JBoss WildFly or Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter8/dragDropIntegration.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

283

9
Creating Charts

and Maps

In this chapter, we will cover the following topics:

ff Creating line, area, bar, and pie charts

ff Creating combined charts

ff Updating live data in charts with polling

ff Interacting with charts via AJAX

ff Basic mapping with GMaps

ff Adding, selecting, and dragging markers in maps

ff Creating rectangles, circles, polylines, and polygons in maps

ff Enabling InfoWindow and streetView on maps

Introduction
In this chapter, we will cover chart creation with PrimeFaces' extensive charting features and
create maps based on Google Maps. PrimeFaces offers basic and advanced charting with its
easy-to-use and user-friendly charting infrastructure. Along with basic charting, live updating
of chart data and interaction with charts via the AJAX mechanism will also be covered. In
version 5.0, chart components were re-implemented in order to overcome limitations. Now,
they are more model-driven instead of implementing with component attributes.

Throughout the chapter, we will cover mapping abilities, such as drawing polylines and
polygons, and then move on to advanced topics such as handling markers and events and
adding information panels and controls on map as overlays.

Creating Charts and Maps

284

Creating line, area, bar, and pie charts
PrimeFaces offers one base component named chart, which provides different charting
according to the provided type attribute. In this recipe, we will create line, area, bar, and pie
charts using this component.

How to do it…
A basic definition of a line chart with two series of data is given here:

<p:chart type="line" model="#{chartBean.model}"
 style="height:250px" />

The model defined for the line chart is given here:

private LineChartModel createLineModel() {
 LineChartModel model = new LineChartModel();
 LineChartSeries sales = new LineChartSeries();
 sales.setLabel("Sales");
 sales.set(2004, 1000);
 sales.set(2005, 1170);
 sales.set(2006, 660);
 sales.set(2007, 1030);

 LineChartSeries expenses = new LineChartSeries();
 expenses.setLabel("Expenses");
 expenses.set(2004, 400);
 expenses.set(2005, 460);
 expenses.set(2006, 1120);
 expenses.set(2007, 540);

 model.addSeries(sales);
 model.addSeries(expenses);
 model.setTitle("Company Performance");

 return model;
}

Chapter 9

285

The visual output of the chart is given here:

It's advised that you specify the height for your charts via the
style attribute to render them properly on the page.

There's more…
By default, the chart component renders axis labels with decimal points, and sometimes, it
might not make sense for values such as years. To disable this, a JavaScript definition should
be added and attached to the chart with the extender definition of the model, as given here:

model.setExtender("chart");

The value defined in the extender will be the name for the JavaScript method. Then, we can
access the axis that we'd like to correct and set its format as follows:

<script type="text/javascript">
 function chart() {
 this.cfg.axes.xaxis.tickOptions = {
 formatString : '%d'
 };
 }
</script>

Creating area charts
To create area charts, we will use LineChartModel and its series given when creating the
line chart, but we will set fill to true here:

sales.setFill(true);
expenses.setFill(true);

Creating Charts and Maps

286

The visual output is as follows:

Creating bar charts
It's also possible to create a bar chart using the same chart series. The model that will be
used for binding should be an instance of BarChartModel and type should be set to bar.
Here's how you can create the bar chart:

<p:chart type="bar" model="#{chartBean.barModel}" />

The visual output of the bar chart is given here:

Chapter 9

287

Creating pie charts
To create a pie chart, we need to define an instance of PieChartModel and set values
into it by configuring its legends and labels as follows:

PieChartModel model = new PieChartModel();
model.setLegendPosition("w");
model.setShowDataLabels(true);
model.set("Work", 11);
model.set("Eat", 2);
model.set("Commute", 2);
model.set("Watch TV", 2);
model.set("Sleep", 7);

The definition of the chart component for the model is as follows:

<p:chart type="pie" model="#{chartBean.pieModel}" />

The visual output of the pie chart with legends is given here:

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter9/chart.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Creating Charts and Maps

288

Creating combined charts
The chart component supports combining multiple data series into one cartesian model.

How to do it…
A basic definition for a chart with one line and bar model is given here:

<p:chart type="bar" model="#{chartBean.combinedModel}"
 style="height:250px" />

The combined model definition is given here:

CartesianChartModel combinedModel = new BarChartModel();

public CartesianChartModel getCombinedModel() {
 LineChartSeries sales = new LineChartSeries();
 sales.setLabel("Sales");
 sales.set(2004, 1000);
 sales.set(2005, 1170);
 sales.set(2006, 660);
 sales.set(2007, 1030);

 BarChartSeries expenses = new BarChartSeries();
 expenses.setLabel("Expenses");
 expenses.set("2004", 400);
 expenses.set("2005", 460);
 expenses.set("2006", 1120);
 expenses.set("2007", 540);

 combinedModel.addSeries(sales);
 combinedModel.addSeries(expenses);

 return combinedModel;
}

Chapter 9

289

The visual output of the chart is given here:

The implementation could either be based on BarChartModel, as
given in the preceding graph, or it can be done the other way around
by first taking LineChartModel and then adding the series into it.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter9/combinedChart.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Creating Charts and Maps

290

Updating live data in charts with polling
The chart component nicely integrates with the <p:poll> component to update itself with
an ever-changing data model.

How to do it…
A basic definition for a chart with live data is given here:

<p:poll interval="2" update="live" />
<p:chart id="live" type="pie" model="#{chartBean.livePieModel}"
 style="height:250px" />

The randomly generated model for the chart is implemented here:

public PieChartModel getLivePieModel() {
 int random1 = (int)(Math.random() * 1000);
 int random2 = (int)(Math.random() * 1000);

 liveChartModel.getData().put("Candidate 1", random1);
 liveChartModel.getData().put("Candidate 2", random2);
 liveChartModel.setLegendPosition("w");
 liveChartModel.setShowDataLabels(true);

 return liveChartModel;
}

The visual output will be updated every 2 seconds, and the new model will be rendered with
its randomly generated values.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter9/pollingChart.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 9

291

Interacting with charts via AJAX
The chart component offers AJAX behavior events to interact with the chart by item selection.

How to do it…
A basic definition for a chart with <p:ajax> bundled inside is given here:

<p:chart type="bar" id="withAjax" model="#{chartBean.barModel}"
 style="height:250px">
 <p:ajax event="itemSelect" listener="#{chartBean.itemSelect}"
 update="growl" />
</p:chart>

The itemSelect method retrieves an instance of org.primefaces.event.
ItemSelectEvent, which enables us to access the item index and series index of the
selected chart item. The usage of the itemSelect method is given here:

public void itemSelect(ItemSelectEvent event) {
 MessageUtil.addInfoMessageWithoutKey("Item selected",
 "Item Index:" + event.getItemIndex() +
 ", Series Index: " + event.getSeriesIndex());
}

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter9/chartInteraction.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Creating Charts and Maps

292

Basic mapping with GMaps
The gmap component provides ways to integrate Google Maps into JSF applications. It is built
upon Google Maps API V3.

How to do it…
In order to use the component, the Google Maps API script should be referenced from the
page, ideally in the header section:

<script src="http://maps.google.com/maps/api/js?sensor=true"
 type="text/javascript"></script>

The sensor parameter in the URL is mandatory, and it specifies whether the application
requires a sensor, such as a GPS locator.

A simple definition of placing a map canvas on page is given here:

<p:gmap center="41.106261, 29.057465" zoom="10" type="hybrid"
 style="width:600px;height:400px" />

This output will be rendered as follows:

Chapter 9

293

How it works…
The gmap component depicts four attributes that should be set, as shown in the previous
example, in order to use the map canvas properly. The center attribute defines the center of
the map in the [latitude, longitude] format. The zoom attribute defines the zoom level
of the map. Zoom levels between 0 (the lowest zoom level, in which the entire world can be seen
on one map) and 21+ (down to individual buildings) are possible. The type attribute declares
the type of the map with one of the following values: roadmap (the default value), satellite,
hybrid, or terrain. The style attribute could be used to define dimensions of the map
canvas.

There's more…
It is also possible to bind the component to a model with an instance of org.primefaces.
model.map.MapModel. PrimeFaces provides org.primefaces.model.map.
DefaultMapModel as the default model implementation. DefaultMapModel is a wrapper
class for markers, polylines, polygons, circles, and rectangles. Here's how you can bind the
gmap component to a model:

<p:gmap center="41.106261, 29.057465" zoom="10" type="roadmap"
 style="width:600px;height:400px"
 model="#{mapBean.markerModel}" />

Configuring controls
The gmap component provides the disableDefaultUI attribute. By setting it
to true, controls will be removed regardless of the status of other attributes. The
disabledDoubleClickZoom attribute disables zooming on double-click. The draggable
attribute defines the "draggability" of the map; it could be used to define static maps, which
means no panning.

The gmap component provides two attributes—navigationControl
and mapTypeControl—to set the visibility of map controls. The
mapTypeControl attribute enables/disables the map type control that
lets the user toggle between map types (such as Map and Satellite).
By default, this control is visible and appears in the top-right corner of
the map. The visibility of the navigation controls can be set with the
navigationControl attribute.
In version 5.2, the navigationControl and mapTypeControl
attributes do not work as expected. Please use the
disableDefaultUI attribute to enable/disable all controls.

Creating Charts and Maps

294

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter9/map.jsf.

Adding, selecting, and dragging markers in
maps

It is possible to add markers onto the map via a data model and then select or drag it by
interacting with the map.

How to do it…
The marker should be an instance of org.primefaces.model.map.Marker. Markers can
be easily constructed by providing an instance of org.primefaces.model.map.LatLng
to define their position. The latitude and longitude values could be provided to the
LatLng class as constructor parameters. Markers will be added to the data model via the
addOverlay method. This is shown in the following code:

MapModel markerModel = new DefaultMapModel();
markerModel.addOverlay(new Marker(new LatLng(41.073399,
 29.051971), "Bosphorus"));
markerModel.addOverlay(new Marker(new LatLng(41.118418,
 29.134026), "Bosphorus"));

The attributes of org.primefaces.model.map.Marker are listed in the following table:

Property Default Type Description
title null String This is the text to display on rollover
latlng null LatLng This is the location of the marker
icon null String This is the foreground image of the

marker
shadow null String This is the shadow image of the marker
cursor pointer String This is the cursor to display on rollover
draggable False Boolean This defines whether the marker can be

dragged
clickable True Boolean This defines whether the marker can be

clicked

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 9

295

Property Default Type Description
flat False Boolean This is the shadow image not displayed

when set to true
visible True Boolean This defines the visibility of the marker

There's more…
The gmap component offers the overlaySelect and markerDrag AJAX behavior events to
handle the selection and dragging of the markers placed on the map.

Selecting markers
The definition of <p:ajax>, along with the listener method, is given here:

<p:gmap ...>
 <p:ajax event="overlaySelect"
 listener="#{mapBean.onMarkerSelect}" update="growl" />
</p:gmap>

public void onMarkerSelect(OverlaySelectEvent event) {
 Marker selectedMarker = (Marker) event.getOverlay();
 MessageUtil.addInfoMessageWithoutKey(selectedMarker.getTitle(),
 selectedMarker.getLatlng().toString());
}

Dragging markers
To have draggable markers, each marker's draggable attribute should be set to true first.
Then, the definition of <p:ajax>, along with the listener method, can be performed, as
shown here:

<p:gmap ...>
 <p:ajax event="markerDrag"
 listener="#{mapBean.onMarkerDrag}" update="growl" />
</p:gmap>

public void onMarkerDrag(MarkerDragEvent event) {
 MessageUtil.addInfoMessage("marker.dragged",
 event.getMarker().getLatlng().toString());
}

Creating Charts and Maps

296

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter9/mapMarkers.jsf.

Creating rectangles, circles, polylines, and
polygons in maps

The gmap component supports the drawing of rectangles, circles, polylines, and polygons on
the map canvas.

How to do it…
All drawings can be implemented as an instance of DefaultMapModel, as stated here:

private MapModel rectangleModel = new DefaultMapModel();
private MapModel circleModel = new DefaultMapModel();
private MapModel polylineModel = new DefaultMapModel();
private MapModel polygonModel = new DefaultMapModel();

All models contain instances of LatLng, where they define the points for the drawings. The
rectangle model can be defined with two points, upper-left and lower-right, which are wrapped
in an instance of LatLngBounds. This is shown in the following code:

rectangleModel.addOverlay(new Rectangle(new LatLngBounds(
 new LatLng(41.073399, 29.051971),
 new LatLng(41.118418, 29.134026))));

The circle model accepts a point and the radius value to be defined:

Circle circle =new Circle(new LatLng(41.073399, 29.051971), 5000);
circleModel.addOverlay(circle);

The polyline drawings can be defined with a list of points, as shown here:

Polyline polyline = new Polyline();
polyline.getPaths().add(new LatLng(41.073399, 29.051971));
polyline.getPaths().add(new LatLng(41.118418, 29.134026));
polyline.getPaths().add(new LatLng(41.027807, 29.049973));
polylineModel.addOverlay(polyline);

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 9

297

The polygon's definition is similar to the polyline's, but the output will be a closed drawing
filled inside. The opacity of the filling can be configured with the setFillOpacity() method
of the polygon model. This is shown in the following code:

Polygon polygon = new Polygon();
polygon.getPaths().add(new LatLng(41.073399, 29.051971));
polygon.getPaths().add(new LatLng(41.118418, 29.134026));
polygon.getPaths().add(new LatLng(41.027807, 29.049973));
polygonModel.addOverlay(polygon);

Binding these models to the <p:gmap> component separately will do the trick, as shown in
the following screenshot:

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter9/mapDrawings.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Creating Charts and Maps

298

Enabling InfoWindow and streetView on
maps

The gmap component uses the gmapInfoWindow helper component to display a component
that renders two markers with an information window attached.

How to do it…
A basic definition of gmap with the information window is given here:

<p:gmap id="withInformation" center="41.106261, 29.057465"
 zoom="10" type="roadmap" style="width:600px;height:400px"
 model="#{mapBean.markerModel}">
 <p:ajax event="overlaySelect"
 listener="#{mapBean.selectMarker}" />
 <p:gmapInfoWindow id="infoWindow">
 <p:graphicImage
 value="/resources/images/map/#{mapBean.selected
 Marker.data}" />
 </p:gmapInfoWindow>
</p:gmap>

The visual output is shown here:

Chapter 9

299

There's more…
It is possible to enable the street view by setting the streetView attribute to true. Then,
the user will be able to drag the human icon onto the blue lines on the map, which depict
the viewable streets/roads. This is shown in the following screenshot:

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter9/mapInfoView.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

301

10
Client-side Validation

In this chapter, we will cover the following topics:

ff Configuring and getting started with CSV

ff Instant validation with p:clientValidator

ff Bean Validation and transformation

ff Extending CSV with JSF

ff Extending CSV with Bean Validation

Introduction
Validation exists to ensure that the application is robust against all forms of input data.
Invalid data can cause unexpected execution errors, break assumptions elsewhere in your
application, introduce errors, and even let someone hijack your data to attack your software.
Every software should have server-side validation.

In addition, validation on the client side enables quick feedback for the users without a
round trip to the server. That means client-side validation is faster and enables the user to fix
problems without sending input data to the server. We can say that server-side validation is a
must-have and client-side validation is nice to have for every software.

Client-side Validation

302

In this chapter, we will learn how to implement Client-side Validation (CSV) with PrimeFaces.
PrimeFaces Client Side Validation Framework is the most complete and advanced CSV
solution for JavaServer Faces (JSF). It implements an API for JSF validation within the
browser. This implementation is compatible with the server-side implementation so that users
do not experience different behaviors on the client and server sides. They can use the same
standard JSF validators and converters without worrying about implementation details. A few
of the other features of PrimeFaces CSV are:

ff Supporting process and update attributes for AJAX

ff Utilizing PrimeFaces message components for CSV

ff Supporting i18n validation messages configured on the client side

ff Instant validation for various events

ff Integrating CSV with Bean Validation

ff Ease of writing custom validators and converters

CSV only works for PrimeFaces components; standard h:* components
are not supported.

Configuring and getting started with CSV
PrimeFaces CSV is easy to configure. It works with AJAX and non-AJAX requests. It supports
partial processing and updating on the client side. There is almost no effort for the users if
they plan to add a CSV support to their web applications.

In this recipe, we will see how to configure and use PrimeFaces Client Side Validation
Framework. We will develop input components with attached standard validators and
converters and see how client-side validation works in action. We will also learn how the text
for validation messages can be customized in JavaScript to be used with PrimeFaces CSV.

Getting ready
CSV is disabled by default. To enable the CSV Framework, a configuration parameter in
web.xml is required:

<context-param>
 <param-name>
 primefaces.CLIENT_SIDE_VALIDATION
 </param-name>
 <param-value>true</param-value>
</context-param>

Chapter 10

303

Now, you are able to use CSV by setting the validateClient attribute to true for command
components such as p:commandButton or p:commandLink. After that, a click on a button
or link validates the form fields on the client side and displays validation errors in message
components.

How to do it…
For demonstration purposes, we will create a bean with seven properties, which have various
data types:

@Named
@ViewScoped
public class BasicCsvBean implements Serializable {

 private String string1;
 private String string2;
 private String string3;
 private Integer int1;
 private Double double1;
 private Double double2;
 private Date date1;

 // getters / setters
 ...
}

The bean's properties are bound to the values of input components. Furthermore, a few
standard JSF validators and converters are attached to the input components. The following
code shows this:

<p:messages id="messages"/>

<h:panelGrid id="grid" columns="2" cellpadding="3"
 style="margin-bottom:10px;">
 <p:outputLabel for="text1" value="Text1"/>
 <p:inputText id="text1" value="#{basicCsvBean.string1}"
 required="true" label="Text1"/>

 <p:outputLabel for="text2" value="Text2"/>
 <p:inputText id="text2" value="#{basicCsvBean.string2}"
 label="Text2">
 <f:validateLength minimum="5" maximum="8"/>
 </p:inputText>

Client-side Validation

304

 <p:outputLabel for="text3" value="Text3"/>
 <p:inputText id="text3" value="#{basicCsvBean.string3}"
 label="Text3">
 <f:validateRegex pattern="^[\d]+$"/>
 </p:inputText>

 <p:outputLabel for="int1" value="Integer1"/>
 <p:inputText id="int1" value="#{basicCsvBean.int1}"
 label="Integer1">
 <f:convertNumber integerOnly="true"/>
 </p:inputText>

 <p:outputLabel for="double1" value="Double1"/>
 <p:inputText id="double1" value="#{basicCsvBean.double1}"
 label="Double1">
 <f:validateDoubleRange minimum="5.5" maximum="8.5"/>
 </p:inputText>

 <p:outputLabel for="double2" value="Double2"/>
 <p:inputText id="double2" value="#{basicCsvBean.double2}"
 label="Double2">
 <f:convertNumber type="currency" currencySymbol="$"/>
 </p:inputText>

 <p:outputLabel for="date1" value="Date1"/>
 <p:inputText id="date1" value="#{basicCsvBean.date1}"
 label="Date1">
 <f:convertDateTime pattern="dd.MM.yyyy"/>
 </p:inputText>
</h:panelGrid>

<p:commandButton validateClient="true"
 value="Submit (Non-Ajax)" ajax="false"
 style="margin-right:5px"
 onclick="PF('inputValuesWdgt').hide()"/>
<p:commandButton validateClient="true"
 value="Submit (Ajax)"
 process="grid" update="grid messages inputValues"
 onclick="PF('inputValuesWdgt').hide()"
 oncomplete="PF('inputValuesWdgt').show()"/>

<p:dialog header="Input values" closeOnEscape="true"
 visible="#{facesContext.postback and

Chapter 10

305

 !facesContext.validationFailed}"
 widgetVar="inputValuesWdgt">
 <h:panelGrid id="inputValues" columns="1" cellpadding="3">
 <h:outputText value="#{basicCsvBean.string1}"/>
 <h:outputText value="#{basicCsvBean.string2}"/>
 <h:outputText value="#{basicCsvBean.string3}"/>
 <h:outputText value="#{basicCsvBean.int1}"/>
 <h:outputText value="#{basicCsvBean.double1}"/>
 <h:outputText value="#{basicCsvBean.double2}">
 <f:convertNumber type="currency" currencySymbol="$"/>
 </h:outputText>
 <h:outputText value="#{basicCsvBean.date1}">
 <f:convertDateTime pattern="dd.MM.yyyy"/>
 </h:outputText>
 </h:panelGrid>
</p:dialog>

Two command buttons process the input components in non-AJAX and AJAX cases,
respectively. In the AJAX case, the inputs, the messages component, and the content of a
dialog are updated. The p:messages tag displays errors if validation fails and p:dialog
displays the submitted values if everything is OK. A failed validation is shown here:

Client-side Validation

306

The dialog looks like this:

How it works…
In the example, the input components are validated on the client side because
p:commandButton has validateClient="true". In non-AJAX cases, all visible and
editable components in the form (h:form) get validated without the need to send a non-AJAX
request. The message components must be placed inside the form too.

In AJAX cases, the whole processing happens on the client side. If the process attribute is
enabled, the components that would be processed on the server side get validated on the
client side. If the update attribute is defined, the components that would be updated on the
server side get updated on the client side.

Note the advantage of p:outputLabel, which is highlighted in red on
an attempt to update it when the corresponding input field is invalid.

PrimeFaces message components have client-side renderers for CSV support; these are
p:message, p:messages, and p:growl. Lots of options for these components, such as
showSummary, showDetail, globalOnly, and redisplay, are supported on the client
side as well.

Chapter 10

307

There's more…
The text for validation messages is retrieved from client-side bundles. PrimeFaces only
provides bundles in the English language. The default text is located in the validation.js
and beanvalidation.js files that are included by PrimeFaces automatically.

For more languages, please follow the instructions for PrimeFaces
Locales http://code.google.com/p/primefaces/wiki/
PrimeFacesLocales.

Default text can be easily customized. The next JavaScript snippet overwrites the PrimeFaces'
default text for missing values in the required fields and the f:validateLength and
f:validateRegex validators. This text is displayed in the first picture showed earlier. Here's
the JavaScript snippet that is being discussed:

PrimeFaces.locales['en'] = {
 messages: PrimeFaces.locales['en_US'].messages
};

$.extend(PrimeFaces.locales['en'].messages, {
 'javax.faces.component.UIInput.REQUIRED':
 '{0}: Value is required.',
 'javax.faces.validator.LengthValidator.MINIMUM':
 '{1}: Length is less than allowable minimum of \'{0}\'',
 'javax.faces.validator.LengthValidator.MAXIMUM':
 '{1}: Length is greater than allowable maximum of \'{0}\'',
 'javax.faces.validator.RegexValidator.NOT_MATCHED':
 'Value does not match regex pattern {0}'
});

The JavaScript snippet can be placed in the lang_en.js file in the resources/js folder
and included on a page via h:outputScript. This is shown in the following code:

<h:outputScript library="js"
 name="lang_#{facesContext.viewRoot.locale.language}.js"/>

The same approach can be applied to all other languages in a multilanguage web application.

We get the language from ViewRoot, but getting the language from a
bean, such as #{userBean.language}, is possible too.

http://code.google.com/p/primefaces/wiki/PrimeFacesLocales
http://code.google.com/p/primefaces/wiki/PrimeFacesLocales

Client-side Validation

308

See also
Consider the use of p:clientValidator if you would like to validate user' inputs instantly.
This use case is described in the next recipe, Instant validation with p:clientValidator.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter10/basicCsv.jsf.

Instant validation with p:clientValidator
Sometimes, users don't want to fill all form elements and hit p:commandButton or
p:commandLink to get feedback about valid values. They would like to get feedback
immediately, for example, during typing or while leaving a field. CSV allows us to validate input
values instantly on the client side by means of p:clientValidator.

In this recipe, we will meet p:clientValidator and develop an example with instant
validation on the change, keyup, and blur events.

How to do it…
First, we have to create a bean with three properties, as shown here:

@Named
@ViewScoped
public class InstantCsvBean implements Serializable {

 private String value1;
 private Integer value2;
 private Date value3;

 // getters / setters
}

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 10

309

In Facelets, the properties are bound to the values of p:inputText. Every p:inputText
tag will obtain an attached p:clientValidator tag with a specified event. A missing event
means the change event, which is set as default in this case. This is shown in the following
code:

<h:panelGrid columns="3" cellpadding="3">
 <p:outputLabel for="text" value="Validation on change"/>
 <p:inputText id="text" value="#{instantCsvBean.value1}">
 <f:validateLength minimum="2" maximum="4"/>
 <p:clientValidator/>
 </p:inputText>
 <p:message for="text"/>

 <p:outputLabel for="int" value="Validation on keyup"/>
 <p:inputText id="int" value="#{instantCsvBean.value2}">
 <p:clientValidator event="keyup"/>
 </p:inputText>
 <p:message for="int"/>

 <p:outputLabel for="date" value="Validation on blur"/>
 <p:inputText id="date" value="#{instantCsvBean.value3}">
 <f:convertDateTime pattern="dd.MM.yyyy"/>
 <p:clientValidator event="blur"/>
 </p:inputText>
 <p:message for="date"/>
</h:panelGrid>

How it works…
The first attached p:clientValidator tag validates the String value if it has a
length between two and four characters. Validation occurs at the time when the input
value has been changed and the focus has left the field (onchange event). The second
p:clientValidator tag validates the Integer value when the user is typing into the
input field (onkeyup event). The third p:clientValidator tag validates the Date value
when the input field loses the focus (onblur event). The onblur event is most often used
with form validation. Connected p:message components are updated automatically on the
mentioned events. They display validation errors as usual in these cases.

Client-side Validation

310

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter10/instantCsv.jsf.

Bean Validation and transformation
Validating input received from the user to maintain data integrity is an important part of
application logic. Validation of data can take place at different layers in an application. Bean
Validation (http://beanvalidation.org) is a validation model available as part of the
Java EE 6 platform, which allows validation by constraints in the form of annotations placed
on a field, method, or class. JSF 2.2 supports validation placed on fields (properties and
their getters/setters) in managed beans as well as Spring and CDI beans. Validation on the
class level is not supported as long as you do not use utilities such as OmniFaces (http://
showcase.omnifaces.org/validators/validateBean).

The PrimeFaces' CSV has a built-in integration with Bean Validation. Constraints defined with
annotations can be validated on the client side by the CSV Framework.

In this recipe, we will develop an example with all available standard Bean Validation
constraints. These constraints correspond to the @AssertFalse, @AssertTrue, @
DecimalMax, @DecimalMin, @Digits, @Future, @Past, @Max, @Min, @NotNull, @
Null, @Pattern, and @Size annotations. PrimeFaces provides client-side validators for all
mentioned annotations.

Getting ready
To enable Bean Validation, a Maven artifact for the Validation API is required. The following
dependency in pom.xml ensures that we can use Bean Validation Framework:

<dependency>
 <groupId>javax.validation</groupId>
 <artifactId>validation-api</artifactId>
 <version>1.1.0.Final</version>
 <scope>provided</scope>
</dependency>

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition
http://beanvalidation.org
http://showcase.omnifaces.org/validators/validateBean
http://showcase.omnifaces.org/validators/validateBean

Chapter 10

311

How to do it…
We put all constraint annotations in the BVBean bean on its properties, as shown in the
following code:

@Named(value = "bvBean")
@ViewScoped
public class BVBean implements Serializable {

 @AssertFalse
 private boolean supported;

 @AssertTrue
 private boolean active;

 @DecimalMin("5.00") @DecimalMax("30.00")
 private BigDecimal discount;

 @Digits(integer = 6, fraction = 2)
 private Double price;

 @Future
 private Date eventDate;

 @Past
 private Date birthday;

 @Min(5) @Max(10)
 private int quantity;

 @NotNull
 private String username;

 @Null
 private String unusedString;

 @Pattern(regexp = "\\(\\d{3}\\)\\d{3}-\\d{4}")
 private String phoneNumber;

 @Size(min = 2, max = 50)
 private String briefMessage;

 // getters / setters
 ...
}

Client-side Validation

312

In Facelets, the properties are bound to the values of p:selectBooleanCheckbox and
p:inputText. This is shown in the following code:

<p:messages id="messages"/>

<h:panelGrid id="grid" columns="2" cellpadding="3"
 style="margin-bottom:10px;">
 <p:outputLabel for="input1" value="Boolean @AssertFalse"/>
 <p:selectBooleanCheckbox id="input1" value="#{bvBean.supported}"/>

 <p:outputLabel for="input2" value="Boolean @AssertTrue"/>
 <p:selectBooleanCheckbox id="input2" value="#{bvBean.active}"/>

 <p:outputLabel for="input3" value="BigDecimal @DecimalMin /
 Max"/>
 <p:inputText id="input3" value="#{bvBean.discount}"/>

 <p:outputLabel for="input4" value="Double @Digits"/>
 <p:inputText id="input4" value="#{bvBean.price}"/>

 <p:outputLabel for="input5" value="Date @Future"/>
 <p:inputText id="input5" value="#{bvBean.eventDate}">
 <f:convertDateTime pattern="MM/dd/yyyy"/>
 </p:inputText>

 <p:outputLabel for="input7" value="Date @Past"/>
 <p:inputText id="input7" value="#{bvBean.birthday}">
 <f:convertDateTime pattern="MM/dd/yyyy"/>
 </p:inputText>

 <p:outputLabel for="input8" value="int @Min / @Max"/>
 <p:inputText id="input8" value="#{bvBean.quantity}"/>

 <p:outputLabel for="input9" value="String @NotNull"/>
 <p:inputText id="input9" value="#{bvBean.username}"/>

 <p:outputLabel for="input10" value="String @Null"/>
 <p:inputText id="input10" value="#{bvBean.unusedString}"/>

 <p:outputLabel for="input11" value="String @Pattern"/>
 <p:inputText id="input11" value="#{bvBean.phoneNumber}"/>

Chapter 10

313

 <p:outputLabel for="input12" value="String @Size"/>
 <p:inputText id="input12" value="#{bvBean.briefMessage}"/>
</h:panelGrid>

<p:commandButton validateClient="true"
 value="Submit" ajax="false"
 onclick="PF('inputValuesWdgt').hide()"/>

If validation fails, errors are shown in p:messages. Otherwise, valid input values are shown
in p:dialog on postback. The following code shows this:

<p:dialog header="Input values" closeOnEscape="true"
 visible="#{facesContext.postback and
 !facesContext.validationFailed}"
 widgetVar="inputValuesWdgt">
 <h:panelGrid id="inputValues" columns="1" cellpadding="3">
 <h:outputText value="#{bvBean.supported}"/>
 <h:outputText value="#{bvBean.active}"/>
 <h:outputText value="#{bvBean.discount}"/>
 <h:outputText value="#{bvBean.price}"/>
 <h:outputText value="#{bvBean.eventDate}">
 <f:convertDateTime pattern="MM/dd/yyyy"/>
 </h:outputText>
 <h:outputText value="#{bvBean.birthday}">
 <f:convertDateTime pattern="MM/dd/yyyy"/>
 </h:outputText>
 <h:outputText value="#{bvBean.quantity}"/>
 <h:outputText value="#{bvBean.username}"/>
 <h:outputText value="#{bvBean.unusedString}"/>
 <h:outputText value="#{bvBean.phoneNumber}"/>
 <h:outputText value="#{bvBean.briefMessage}"/>
 </h:panelGrid>
</p:dialog>

How it works…
In the example, the input components are validated on the client side by setting
validateClient="true" on p:commandButton. Thanks to PrimeFaces' built-in client-
side validators and converters, we do not need to deal with writing any JavaScript code.
However, there is one specialty of the @NotNull constraint—that input is required. By
default, JSF treats no input as an empty string. In this case, an empty string will pass this
validation constraint. However, if you set the javax.faces.INTERPRET_EMPTY_STRING_
SUBMITTED_VALUES_AS_NULL context parameter in web.xml to true, the value of the
bean property is passed to the Bean Validation runtime as a null value, causing the @
NotNull constraint to fail.

Client-side Validation

314

There's more…
PrimeFaces can take certain Bean Validation constraints and transform them into component
and HTML attributes. These transformations avoid manual maintenance of these attributes for
component tags. For instance, the required and maxlength attributes are not required to
be set when the @NotNull and @Size annotations are available. Transformation is enabled
by setting the following context parameter in web.xml:

<context-param>
 <param-name>primefaces.TRANSFORM_METADATA</param-name>
 <param-value>true</param-value>
</context-param>

Now, you can write the following in a bean:

@NotNull
@Max(140)
private String sms;

You can omit the required and maxlength attributes for p:inputText because the HTML
output gets maxlength="140" from the @Max(140) annotation, and the component's
required attribute is set to true due to the @NotNull annotation:

<p:inputText value="#{bean.sms}"/>

See also
ff PrimeFaces provides messages in the beanvalidation.js file that can be customized,

as described in the Configuring and getting started with CSV recipe

ff The Extending CSV with Bean Validation recipe shows you how to write custom
validators for Bean Validation and how to add new messages

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter10/bvCsv.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 10

315

Extending CSV with JSF
The Client Side Validation API makes it possible to write our own validators and converters.
The writing process is straightforward.

In this recipe, we will develop a custom JSF validator that validates any Unicode strings.
The validator will check whether an input value consists of letters, spaces, hyphens, and
apostrophes. Any other characters are not allowed. This is a common requirement for validating
names of persons, addresses, and similar inputs. We will use the CSV API to implement both
server-side and client-side validators. After that, we will see validation in action.

How to do it…
A custom JSF validator must implement two interfaces: javax.faces.validator.
Validator and org.primefaces.validate.ClientValidator. The first interface
defines a well-known validate() method, and the second one defines the getMetadata()
and getValidatorId() methods. Implementing the getMetadata() method should
provide optional metadata. Implementing the getValidatorId() method should provide
a unique ID. Both pieces of information are used in the client-side validator implemented
in JavaScript. As metadata, we would like to use a custom parameter for the fixed localized
message. The parameter will, therefore, be exposed to the JavaScript code. We will start with
the server-side implementation. The complete validator code looks like this:

@FacesValidator("org.primefaces.cookbook.UnicodeValidator")
public class UnicodeValidator
 implements Validator, ClientValidator, Serializable {

 private static final String MESSAGE_METADATA = "data-param";
 private static final String REGEX =
 "[\\p{L}\\-\\'\\´\\`\\s]+";

 private String msgparam;

 @Override
 public void validate(FacesContext context,
 UIComponent component,
 Object value) throws ValidatorException {
 if (value == null) {
 return;
 }

Client-side Validation

316

 boolean valid = value.toString().matches(REGEX);
 if (!valid) {
 String param = MessageUtil.getMessage(msgparam);
 String msg = MessageUtil.getMessage(
 "invalid.unicode", param);
 throw new ValidatorException(new FacesMessage(
 FacesMessage.SEVERITY_ERROR, null, msg));
 }
 }

 @Override
 public Map<String, Object> getMetadata() {
 Map<String, Object> metadata =
 new HashMap<String, Object>();
 String param = MessageUtil.getMessage(msgparam);
 metadata.put(MESSAGE_METADATA, param);

 return metadata;
 }

 @Override
 public String getValidatorId() {
 return UnicodeValidator.class.getSimpleName();
 }

 public String getMsgparam() {
 return msgparam;
 }

 public void setMsgparam(String msgparam) {
 this.msgparam = msgparam;
 }
}

We use the [\\p{L}\\-\\'\\´\\`\\s]+ regular expression to validate user input.
MessageUtil is a utility class used to get message text from resource bundles. It is not
specified here. The msgparam property is mentioned in the preceding variable parameter
for the localized message. The validator should be registered in facelet-taglib:

<?xml version="1.0"?>
<facelet-taglib version="2.2" ...>
 <namespace>
 http://primefaces.org/ui/cookbook
 </namespace>

Chapter 10

317

 <tag>
 <tag-name>validateUnicode</tag-name>
 <validator>
 <validator-id>
 org.primefaces.cookbook.UnicodeValidator
 </validator-id>
 </validator>
 <attribute>
 <name>msgparam</name>
 <required>true</required>
 <type>java.lang.String</type>
 </attribute>
 </tag>
</facelet-taglib>

The message keys and text for this example are defined in property files acting as resource
bundles. The English version looks like this:

firstName=First Name
lastName=Last Name
invalid.unicode={0} may only contain letters, spaces, hyphens and
 apostrophes

Let's go to the client-side implementation. First, we have to create a JavaScript file, say
validators.js, and register there our own validator in the PrimeFaces.validator
namespace with the name UnicodeValidator. This name is the unique ID mentioned
earlier. The function to be implemented is called validate(). It has two parameters—the
element itself and the current input value to be validated. The following code shows this:

PrimeFaces.validator['UnicodeValidator'] = {
 regex: XRegExp("^[\\p{L}-'´`\\s]+$"),

 MESSAGE_ID: 'invalid.unicode',

 validate: function (element, value) {
 if (!this.regex.test(value)) {
 throw PrimeFaces.util.ValidationContext.getMessage(
 this.MESSAGE_ID, element.data('param'));
 }
 }
};

Client-side Validation

318

Second, we have to create a JavaScript file for localized messages, for example, lang_en.js.
The messages should be the same as already defined in the server-side resource bundles.
The following code shows this:

PrimeFaces.locales['en'] = {
 messages : PrimeFaces.locales['en_US'].messages
};

$.extend(PrimeFaces.locales['en'].messages, {
 ...

 'invalid.unicode':
 '{0} may only contain letters, spaces, hyphens and apostrophes'
});

The bean contains two properties of the String type. The following code shows this:

@Named
@ViewScoped
public class ExtendCsvBean implements Serializable {

 private String firstName;
 private String lastName;

 // getters / setters
 ...
}

Now, we can take the xmlns:book="http://primefaces.org/ui/cookbook"
namespace from facelet-taglib and write the following XHTML snippet:

<h:panelGrid columns="3" cellpadding="3"
 style="margin-bottom:10px;">
 <p:outputLabel for="firstName" value="First Name"/>
 <p:inputText id="firstName"
 value="#{extendCsvBean.firstName}">
 <book:validateUnicode msgparam="firstName"/>
 </p:inputText>
 <p:message for="firstName"/>

Chapter 10

319

 <p:outputLabel for="lastName" value="Last Name"/>
 <p:inputText id="lastName"
 value="#{extendCsvBean.lastName}">
 <book:validateUnicode msgparam="lastName"/>
 </p:inputText>
 <p:message for="lastName"/>
</h:panelGrid>

<p:commandButton validateClient="true"
 value="Submit" ajax="false"/>

The book:validateUnicode validator is attached to p:inputText:

Using <f:validator validatorId=" org.primefaces.
cookbook.UnicodeValidator"/> could be possible too if we
were not using any attributes for the validator tag.

In the last step, all required JavaScript files have to be included on the page. Besides lang_
en.js and validators.js, we need to include a JavaScript library for extensible regular
expressions supporting Unicode and more (http://xregexp.com). The following code
shows this:

<h:outputScript library="js" name="chapter10/lang_en.js"/>
<h:outputScript library="js" name="chapter10/xregexp-all.js"/>
<h:outputScript library="js" name="chapter10/validators.js"/>

Validation happens on the client-side without a round trip to the server. Setting
validateClient="false" would trigger a server-side validation. The following screenshot
shows the end result when validation fails:

http://xregexp.com

Client-side Validation

320

How it works…
The getMetadata()method provides a map with name-value pairs. The metadata is
exposed in the rendered HTML. The values can be accessed on the client side via element.
data(name), where element is a jQuery object for the underlying native HTML element. The
metadata in the example is rendered as follows:

<input data-param="First Name" .../>

<input data-param="Second Name" .../>

Client-side validation happens by means of the useful JavaScript library, XRegExp. We need
this library because the native JavaScript regular expressions do not support Unicode (the
\\p{L} expression in the regex). If validation fails, we throw an exception by invoking throw
PrimeFaces.util.ValidationContext.getMessage(text, parameter).

There's more…
Client-side converters can be implemented similarly. On the server side, PrimeFaces provides
the org.primefaces.convert.ClientConverter interface with the getMetadata()
and getConverterId() methods. The meaning of these methods is the same as for
validators. On the client side, you need to override the convert: function(element,
submittedValue){} function returning a converted JavaScript object. All client-side
converters are defined in the PrimeFaces.converter namespace.

Refer to the PrimeFaces sources and explore the standard converters in the
validation.js file to understand the writing of custom converters.

See also
Extending CSV with Bean Validation is the topic of the next recipe, Extending CSV with Bean
Validation.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter10/extendJsfCsv.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 10

321

Extending CSV with Bean Validation
Although the Bean Validation API defines a whole set of standard constraint annotations, one
can easily think of situations in which these standard annotations will not suffice. For these
cases, you will be able to create custom constraints for specific validation requirements. The
Client Side Validation API in PrimeFaces works seamlessly with custom constraints.

In this recipe, we will develop a special custom constraint and validators to validate a
Card Verification Code (CVC). CVC is used as a security feature with a bank card number.
It is a number with a length between three and four digits. For instance, MasterCard and
Visa require three digits, and American Express requires four digits. Therefore, the CVC
validation will depend on the selected bank card. The user can select a bank card using
p:selectOneMenu, type a CVC into p:inputText, and submit the input after that.

How to do it…
We will start with a custom annotation used for the CVC field. The following code shows this:

import org.primefaces.validate.bean.ClientConstraint;
import javax.validation.Constraint;
import javax.validation.Payload;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.METHOD;

@Constraint(validatedBy = CvcConstraintValidator.class)
@ClientConstraint(resolvedBy = CvcClientConstraint.class)
@Target({FIELD, METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface ValidCVC {

 String message() default "{invalid.cvc.message}";

 Class<?>[] groups() default {};

 Class<? extends Payload>[] payload() default {};

 // identifier of the select menu with cards
 String forCardMenu() default "";
}

Client-side Validation

322

@Constraint is a regular annotation from the Bean Validation API, and @
ClientConstraint is one from PrimeFaces CSV Framework, which helps to resolve
metadata. The developed annotation defines the invalid.cvc.message message key and
has the forCardMenu custom property. The value of this property is any search expression
in terms of PrimeFaces Selectors (PFS) to reference the select menu with bank cards. This is
necessary because the valid CVC value depends on the selected card.

The goal of CvcConstraintValidator is the validation of the input length. This is shown in
the following code:

public class CvcConstraintValidator
 implements ConstraintValidator<ValidCVC, Integer> {

 @Override
 public void initialize(ValidCVC validCVC) {
 }

 @Override
 public boolean isValid(Integer cvc,
 ConstraintValidatorContext context) {
 if (cvc == null || cvc < 0) {
 return false;
 }

 int length = (int) (Math.log10(cvc) + 1);
 return (length >= 3 && length <= 4);
 }
}

The goal of CvcClientConstraint is the preparation of metadata. This is shown in the
following code:

public class CvcClientConstraint
 implements ClientValidationConstraint {

 private static final String CARDMENU_METADATA =
 "data-forcardmenu";

 @Override
 public Map<String, Object> getMetadata(
 ConstraintDescriptor constraintDescriptor) {
 Map<String, Object> metadata =
 new HashMap<String, Object>();
 Map attrs = constraintDescriptor.getAttributes();
 String forCardMenu = (String) attrs.get("forCardMenu");
 if (StringUtils.isNotBlank(forCardMenu)) {

Chapter 10

323

 metadata.put(CARDMENU_METADATA, forCardMenu);
 }

 return metadata;
 }

 @Override
 public String getValidatorId() {
 return ValidCVC.class.getSimpleName();
 }
}

Let's go to the client-side implementation. First, we have to create a JavaScript file, say
validators.js, and register there our own validator in the PrimeFaces.validator
namespace with the name ValidCVC. This name is a unique ID returned by the
getValidatorId()method (see the CvcClientConstraint class). The function to
be implemented is called validate(). It has two parameters—the element itself and the
current input value to be validated. This is shown in the following code:

PrimeFaces.validator['ValidCVC'] = {
 MESSAGE_ID: 'invalid.cvc',

 validate: function (element, value) {
 // find out selected menu value
 var forCardMenu = element.data('forcardmenu');
 var selOption = forCardMenu ?
 PrimeFaces.expressions.SearchExpressionFacade.
 resolveComponentsAsSelector(forCardMenu).
 find("select").val() : null;

 var valid = false;
 if (selOption && selOption === 'MCD') {
 // MasterCard
 valid = value > 0 && value.toString().length == 3;
 } else if (selOption && selOption === 'AMEX') {
 // American Express
 valid = value > 0 && value.toString().length == 4;
 }

 if (!valid) {
 throw PrimeFaces.util.ValidationContext.
 getMessage(this.MESSAGE_ID);
 }
 }
};

Client-side Validation

324

Secondly, we have to create a JavaScript file for localized messages, for example, lang_
en.js. The following code shows this:

PrimeFaces.locales['en'] = {
 messages : PrimeFaces.locales['en_US'].messages
};

$.extend(PrimeFaces.locales['en'].messages, {
 ...

 'invalid.cvc':
 'Card Validation Code is invalid'
});

The bean has two required properties annotated with @NotNull. In addition, the
cvc property is annotated with our custom annotation @ValidCVC. The value of the
forCardMenu attribute points to the style class of p:selectOneMenu, which lists the
available bank cards. This is shown in the following code:

@Named
@ViewScoped
public class ExtendCsvBean implements Serializable {

 @NotNull
 private String card;
 @NotNull
 @ValidCVC(forCardMenu = "@(.card)")
 private Integer cvc;

 public void save() {
 RequestContext.getCurrentInstance().execute(
 "alert('Saved!')");
 }

 // getters / setters
 ...
}

Chapter 10

325

In the XHTML fragment, we have a select menu with two bank cards and an input field for CVC.
The p:commandButton component validates the fields and executes the save() method
on postback. This is shown in the following code:

<h:panelGrid id="pgrid" columns="3" cellpadding="3"
 style="margin-bottom:10px;">
 <p:outputLabel for="card" value="Card"/>
 <p:selectOneMenu id="card" styleClass="card"
 value="#{extendCsvBean.card}">
 <f:selectItem itemLabel="Please select a card"
 itemValue="#{null}"/>
 <f:selectItem itemLabel="MasterCard"
 itemValue="MCD"/>
 <f:selectItem itemLabel="American Express"
 itemValue="AMEX"/>
 </p:selectOneMenu>
 <p:message for="card"/>

 <p:outputLabel for="cvc" value="CVC"/>
 <p:inputText id="cvc" value="#{extendCsvBean.cvc}"/>
 <p:message for="cvc"/>
</h:panelGrid>

<p:commandButton validateClient="true" value="Save"
 process="@this pgrid" update="pgrid"
 action="#{extendCsvBean.save}"/>

As illustrated, neither p:selectOneMenu nor p:inputText specifies
the required attribute. We can achieve the transformation of the @
NotNull annotation to the required attribute with the value true if
we set the primefaces.TRANSFORM_METADATA context parameter to
true. More details on this feature are available in the Bean Validation and
transformation recipe.

In the last step, all required JavaScript files have to be included on the page. The following
code shows this:

<h:outputScript library="js" name="chapter10/lang_en.js"/>
<h:outputScript library="js" name="chapter10/validators.js"/>

Client-side Validation

326

The next two pictures show what happens when validations fails:

If everything is ok, an alert box with the text Saved! is displayed to the user:

How it works…
The invalid.cvc.message message key and the text should be put in resource bundles
named ValidationMessages, for example, ValidationMessages_en.properties.
ValidationMessages is the standard name specified in the Bean Validation specification.
The property files should be located in the application classpath and contain the following
entry: invalid.cvc.message=Card Validation Code is invalid. This
configuration is important for server-side validation.

Chapter 10

327

The getMetadata()method in the CvcClientConstraint class provides a map with name-
value pairs. The metadata is exposed in the rendered HTML. The values can be accessed on the
client side via element.data(name), where element is a jQuery object for the underlying
native HTML element. The CVC field with the metadata is rendered as shown here:

<input type="text" data-forcardmenu="@(.card)"
 data-p-con="javax.faces.Integer" data-p-required="true"...>

The most interesting part is the implementation of the client-side validator. The value to be
validated is already numeric because first it gets converted by PrimeFaces' built-in client-
side converter for the java.lang.Integer data type. We only have to check whether
the value is positive and has a valid length. A valid length depends on the selected card in
the p:selectOneMenu menu that can be accessed by the PrimeFaces JavaScript API as
PrimeFaces.expressions.SearchExpressionFacade.resolveComponentsAsSe
lector(selector), where selector is any PrimeFaces selector, which, in our case, is @
(.card). If validation fails, we throw an exception by invoking throw PrimeFaces.util.
ValidationContext.getMessage(text, parameter).

Client-side validation is triggered by setting validateClient="true" on
p:commandButton.

There's more…
You can also use third-party constraints from other libraries with CSV Framework. Use
PrimeFaces' BeanValidationMetadataMapper to register third-party annotations with
ClientValidationConstraint. Removing registered annotations is possible as well.
The following code shows this:

BeanValidationMetadataMapper.registerConstraintMapping(
 Class<? extends Annotation> constraint,
 ClientValidationConstraint clientValidationConstraint);

BeanValidationMetadataMapper.removeConstraintMapping(
 Class<? extends Annotation> constraint);

See also
Extending CSV with JSF validators is the topic of the previous recipe, Extending CSV with JSF.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter10/extendBvCsv.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

329

11
Miscellaneous

Advanced Use Cases

In this chapter, we will cover the following topics:

ff Programmatic updating and scrolling with RequestContext

ff Two ways of triggering the JavaScript execution

ff Adding AJAX callback parameters – validation within a dialog

ff Opening external pages in dynamically generated dialogs

ff Polling – sending periodical AJAX requests

ff Blocking page pieces during long-running AJAX calls

ff Controlling form submission using defaultCommand

ff Clever focus management in forms

ff Layout pitfalls of menus and dialogs

ff Targetable messages with severity levels

ff Conditional coloring in dataTable

ff Sticking a component when scrolling

ff Reducing page load time using content caching

ff Possibilities for exception handling in PrimeFaces

Miscellaneous Advanced Use Cases

330

Introduction
PrimeFaces has an impressive number of components that are usually suitable for both
common and advanced use cases. It is almost impossible to cover all scenarios in just one book
and discuss all solutions for each case. The key aspect of this chapter consists in giving users
tips that can be applied quickly for often-raised questions. In this chapter, we will go beyond the
basics and introduce more interesting features of the PrimeFaces library. We will learn about
RequestContext, a helpful utility that allows you to mark components as updatable targets at
runtime, add AJAX callback parameters; open external pages in dynamically generated dialogs—
Dialog Framework—and much more. We will also develop a couple of real-world samples for
common tasks such as blocking UI during AJAX calls, controlling form submission, periodic
polling, focus handling, menus within the layout units and nested panels, targetable messages,
sticky components, cached content, and exception handling.

Programmatic updating and scrolling with
RequestContext
RequestContext is an easy-to-use utility class that provides useful features.
RequestContext is available for AJAX as well as non-AJAX calls. The most important
features will be revealed in this book.

In this recipe, we will see how to specify components to be updated at runtime rather than
specifying update targets at compile time declaratively. We will also see how to scroll to any
component after the current AJAX request completes. Scrolling to the given component with
AJAX updates is very handy when dealing with long pages and can increase the website's
usability.

How to do it…
In the first example, we will develop a counter that will be incremented in an action listener.
The current counter value will be displayed in two output components h:outputText. A
decision as to which h:outputText component is responsible for the output is provided by
the p:selectBooleanCheckbox checkbox. The user can decide at runtime whether they
would like to update the first or the second output component. Here's the code for the first
example:

<p:selectBooleanCheckbox id="checkbox"
 itemLabel="Update first output"
 value="#{requestContextBean.firstOutput}"/>

Chapter 11

331

<h:panelGrid columns="2" style="margin-top:10px;">
 <h:outputText value="First Output"/>
 <h:outputText id="firstOutput"
 value="#{requestContextBean.counter}"/>

 <h:outputText value="Second Output"/>
 <h:outputText id="secondOutput"
 value="#{requestContextBean.counter}"/>

 <f:facet name="footer">
 <p:commandButton value="Increment counter"
 actionListener="#{requestContextBean.incrementWithUpdate}"
 process="@form" style="margin:10px 0 10px 0;"/>
 </f:facet>
</h:panelGrid>

In the next example, we will take the same counter that is displayed by h:outputText and
a very long text output so that the browser's scrollbars appear. At the end of the text output,
we will place a command button that increments the counter and scrolls to the counter's
output when the AJAX response comes back. The logic for scrolling is implemented inside the
button's action listener. Here's the code for this example:

<h:panelGrid id="counter" columns="2"
 style="font-weight:bold;">
 <h:outputText value="Counter"/>
 <h:outputText value="#{requestContextBean.counter}"/>
</h:panelGrid>

<p>Some text</p>
...
<p>Some text</p>

<p:commandButton value="Increment counter"
 process="@form" update="counter"
 actionListener="#{requestContextBean.incrementWithScroll}"
 style="margin:10px;"/>

The ViewScoped bean, with the incrementWithUpdate() and
incrementWithScroll() action listeners, mentioned in the preceding code snippets,
looks as shown here:

@Named
@ViewScoped
public class RequestContextBean implements Serializable {

Miscellaneous Advanced Use Cases

332

 private boolean firstOutput = true;
 private int counter = 0;

 public void incrementWithUpdate(ActionEvent ae) {
 counter++;

 RequestContext requestContext =
 RequestContext.getCurrentInstance();

 if (firstOutput) {
 requestContext.update("firstOutput");
 } else {
 requestContext.update("secondOutput");
 }
 }

 public void incrementWithScroll(ActionEvent ae) {
 counter++;

 RequestContext requestContext =
 RequestContext.getCurrentInstance();
 requestContext.scrollTo("counter");
 }

 // getters / setters
 ...
}

The following screenshot shows a snapshot result of the first example:

Chapter 11

333

How it works…
The RequestContext instance can be obtained as RequestContext.
getCurrentInstance() in a manner similar to that for FacesContext. The update()
method of the RequestContext instance expects the client IDs of the components to be
updated. These components are firstOutput and secondOutput. Depending on the
user's checkbox selection (Boolean variable firstOutput), either the first or the second
h:outputText component will be updated.

Scrolling to a given component is done by the scrollTo() method. This method
expects a client ID of the component that we want to scroll to. The requestContext.
scrollTo("counter") call ensures that the user will see the counter value after clicking
on the Increment counter button.

There's more…
The client-side API for scrolling is also available to use directly in JavaScript, as shown here:

PrimeFaces.scrollTo("clientId")

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter11/requestContext.jsf.

Two ways of triggering the JavaScript
execution

The RequestContext utility class provides an easy way to execute any JavaScript code after
the current AJAX request completes. The JavaScript block has to be coded in Java and can be
executed by passing it to the execute() method. An alternative approach would be to update
a script block on a page and trigger the script execution manually. In this case, the JavaScript
block is coded directly into a page.

In this recipe, we will see both solutions for JavaScript execution. For this purpose, we will
develop a menu component and toggle the enabling/disabling of menu items with two
command buttons. The first command button should toggle enabling/disabling with the
server-side approach and the second one with the client-side approach.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Miscellaneous Advanced Use Cases

334

How to do it…
Let's write a p:menu tag with three menu items. We also need two p:commandButton tags
with appropriate action listeners:

<h:outputText id="indicator"
 value="Enabled? - #{javaScriptExecBean.enabled}"/>

<p:menu id="menu" style="margin:20px 0 10px 0;">
 <p:submenu label="JavaScript Libraries">
 <p:menuitem value="jQuery" url="http://jquery.com"/>
 <p:menuitem value="Yahoo UI" url="http://yuilibrary.com"/>
 <p:menuitem value="Prototype" url="http://prototypejs.org"/>
 </p:submenu>
</p:menu>

<p:commandButton id="toggle1" value="Toggle Menuitems (server-
 side)"
 process="@this" update="indicator"
 actionListener="#{javaScriptExecBean.toggleMenuitems}"/>

<p:commandButton id="toggle2" value="Toggle Menuitems (client-
 side)"
 process="@this" update="indicator toggleScriptWrapper"
 actionListener="#{javaScriptExecBean.toggleEnabled}"/>

<h:panelGroup id="toggleScriptWrapper">
 <script type="text/javascript">
 if (#{facesContext.partialViewContext.ajaxRequest}) {
 $('#menu').find('a').each(function() {
 var $this = $(this);
 if ($this.attr('href')) {
 // disable item
 $this.attr('data-href', $this.attr('href'))
 .removeAttr('href')
 .addClass('ui-state-disabled');
 } else {
 // enable item
 $this.attr('href', $this.attr('data-href'))
 .removeAttr('data-href')
 .removeClass('ui-state-disabled');
 }
 });
 }

Chapter 11

335

 </script>
</h:panelGroup>

The panelGroup component with the toggleScriptWrapper ID contains the script
logic that is executed after each update on this panelGroup component. The bean packs
the same logic in a String variable script and executes it with requestContext.
execute(script):

@Named
@ViewScoped
public class JavaScriptExecBean implements Serializable {

 private boolean enabled = true;

 public void toggleMenuitems(ActionEvent ae) {
 RequestContext requestContext =
 RequestContext.getCurrentInstance();

 String script;
 if (enabled) {
 script =
 "$('#menu a').each(function() {"
 + "$(this).attr('data-href', $(this).attr('href'))"
 + ".removeAttr('href')"
 + ".addClass('ui-state-disabled');});";
 } else {
 script =
 "$('#menu a').each(function() {"
 + "$(this).attr('href', $(this).attr('data-href'))"
 + ".removeAttr('data-href')"
 + ".removeClass('ui-state-disabled');});";
 }

 requestContext.execute(script);
 enabled = !enabled;
 }

 public void toggleEnabled(ActionEvent ae) {
 enabled = !enabled;
 }

 public boolean isEnabled() {
 return enabled;
 }
}

Miscellaneous Advanced Use Cases

336

The following screenshot shows what the disabled menu items look like:

How it works…
Both client-side and server-side scripts implement the same logic. To disable a menu item,
its URL has to be copied from the anchor's href attribute to a data-href attribute. The
href attribute should be removed then, and the link should be styled with a proper jQuery
ThemeRoller class, ui-state-disabled. This style class makes elements appear disabled.
To enable a menu item, its URL has to be restored from the data-href attribute and
assigned to href. The style class, ui-state-disabled, should be removed.

Also, consider the if statement with the EL expression, #{facesContext.
partialViewContext.ajaxRequest}. This statement prevents an initial script execution
on page load (the GET request).

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter11/javaScriptExec.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 11

337

Adding AJAX callback
parameters – validation within a dialog

This recipe will continue with the discussion on RequestContext that we began in the
previous recipes. There may be cases where we need values from backing beans in AJAX
callbacks. Let's suppose we have a form in a dialog; when the user submits the form, the
dialog should stay open to display any validation errors and it should be closed otherwise.

In this recipe, we will learn how the described task can be done with AJAX callback
parameters. We will develop an oncomplete callback for a command button within
p:dialog.

How to do it…
The developed page contains a Dialog component with an input field. The dialog will
be visible when the page is loaded. There is only one valid input value, PrimeFaces
Cookbook. When the user inputs this value and clicks on the Save button, the dialog should
be closed. In any other case, it should stay open. The p:commandButton button defines
handleComplete(xhr, status, args), an oncomplete callback. It gets processed
when the AJAX request completes. There, we check args.validName and close the dialog
if this value is true. Here's the code for this discussion:

<p:growl id="growl" autoUpdate="true"/>

<p:dialog header="What is the name of this book?"
 visible="true" widgetVar="dlgWidget">
 <p:inputText id="name" value="#{ajaxCallbackParamBean.name}"/>

 <p:commandButton id="save" value="Save" style="margin:10px;"
 process="@this name" update="name"
 actionListener="#{ajaxCallbackParamBean.save}"
 oncomplete="handleComplete(xhr, status, args)"/>
</p:dialog>

<h:outputScript id="handleCompleteScript" target="body">
 function handleComplete(xhr, status, args) {
 if (args && args.validName) {
 PF('dlgWidget').hide();
 }
 }
</h:outputScript>

Miscellaneous Advanced Use Cases

338

The corresponding CDI bean compares the input value with the valid one and creates either
an information message or an error message for the growl component. Furthermore, it
adds a callback parameter, validName, with the value true for a valid input and false
otherwise. Here's the code that encapsulates this discussion:

@Named
@ViewScoped
public class AjaxCallbackParamBean implements Serializable {

 private String name;

 public void save(ActionEvent ae) {
 RequestContext requestContext =
 RequestContext.getCurrentInstance();

 String message;
 FacesMessage.Severity severity;
 UIInput input = (UIInput) ae.getComponent().
 findComponent("name");

 if ("PrimeFaces Cookbook".equals(name)) {
 message = "All right!";
 severity = FacesMessage.SEVERITY_INFO;

 requestContext.addCallbackParam("validName", true);
 input.setValid(true);
 } else {
 message = "Name is wrong, try again";
 severity = FacesMessage.SEVERITY_ERROR;

 requestContext.addCallbackParam("validName", false);
 input.setValid(false);
 }

 FacesMessage msg = new FacesMessage(severity, message, null);
 FacesContext.getCurrentInstance().addMessage(null, msg);
 }

 // getters / setters
 ...
}

Chapter 11

339

The following screenshot shows the dialog and the growl notification that is created when
there is an error:

How it works…
The oncomplete callback function takes three arguments: XMLHttpRequest, status
string, and optional parameters provided by the RequestContext API. Parameters can be
added by the addCallbackParam(key, value) method. They are serialized to JavaScript
Object Notation (JSON) and can be accessed in AJAX callbacks by the args argument.
In the example, we accessed the value of the validName callback parameter by args.
validName. We can add as many callback parameters as we want. Primitive values are
supported as well as Plain Old Java Objects (POJOs). POJOs are serialized to JSON as well.

By default, the validationFailed callback parameter is added implicitly
if JSF validation fails so that it is possible to check the failed validation with
an if statement: if (args.validationFailed == true).

In the bean, we set the valid flag on the input component to false when the book's name
is wrong. Making the input component invalid leads to red borders around the input field in
the UI.

There's more…
If we had the standard h:inputText component instead of the PrimeFaces' one, the
input.setValid(false) setting on the input component would not lead to red borders
around the input field in the UI. In this case, we could highlight the invalid input field anyway
by adding the ui-state-error style class via JavaScript. Here's the code we are discussing:

function handleComplete(xhr, status, args) {
 if (args && args.validName) {

Miscellaneous Advanced Use Cases

340

 PF('dlgWidget').hide();
 } else {
 $('#name').addClass('ui-state-error');
 }
}

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter11/ajaxCallbacks.jsf.

Opening external pages in dynamically
generated dialogs

The regular usage of PrimeFaces' dialog is a declarative approach with p:dialog. Besides
this declarative approach, there is a programmatic approach as well. The programmatic
approach is based on a programmatic API where dialogs are created and destroyed at
runtime. It is called Dialog Framework. Dialog Framework is used to open external pages in
dynamically generated dialogs. The usage is quite simple; RequestContext provides two
methods—openDialog and closeDialog—that allow the opening and closing of dynamic
dialogs. Furthermore, Dialog Framework makes it possible to pass data back from the page
displayed in the dialog to the caller page.

In this recipe, we will demonstrate all features available in Dialog Framework. We will open
a dialog with options programmatically and pass parameters to the page displayed in this
dialog. We will also meet the possibility of communicating between the source (caller) page
and the dialog.

Getting ready
Dialog Framework requires the following configuration in faces-config.xml:

<application>
 <action-listener>
 org.primefaces.application.DialogActionListener
 </action-listener>
 <navigation-handler>
 org.primefaces.application.DialogNavigationHandler
 </navigation-handler>

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 11

341

 <view-handler>
 org.primefaces.application.DialogViewHandler
 </view-handler>
</application>

How to do it…
We will develop a page with radio buttons to select an available PrimeFaces' book for rating
as follows. The rating itself happens in a dialog after a click on the Rate the selected book
button.

The XHTML snippet for the preceding screenshot is shown here:

<p:messages id="messages"
 showSummary="true" showDetail="false"/>

<p:selectOneRadio id="books" layout="pageDirection"
 value="#{dialogFrameworkBean.bookName}">
 <f:selectItem itemLabel="PrimeFaces Cookbook"
 itemValue="PrimeFaces Cookbook"/>
 <f:selectItem itemLabel="PrimeFaces Starter"
 itemValue="PrimeFaces Starter"/>
 <f:selectItem itemLabel="PrimeFaces Beginner's Guide"
 itemValue="PrimeFaces Beginner's Guide"/>
 <f:selectItem itemLabel="PrimeFaces Blueprints"
 itemValue="PrimeFaces Blueprints"/>
</p:selectOneRadio>

<p:commandButton value="Rate the selected book"
 process="@this books"
 actionListener="#{dialogFrameworkBean.showRatingDialog}"
 style="margin-top: 15px">
 <p:ajax event="dialogReturn" update="messages"

Miscellaneous Advanced Use Cases

342

 listener="#{dialogFrameworkBean.onDialogReturn}"/>
</p:commandButton>

The page in the dialog is a full bookRating.xhtml page with a rating component,
p:rating. It also shows the name of the book selected for rating. Here's the code to obtain
the desired results:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:p="http://primefaces.org/ui">
 <f:view contentType="text/html" locale="en">
 <f:metadata>
 <f:viewParam name="bookName"
 value="#{bookRatingBean.bookName}"/>
 </f:metadata>
 <h:head>
 <title>Rate the book!</title>
 </h:head>
 <h:body>
 <h:form>
 What is your rating for the book
 #{bookRatingBean.bookName}?

 <p/>

 <p:rating id="rating">
 <p:ajax event="rate"
 listener="#{bookRatingBean.onrate}"/>
 <p:ajax event="cancel"
 listener="#{bookRatingBean.oncancel}"/>
 </p:rating>
 </h:form>
 </h:body>
 </f:view>
</html>

Chapter 11

343

The next screenshot demonstrates how the dialog looks:

A click on a rating star or the cancel symbol closes the dialog. The source (caller) page
displays a message with the selected rating value in the range 0–5:

Miscellaneous Advanced Use Cases

344

The most interesting part is the logic in beans. The DialogFrameworkBean bean opens the
rating page within the dialog by invoking the openDialog() method with the outcome, options,
and POST parameters on a RequestContext instance. Furthermore, the bean defines the
onDialogReturn() AJAX listener, which is invoked when the data (selected rating) is returned
from the dialog after it was closed. The following code encapsulates this discussion:

@Named
@ViewScoped
public class DialogFrameworkBean implements Serializable {

 private String bookName;

 public void showRatingDialog() {
 Map<String, Object> options =
 new HashMap<String, Object>();
 options.put("modal", true);
 options.put("draggable", false);
 options.put("resizable", false);
 options.put("contentWidth", 500);
 options.put("contentHeight", 100);
 options.put("includeViewParams", true);

 Map<String, List<String>> params =
 new HashMap<String, List<String>>();
 List<String> values = new ArrayList<String>();
 values.add(bookName);
 params.put("bookName", values);

 RequestContext.getCurrentInstance().openDialog(
 "/views/chapter11/bookRating", options, params);
 }

 public void onDialogReturn(SelectEvent event) {
 Object rating = event.getObject();
 FacesMessage message = new FacesMessage(
 FacesMessage.SEVERITY_INFO,
 "You rated the book with " + rating,
 null);

 FacesContext.getCurrentInstance().addMessage(
 null, message);
 }

Chapter 11

345

 // getters / setters
 ...
}

The BookRatingBean bean defines two listeners for the rating component. They
are invoked when the user clicks on a star and the cancel symbol, respectively. We call
closeDialog() on a RequestContext instance to trigger dialog closing and to pass the
current rating value to the onDialogReturn() listener:

@Named
@RequestScoped
public class BookRatingBean {

 private String bookName;

 public void onrate(RateEvent rateEvent) {
 RequestContext.getCurrentInstance()
 .closeDialog(rateEvent.getRating());
 }

 public void oncancel() {
 RequestContext.getCurrentInstance()
 .closeDialog(0);
 }

 // getters / setters
 ...
}

How it works…
RequestContext provides two methods of the same name, openDialog, to open a
dialog dynamically at runtime. The first one only has one parameter—the logical outcome
used to resolve a navigation case. The second one has three parameters—outcome, dialog
configuration options, and parameters that are sent to the view displayed in the dialog. We
used the second variant in the example. The options are put into Map as key-value pairs. The
parameters are put into Map too. In our case, we put the name of the selected book. After
that, the name is received in the dialog's bookRating.xhtml page via the f:viewParam.
The transferred parameter is set into BookRatingBean by f:viewParam so that it is
available in the heading above the Rating component.

Miscellaneous Advanced Use Cases

346

Refer to the PrimeFaces User's Guide (http://primefaces.org/
documentation.html) to see a full list of the supported dialog's
configuration options.

Let's go through the request-response life cycle. Once the response is received from the
request caused by the command button, a dialog gets created with an iframe tag inside.
The URL of iframe points to the full page, which, in our case, is bookRating.xhtml. The
page will be streamed down and shown in the dialog. As you can see, there are always two
requests: the initial POST and the second GET sent by iframe. Note that Dialog Framework
only works with initial AJAX requests. Non-AJAX requests are ignored.

The title of the dialog is taken from the HTML title element.

As mentioned earlier, the dialog can be closed programmatically by invoking the
closeDialog method on a RequestContext instance. On the caller page, the button
that triggers the dialog needs to have an AJAX listener for the dialogReturn event to
be able to receive any data from the dialog. The data is passed as a parameter to the
closeDialog(Object data) method. In the example, we pass either a positive integer
value rateEvent.getRating() or 0.

There's more…
Dialog Framework also provides a convenient way to display FacesMessage in a dynamically
generated dialog. This can be achieved by invoking the showMessageInDialog(FacesMes
sage message) method on a RequestContext instance.

Refer to PrimeFaces User's Guide (http://primefaces.org/
documentation.html) and the Dialog Framework chapter to see
how displaying messages in a dialog works.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter11/dialogFramework.jsf.

http://primefaces.org/documentation.html
http://primefaces.org/documentation.html
http://primefaces.org/documentation.html
http://primefaces.org/documentation.html
https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 11

347

Polling – sending periodical AJAX requests
Polling is a way to poll a server periodically in order to trigger server-side changes or update
parts of a web page. The polling technology in PrimeFaces is represented by the poll
component. It is an AJAX-ified component that has the ability to send periodical AJAX requests.

In this recipe, we will update a feed reader periodically to show current sports news. A growl
component will be updated with the same interval too in order to show the time of the last
feed update.

How to do it…
The p:poll component in the following code snippet invokes the showMessage() listener
method every 10 seconds and updates a feed reader and a growl. The listener method
generates the current time. Furthermore, we will define a widget variable in order to stop or
start polling using the client-side API. This occurs via command buttons. Take a look at the
code for this discussion:

<p:growl id="growl"/>

<p:poll id="poll" listener="#{pollingBean.showMessage}"
 update="sportFeed growl"
 interval="10" widgetVar="pollWidget"/>

<p:commandButton type="button" value="Stop Polling"
 style="margin:15px 5px 15px 0;"
 onclick="PF('pollWidget').stop();"/>
<p:commandButton type="button" value="Start Polling"
 style="margin:15px 0 15px 0;"
 onclick="PF('pollWidget').start();"/>

<h:panelGroup id="sportFeed" layout="block">
 <p:feedReader value="http://rss.news.yahoo.com/rss/sports"
 var="feed" size="10">
 <h:outputText value="#{feed.title}"
 style="font-weight: bold"/>

 <h:outputText value="#{feed.description.value}"
 escape="false"/>
 <p:separator/>
 </p:feedReader>
</h:panelGroup>

Miscellaneous Advanced Use Cases

348

The corresponding screenshot illustrates an update with p:poll:

Refer to the Setting up and configuring the PrimeFaces library recipe
of Chapter 1, Getting Started with PrimeFaces, to see mandatory
dependencies for the feedReader component.

How it works…
The interval attribute of p:poll defines the time interval, in seconds, at which to execute
periodic AJAX requests. The default value is 2 seconds. In the example, we set it to 10. Similar
to any other AJAX-ified components, we can specify components to be processed and updated
partially with the process and update attributes, respectively. The update attribute in the
example contains IDs of p:feedReader and p:growl.

Polling can be stopped and started using the stop() and start()widget methods
respectively. We defined two push buttons to execute pollWidget.stop() and
pollWidget.start() on a click event.

Chapter 11

349

There is also the stop attribute. It accepts Boolean values that can be bound
to it at any arbitrary time. When the value is true, polling will be stopped.

There's more…
Poll also supports the autoStart mode. By default, polling starts automatically on page
load. To prevent this behavior, set the autoStart attribute to false.

Another useful setting is the timeout attribute, which defines a timeout for AJAX requests
in milliseconds. The timeout is not set by default. Setting a valid timeout allows breaking off
long-running requests.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have not
done it yet, explore the project structure, build and deploy the WAR file on application servers
compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter11/polling.jsf.

Blocking page pieces during long-running
AJAX calls

The blockUI component allows us to block any piece(s) of a page during AJAX calls. Blocking
is initiated by one or more trigger components. The blockUI component adds a layer
and any custom content over the target elements to be blocked and gives the appearance
and behavior of blocking user interaction. It is very handy if you have, for example, a large
dataTable component, and sorting, filtering, and pagination takes much time. You can block
almost everything—even the entire page.

In this recipe, we will implement p:panel and p:dataTable that are blockable in order to
learn all the features of p:blockUI.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Miscellaneous Advanced Use Cases

350

How to do it…
The panel component in the following code snippet gets blocked when the command
button is clicked on and gets unblocked when the AJAX response is received. We will
see a semitransparent layer over the panel, which blocks user interactions within it. The
action listener on the command button simulates a long-running task. The following code
encapsulates this discussion:

<p:panel id="panel" header="Blockable Panel"
 style="height:90px;">
 Click on Save to block me.

 <p:commandButton id="saveBtn" value="Save"
 actionListener="#{blockUIBean.doSomething}"
 style="margin:10px;"/>
</p:panel>

<p:blockUI block="panel" trigger="saveBtn"/>

The following example demonstrates a dataTable component that gets blocked on
pagination and sorting. The blockUI component displays custom content with an animated
image and the text Please wait, data is being processed...:

<p:dataTable id="dataTable" var="message"
 value="#{blockUIBean.messages}"
 paginator="true" rows="5" ...>
 <p:ajax event="page" listener="#{blockUIBean.doSomething}"/>
 <p:ajax event="sort" listener="#{blockUIBean.doSomething}"/>
 <p:column sortBy="#{message.subject}">
 <f:facet name="header">
 <h:outputText value="Subject"/>
 </f:facet>
 <h:outputText value="#{message.subject}"/>
 </p:column>
 <p:column sortBy="#{message.text}">
 <f:facet name="header">
 <h:outputText value="Text"/>
 </f:facet>
 <h:outputText value="#{message.text}"/>
 </p:column>
</p:dataTable>

Chapter 11

351

<p:blockUI block="dataTable" trigger="dataTable">
 <h:panelGrid id="blockContent" columns="2"
 style="table-layout:auto;">
 <h:graphicImage library="images" name="ajax-loader.gif"
 style="margin-right:12px; vertical-align:middle;"/>
 <h:outputText value="Please wait, data is being processed..."
 style="white-space:nowrap;"/>
 </h:panelGrid>
</p:blockUI>

The following screenshot shows the blocked dataTable component when the user has
clicked on page 2:

How it works…
BlockUI requires the trigger and block attributes to be defined. The trigger attribute
defines a search expression for the component that sends an AJAX request and blocks
triggers. The block attribute defines a search expression for the component to be blocked.

Chapter 1, Getting Started with PrimeFaces, provides more details on
search expressions.

Miscellaneous Advanced Use Cases

352

In the first code snippet, we pointed the trigger attribute to the button's ID, saveBtn, and
in the second one to the table's ID, dataTable. The block attribute points to the panel's ID,
panel and to the table's ID, dataTable, respectively. In the case of dataTable blocking,
we placed custom content inside the p:blockUI tag. In this way, we can display any content
we want.

BlockUI does not support absolute or fixed-positioned components,
for example, dialog.

There's more…
There are two widget methods to be used on the client side. The show() method blocks the
specified component and the hide() method unblocks it. They can be used in the onstart
and oncomplete callbacks respectively.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter11/blockUI.jsf.

Controlling form submission using
defaultCommand

The Enter key makes form submission so easy that users always tend to use it. The most
intuitive way is that the user can enter some text or make some changes to the existing text
and then hit the Enter key to submit the form. But what command component will submit
the form if we have more than one of them? Browsers, especially Internet Explorer, behave
differently here. The defaultCommand component solves this problem by normalizing the
command (for example, button or link) that submits the form when the Enter key is hit.

In this recipe, we will discuss p:defaultCommand in detail. We will implement
p:selectOneMenu for dynamic selection of the command button used for form submission
when the Enter key is hit.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 11

353

How to do it…
We intend to save the chosen command button used for form submission in a backing bean.
To achieve this, we need p:selectOneMenu with listed command buttons (their IDs) and an
attached p:ajax behavior event. Such an AJAX-ified p:selectOneMenu component should
update p:defaultCommand on a change event automatically so that the chosen command
button will be used in p:defaultCommand. A p:inputText component should take input
and a corresponding h:outputText component should display the same input when the
Enter key is hit. Furthermore, we want to display the pressed button as a growl notification.
The following code captures this discussion:

<p:growl id="growl" autoUpdate="true"/>

<h:panelGrid columns="2" cellpadding="5">
 <h:outputLabel for="btnSelect" value="Select default button:"/>
 <p:selectOneMenu id="btnSelect"
 value="#{defaultCommandBean.btn}">
 <p:ajax update="@form"/>
 <f:selectItem itemValue="btn1" itemLabel="Button 1"/>
 <f:selectItem itemValue="btn2" itemLabel="Button 2"/>
 <f:selectItem itemValue="btn3" itemLabel="Button 3"/>
 </p:selectOneMenu>
</h:panelGrid>

<h:panelGrid columns="3" cellpadding="5"
 style="margin:15px 0 15px 0;">
 <h:outputLabel for="text" value="Text:"/>
 <p:inputText id="text" value="#{defaultCommandBean.text}"/>
 <h:outputText id="display" value="#{defaultCommandBean.text}"/>
</h:panelGrid>

<p:commandButton id="btn1" value="Button1" update="display"
 actionListener="#{defaultCommandBean.showMessage('Button1')}"/>
<p:commandButton id="btn2" value="Button2" update="display"
 actionListener="#{defaultCommandBean.showMessage('Button2')}"/>
<p:commandButton id="btn3" value="Button3" update="display"
 actionListener="#{defaultCommandBean.showMessage('Button3')}"/>

<p:defaultCommand id="defCommand"
 target="#{defaultCommandBean.btn}"/>

Miscellaneous Advanced Use Cases

354

The following screenshot shows what happens when the second button is chosen as default
and the user enters sometext and hits the Enter key:

How it works…
DefaultCommand must be in a form in order to work, and the target attribute is required
to refer to an identifier of a clickable command component. The target attribute in this
example references such an identifier via the EL expression #{defaultCommandBean.
btn}. The possible identifiers are btn1, btn2, and btn3. The button with the identifier in
the target attribute is used as default. That means it gets clicked and submits the form
when the user enters something into the input field and presses the Enter key. In addition,
the action listener showMessage generates a message text for p:growl.

To perform form submission on a key press, an input field must be focused
due to the browser's nature.

There's more…
Besides target, there is also the scope attribute, which is needed for multiple default
commands on the same page. The scope attribute restricts the area for handling
the Enter key. It refers to the ancestor component of the input field considered by this
p:defaultCommand.

Chapter 11

355

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter11/defaultCommand.jsf.

Clever focus management in forms
Focus is a component that makes it easy to manage the focus setting on a JSF page. By
default, the focus component finds the first enabled (editable) and visible input component
on the page and applies focus. Typically, input components are associated with HTML
elements, such as input, textarea, and select.

In this recipe, we will learn about the default and advanced behaviors of the Focus
component. We will develop two h:panelGrid components with several input components
in order to demonstrate the behavior of p:focus in detail.

How to do it…
The XHTML code snippet contains a total of three p:inputText components:

<p:messages/>

<p:focus context="secondGrid"/>

<h:panelGrid columns="2" style="margin-bottom:10px;">
 <h:outputLabel value="Dummy"/>
 <p:inputText/>
</h:panelGrid>

<h:panelGrid id="secondGrid" columns="2">
 <h:outputLabel for="firstname" value="Firstname *"/>
 <p:inputText id="firstname" required="true" label="Firstname"/>

 <h:outputLabel for="surname" value="Surname *"/>
 <p:inputText id="surname" required="true" label="Surname"/>
</h:panelGrid>

<p:commandButton value="Submit" update="@form"/>

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Miscellaneous Advanced Use Cases

356

The following screenshot shows a focus set for the Surname field after a form is submitted.
We entered something in the Firstname field but left the Surname field empty.

How it works…
The default behavior of the focus component can be restricted by the context attribute.
This attribute defines a search expression for the root component from which the Focus
component starts to search for input components.

Chapter 1, Getting Started with PrimeFaces, provides more details on
search expressions.

In the example, context points to the ID of the second h:panelGrid component. That
means although we have two h:panelGrid components, only the second will be considered
for p:focus. The content of the first h:panelGrid component gets ignored. If there are no
validation errors, the focus is set implicitly on the first editable and visible input field within
the second h:panelGrid component. This is the Firstname field. If there are any validation
errors, the first invalid input component will receive the focus. This is the Surname field in the
preceding screenshot.

To get this feature working on AJAX requests, you need to update the
p:focus component as well.

Chapter 11

357

There's more…
If we want to set focus explicitly on an input component, we can use the for attribute that
specifies exactly this input component.

Another feature is the minSeverity attribute. It specifies the message's minimum severity
level to be used when finding the first invalid component. The default value is error. If you
set it, for example, to info, the focus will not be normally set on the first invalid component
due to the higher severity level of the created validation message matching this threshold.
In this case, the default behavior is applied—the focus is set on the first enabled and visible
input component.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter11/focusManagement.jsf.

Layout pitfalls of menus and dialogs
When working with the layout component, we should be aware of the pitfalls of menus
and dialogs inside layout units. Beginners often face overlap issues and try to find several
workarounds. In fact, there are easy solutions available.

In this recipe, we will show how to overcome these issues. We will integrate p:menubar and
p:dialog into layout units.

How to do it…
Let's assume that we have a full-page layout with two layout units, center and north. The
north unit contains a menubar component with quite normal options:

<p:layout fullPage="true">
 <p:layoutUnit position="center">
 Center
 </p:layoutUnit>
 <p:layoutUnit position="north" size="80" resizable="false">
 <h:form>
 <p:menubar>

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Miscellaneous Advanced Use Cases

358

 <p:submenu label="JavaScript Libraries">
 <p:menuitem value="jQuery" url="#"/>
 <p:menuitem value="Yahoo UI" url="#"/>
 <p:menuitem value="Prototype" url="#"/>
 </p:submenu>
 <p:menuitem value="Go Back" url="#"/>
 </p:menubar>
 </h:form>
 </p:layoutUnit>
</p:layout>

If we try to open the menu, it gets partially hidden by the layout unit, as shown in the following
screenshot. We can see scrollbars on the right-hand side as well.

To overcome this wrong appearance, we will set overflow to visible for the content
container (the div element) of the north layout unit. This CSS setting can be placed within
h:head. The following code encapsulates this discussion:

<style type="text/css">
 .ui-layout-pane-north .ui-layout-unit-content {
 overflow: visible;
 }
</style>

The menu now appears correctly, as shown in the following screenshot. It overlaps the layout
unit when we click on it.

Chapter 11

359

The second potential problem is the modal dialog inside a layout unit. Let's assume we place
such a dialog with default options inside the center layout unit. The semitransparent layer of
the modal dialog overlaps the dialog and prevents any interactions with it. This is shown in the
following screenshot:

To overcome this issue, we need to set the appendTo attribute to the @(body) value,
as shown here:

<p:layoutUnit position="center">
 <p:dialog header="Dialog in layout" modal="true"
 widgetVar="dlgWidget" appendTo="@(body)">
 <h:form>
 <h:inputText/>
 <p:commandButton value="Save"
 style="margin:10px;"/>
 </h:form>
 </p:dialog>

 <p:commandButton value="Show dialog" type="button"
 onclick="PF('dlgWidget').show()"/>
</p:layoutUnit>

Miscellaneous Advanced Use Cases

360

Now, the semitransparent layer is placed behind the dialog, as shown in the following
screenshot:

How it works…
Drop-down and pop-up menus often need to overlap adjacent layout units (panes). An ideal
solution would be to append the menu elements to the body tag. In this case, no additional
effort is needed to use PrimeFaces menus with layout. When this is not possible for some
reason, there is an option to handle the menus. If a menu appears in a nonscrolling layout
unit, we should give the unit's content container the CSS property overflow: visible and
ensure it is the last unit in the HTML markup. By making it the last unit, it has a naturally
higher stack order.

Setting the appendTo attribute to @(body) appends the dialog as a child of the document
body. The @(body) value is a search expression in terms of PrimeFaces Selectors (PFS) to
reference the HTML body element.

The preceding argument is valid for the overlay panel. Set
appendTo="@(body)" when overlayPanel is in another
panel component, such as layout and/or dialog.
Components with appendTo="@(body)" need a h:form
tag inside when they communicate with the server. But, avoid
nested h:form tags. Nested forms bring unexpected behavior
and JavaScript errors.

Chapter 11

361

See also
The Layout component is discussed extensively in the Creating complex layouts recipe in
Chapter 4, Grouping Content with Panels.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter11/layoutPitfalls.jsf.

Targetable messages with severity levels
We sometimes need to target a FacesMessage instance to a specific component. For
example, suppose we have p:growl and p:messages/p:message tags on the same page
and need to display some messages as p:growl and some as p:message. PrimeFaces has
a grouping feature for messages to associate a notification component to specific command
components so that messages created as a result of an action will be displayed in the
associated messages or the growl tags.

In this recipe, we will develop samples for targetable messages. Furthermore, we will discuss
the severity attribute. By means of severity, we can display messages depending on
their severities.

How to do it…
Let's use one p:messages tag and two p:growl tags, as shown in the following code
snippet:

<h:panelGroup id="msg1">
 <p:messages for="save" showDetail="true"/>
 <p:growl for="change" showDetail="true"/>
 <p:growl globalOnly="true" showDetail="true"/>
</h:panelGroup>

<p:commandButton value="Save" update="msg1"
 action="#{targetableMessagesBean.addSaveMessage}"/>
<p:commandButton value="Change" update="@form"
 action="#{targetableMessagesBean.addChangeMessage}"/>
<p:commandButton value="Delete" update="@form"
 action="#{targetableMessagesBean.addDeleteMessage}"/>

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Miscellaneous Advanced Use Cases

362

Three command buttons create FacesMessage instances. The first button creates two
messages that are displayed only by the p:messages tag. The second command button
creates one message that is displayed only by the first p:growl tag with the for attribute
set to change. The message created by the third command button is displayed only by the
second p:growl tag with globalOnly set to true. The action methods look as follows:

public String addSaveMessage() {
 addMessage("save", FacesMessage.SEVERITY_INFO,
 "Sample info message",
 "First data was successfully saved");
 addMessage("save", FacesMessage.SEVERITY_INFO,
 "Sample info message",
 "Second data was successfully saved");

 return null;
}

public String addChangeMessage() {
 addMessage("change", FacesMessage.SEVERITY_INFO,
 "Sample info message",
 "Data was successfully changed");

 return null;
}

public String addDeleteMessage() {
 addMessage(null, FacesMessage.SEVERITY_INFO,
 "Sample info message",
 "Data was successfully deleted");

 return null;
}

private void addMessage(String key,
 FacesMessage.Severity severity,
 String message, String detail) {
 FacesMessage msg = new FacesMessage(severity, message, detail);
 FacesContext.getCurrentInstance().addMessage(key, msg);
}

Chapter 11

363

Let's now use the p:messages and p:growl tags without the for attribute but with a
severity attribute:

<h:panelGroup id="msg2">
 <p:messages severity="error" showDetail="true"/>
 <p:growl severity="info, warn" showDetail="true"/>
 <p:growl showDetail="true"/>
</h:panelGroup>

<p:commandButton value="Generate error message" update="msg2"
 action="#{targetableMessagesBean.addErrorMessage}"/>

The command button should create an error message with the severity error:

public String addErrorMessage() {
 addMessage(null, FacesMessage.SEVERITY_ERROR,
 "Sample error message",
 "Operation failed");

 return null;
}

The message created is only displayed by the p:messages tag with severity="error"
and by the second p:growl tag without a severity attribute.

How it works…
The key of an added FacesMessage instance should match the for attribute of the
p:growl, p:messages, or p:message components to be displayed. If the for attribute is
missing, all added FacesMessage instances will be accepted. If a notification component
has set the globalOnly flag (globalOnly="true"), only the FacesMessage instances
without a defined key (key is null) will be displayed.

PrimeFaces utilizes the component's clientId parameter as the key.

The severity attribute of a notification component defines exactly which severities can
be displayed by this component. It accepts a comma-separated list. The possible values
are info, warn, error, and fatal. They match the Java constants, FacesMessage.
SEVERITY_INFO, FacesMessage.SEVERITY_WARN, FacesMessage.SEVERITY_ERROR,
and FacesMessage.SEVERITY_FATAL, respectively. If the severity attribute is missing,
messages with any severity will be displayed.

Miscellaneous Advanced Use Cases

364

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter11/targetableMessages.jsf.

Conditional coloring in dataTable
The dataTable component provides conditional coloring on rows, which can be styled based
on conditions. The row styling utilizes the rowStyleClass attribute that has a condition as
the EL expression.

In this recipe, we will demonstrate the conditional coloring on rows for countries with GDP
(gross domestic product) less than $3,500,000.

How to do it…
A basic definition of a color-coded table that displays a list of countries with their GDPs is
given here:

<p:dataTable value="#{dataTableColoringBean.countryGdpList}"
 var="countryGdp"
 rowStyleClass="#{countryGdp.gdp le 3500000 ? 'colored' : ''}">
 <p:column headerText="Name" sortBy="#{countryGdp.name}">
 #{countryGdp.name}
 </p:column>
 <p:column headerText="GDP (Millions of US $)">
 #{countryGdp.gdp}
 </p:column>
</p:dataTable>

The colored style definition used in rowStyleClass could be as simple as the following:

<style type="text/css">
 .colored {
 background-color: #FF0000;
 color: #FFFFFF;
 }
</style>

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 11

365

After sorting by name, the end result shows four colored rows here:

How it works…
With the rowStyleClass attribute, a style class can be defined for each row according to the
country's GDP as rowStyleClass="#{countryGdp.gdp le 3500000 ? 'colored' :
''}". Arithmetic, logical, or relational operators of JSF Expression Language can be used to
define the condition.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter11/dataTableColoring.jsf.

Sticking a component when scrolling
The Sticky component is used to make another component stick to the top of the page once
a user has scrolled past it. Hence, the sticky component requires a target component to
keep it in the viewport on scroll.

In this recipe, we will demonstrate the usage of the p:sticky tag.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Miscellaneous Advanced Use Cases

366

How to do it…
We would like to stick a select menu with a label as shown in this screenshot:

The select menu and the label are placed within h:panelGrid, which acts as the target
component:

<h:panelGrid id="langGrid" columns="2"
 style="box-shadow: none;">
 <p:outputLabel for="lang" value="Language: "/>
 <p:selectOneMenu id="lang">
 <f:selectItem itemLabel="English" itemValue="en"/>
 <f:selectItem itemLabel="German" itemValue="de"/>
 <f:selectItem itemLabel="French" itemValue="fr"/>
 </p:selectOneMenu>
</h:panelGrid>

...

<p:sticky target="langGrid"/>

Chapter 11

367

How it works…
The component to be sticked is referenced via the target attribute. In the example, the
target attribute points to the ID of h:panelGrid. If the component sticks, its position is
changed to fixed by setting the position: fixed style. This happens automatically on
scrolling down. The fixed position gets removed on scrolling up when the component is visible
at its original location.

There are no visual styles of sticky; however, the ui-shadow and ui-sticky
classes are applied to the target when the position is fixed. Therefore, we
set box-shadow: none on h:panelGrid in order to remove the visible
shadow around the grid.

There is also the margin attribute. It defines the offset between the sticked component and
the top of the page. The default value is 0.

There's more…
The header of p:dataTable can also be fixed at the top of the visible viewport when
scrolling:

<p:dataTable stickyHeader="true" ...>
 ...
</p:dataTable>

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter11/sticking.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Miscellaneous Advanced Use Cases

368

Reducing page load time using content
caching

Reducing the page load time can be done by caching the HTML content after initial rendering.
PrimeFaces' cache component can be used to cache the content. It supports two providers
that enable content management in a cache store. The first provider is for Ehcache (http://
ehcache.org) and the second one for Hazelcast (http://hazelcast.com/products/
hazelcast).

In this recipe, we will use Ehcache—an open source, standard-based cache used to boost
performance, offload the database, and simplify scalability. We will explain how the cache
component works in an example with a feed reader wrapped inside the p:cache tag.

Getting ready
The cache provider is configured via a context parameter in web.xml. The provider for
Ehcache is configured here:

<context-param>
 <param-name>primefaces.CACHE_PROVIDER</param-name>
 <param-value>org.primefaces.cache.EHCacheProvider</param-value>
</context-param>

A dependency for Ehcache in pom.xml is required as well:

<dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache</artifactId>
 <version>2.9.0</version>
</dependency>

By default, the Ehcache implementation looks for a file called ehcache.xml at the top level
of the classpath. If Ehcache does not find that file, it takes the ehcache-failsafe.xml
file that is packaged in the Ehcache JAR. For WAR projects, the ehcache.xml file should be
placed below the src/main/resources folder. It contains a configuration for cache regions.
You can imagine a region as a Map object with key-value pairs. The value is the cached
content then. The cache region in this recipe has the name appCache. This is shown in the
following code:

<?xml version="1.0" encoding="UTF-8"?>
<ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="ehcache.xsd"
 updateCheck="true" monitoring="autodetect"
 dynamicConfig="true">

http://ehcache.org
http://ehcache.org
http://hazelcast.com/products/hazelcast
http://hazelcast.com/products/hazelcast

Chapter 11

369

 ...

 <cache name="appCache"
 maxEntriesLocalHeap="10000"
 eternal="false"
 timeToIdleSeconds="120"
 timeToLiveSeconds="120"
 diskSpoolBufferSizeMB="30"
 maxEntriesLocalDisk="10000000"
 diskExpiryThreadIntervalSeconds="120"
 memoryStoreEvictionPolicy="LRU">
 </cache>
</ehcache>

See the configuration details in the official Ehcache documentation
(http://ehcache.org/documentation).

How to do it…
We will develop a feed reader that is encircled by p:cache. The feed reader fetches podcasts
from JSF Central (www.jsfcentral.com). This is shown in the following code:

<p:cache region="appCache" key="jsfcentral">
 <p:feedReader value="http://www.jsfcentral.com/resources/
 jsfcentralpodcasts/?feed=rss"
 var="feed" size="10">
 <h:outputText value="#{feed.title}"
 style="font-weight: bold"/>

 <h:outputText value="#{feed.description.value}"
 escape="false"/>
 <p:separator/>
 </p:feedReader>
</p:cache>

How much can p:cache speed up page-loading time? The measured time for the occurrence
of the window onload event depends on the existence of p:cache. The page with the
wrapped feed reader inside the p:cache tag needs approximately 700–740 milliseconds
until the onload event occurs. The page with the feed reader without p:cache needs
approximately 1.4–1.8 milliseconds. The tests were performed on a computer with Window
8.1 and Firefox 34.

http://ehcache.org/documentation
www.jsfcentral.com

Miscellaneous Advanced Use Cases

370

How it works…
Once the page is loaded initially, the content inside p:cache is cached inside the cache
region of the cache provider. GET or POST requests on the same page or page fragment
retrieve the output from the cache instead of rendering the content regularly.

The content within the cache region is identified by the key attribute of the p:cache tag. EL
expressions such as key="some_#{userBean.language}" are supported too so that key
can be done dynamic.

The getter and other methods from beans inside p:cache are not invoked
when the content is fetched from the cache. When the cache expires at the
specified time (the timeToIdleSeconds and timeToLiveSeconds
options in ehcache.xml), the content will be rendered by JSF renderers
and cached again for subsequent calls.

There's more…
The cache provider can be accessed programmatically via the following code:

RequestContext.getCurrentInstance().
 getApplicationContext().getCacheProvider()

All cache regions can be cleared then with the clear() method. There are also the get,
put, and remove methods to get, put, and remove the content of the specific region and
the specific key.

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter11/caching.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

Chapter 11

371

Possibilities for exception handling in
PrimeFaces

PrimeFaces provides powerful exception handling for AJAX and non-AJAX requests out of the
box. The mapping between error pages and exception types is configured via the error-
page ability in web.xml. Exceptions for AJAX requests can also be configured via the special
p:ajaxExceptionHandler tag in order for them to be shown on the same page where
they occurred. An implicit object, pfExceptionHandler, provides useful information about
exception details.

In this recipe, we will give helpful tips about configuration details and demonstrate
PrimeFaces' exception handling for AJAX and non-AJAX requests.

Getting ready
In order to be able use the exception handling, a special EL resolver and a factory class for
'ExceptionHandler of PrimeFaces should be registered in faces-config.xml:

<application>
 <el-resolver>
 org.primefaces.application.
 exceptionhandler.PrimeExceptionHandlerELResolver
 </el-resolver>
</application>

<factory>
 <exception-handler-factory>
 org.primefaces.application.
 exceptionhandler.PrimeExceptionHandlerFactory
 </exception-handler-factory>
</factory>

PrimeFaces parses the web.xml file on application startup to figure out an appropriate page
to redirect to when an exception of a certain type occurs. The web.xml file of the showcase
contains three error-page entries:

<error-page>
 <exception-type>
 java.lang.Throwable
 </exception-type>

Miscellaneous Advanced Use Cases

372

 <location>
 /views/chapter11/errors/throwable.jsf
 </location>
</error-page>
<error-page>
 <exception-type>
 java.lang.IllegalStateException
 </exception-type>
 <location>
 /views/chapter11/errors/illegalState.jsf
 </location>
</error-page>
<error-page>
 <exception-type>
 javax.faces.application.ViewExpiredException
 </exception-type>
 <location>
 /views/chapter11/errors/viewExpired.jsf
 </location>
</error-page>

There are two pages for the special exception types, IllegalStateException and
ViewExpiredException, and one generic page for all other kind of exceptions.

In addition to this, you can set the javax.faces.FACELETS_BUFFER_SIZE context
parameter in web.xml to support exception handling in the RENDER_RESPONSE phase.
Otherwise, you will probably see javax.servlet.ServletException: Response already
committed. This is shown in the following code:

<context-param>
 <param-name>javax.faces.FACELETS_BUFFER_SIZE</param-name>
 <param-value>65535</param-value>
</context-param>

How to do it…
We will develop three AJAX-ified p:commandButton components and three others to send
non-AJAX requests. All buttons invoke actions, which throw different exceptions. We will
also have a p:ajaxExceptionHandler tag for ViewExpiredException. This kind
of exception mostly occurs when the session expires. In this case, we would like to update
and show a dialog with the exception details and a Reload button. This is shown in the
following code:

Chapter 11

373

<h3 style="margin-top:0">AJAX requests</h3>

<p:commandButton value="Throw NullPointerException"
 action="#{exceptionHandlerBean.throwNullPointerException}"/>
<p:commandButton value="Throw IllegalStateException"
 action="#{exceptionHandlerBean.throwIllegalStateException}"/>
<p:commandButton value="Throw ViewExpiredException"
 action="#{exceptionHandlerBean.throwViewExpiredException}"/>

<h3 style="margin-top:20px">Non-AJAX requests</h3>

<p:commandButton ajax="false" value="Throw NullPointerException"
 action="#{exceptionHandlerBean.throwNullPointerException}"/>
<p:commandButton ajax="false" value="Throw IllegalStateException"
 action="#{exceptionHandlerBean.throwIllegalStateException}"/>
<p:commandButton ajax="false" value="Throw ViewExpiredException"
 action="#{exceptionHandlerBean.throwViewExpiredException}"/>

<p:ajaxExceptionHandler update="expDialog"
 type="javax.faces.application.ViewExpiredException"
 onexception="PF('exceptionDialog').show();"/>

<p:dialog id="expDialog" header="#{pfExceptionHandler.type}
 occured!"
 widgetVar="exceptionDialog" height="500px">
 Message: #{pfExceptionHandler.message}

 Timestamp: #{pfExceptionHandler.formattedTimestamp}

 StackTrace:
 <h:outputText value="#{pfExceptionHandler.formattedStackTrace}"
 escape="false"/>

 <p:button value="Reload the application!"
 style="margin:20px 5px 20px 5px"
 onclick="document.location.href = document.location.href;"/>
</p:dialog>

Miscellaneous Advanced Use Cases

374

The dialog is quite useful if you do not want to create a separate error page, as shown in the
following screenshot:

The separate error pages, viewExpired.jsf, illegalState.jsf, and throwable.jsf,
have some common information about the exception thrown. For instance, the throwable.
jsf page looks like this:

<h3 style="margin-top:0">
 Oops, an unexpected error occured
</h3>

Message: #{pfExceptionHandler.message}

Timestamp: #{pfExceptionHandler.formattedTimestamp}

StackTrace:
<h:outputText value="#{pfExceptionHandler.formattedStackTrace}"
 escape="false"/>

Chapter 11

375

The following screenshot shows the exact output of this page:

How it works…
The viewExpired.jsf and illegalState.jsf error pages are configured for exceptions
of the types ViewExpiredException and IllegalStateException, respectively. Any
other exceptions are caught by the java.lang.Throwable type and will be redirected to
the throwable.jsf page.

The p:ajaxExceptionHandler exception handler component provides a way to update
other components on the same page and execute the onexception callback on the
client side after that. Be aware that the p:ajaxExceptionHandler component is only
valid for AJAX requests. It does not have any effect on non-AJAX requests. In the example,
ViewExpiredException is shown on a separate page for non-AJAX requests.

Place p:ajaxExceptionHandler in your Facelets master template
so that it will be included in every page.

Miscellaneous Advanced Use Cases

376

Information about the exception is provided via the keyword, pfExceptionHandler,
and can be accessed on a page by EL expressions such as #{pfExceptionHandler.
message}. All exposed properties are listed here:

Property Description
exception This is an exception instance
type This is the type of the exception
message This is the exception message

stackTrace
This is an array of java.lang.StackTraceElement
instances

formattedStackTrace This sets stack trace as a presentable string
timestamp This sets a timestamp as a date
formattedTimestamp This sets a timestamp as a presentable string

PrimeFaces Cookbook Showcase application
This recipe is available in the demo web application on GitHub (https://github.com/
ova2/primefaces-cookbook/tree/second-edition). Clone the project if you have
not done it yet, explore the project structure, and build and deploy the WAR file on application
servers compatible with Servlet 3.x, such as JBoss WildFly and Apache TomEE.

The showcase for the recipe is available at http://localhost:8080/pf-cookbook/
views/chapter11/exceptionHandling.jsf.

https://github.com/ova2/primefaces-cookbook/tree/second-edition
https://github.com/ova2/primefaces-cookbook/tree/second-edition

377

Index
Symbol
<p:poll> component

used, for updating live data in charts 290

A
accordionPanel component

dynamic content, loading 100
dynamic tab, loading 100
used, for vertical stacked panels 99, 100
with AJAX behavior events 100, 101

AJAX
about 5
charts, interacting 291
processing with 5-8
updating with 5-8

AJAX behavior events
on column reordering 143
on column toggling 145
on resize 143
on row reordering 143

AJAX callback parameters
adding 337-339

AJAX-enhanced drag and drop
creating 270-277

Apache Trinidad
URL 34

area charts
creating 285, 286

Aristo 34
autoComplete component

items, grouping 61
item tip, adding 60
used, for autosuggestion 57-59

with, instant AJAX selection 59
with, multiple selection 60

B
bar charts

creating 286
Bean Validation

about 310
CSV, extending 321-327
enabling 310-314
URL 310

blockUI component
used, for blocking page pieces 349-352

BlueSky theme 34
breadcrumb

about 203
developing 203, 204

buttons
grouping, with toolbar 107

C
cache component

used, for reducing page load time 368-370
calendar component

about 69
effects, applying 72
localization 71
pattern attribute, using 71
using 69, 70
with, time picking ability 72, 73

Car converter class
URL 68

Card Verification Code (CVC) 321

378

Casablanca theme 34
chart component

used, for creating charts 284, 285
charts

interacting, via AJAX 291
live data, updating with

<p:poll> component 290
checkboxes

displaying, selectCheckboxMenu component
used 221-225

used, for multiple-item selection 129
circles

creating, in maps 296
click

row, selecting with 128
Client-side Validation. See CSV
collection of images

captions on items, displaying 244
displaying 243
displaying, with contentFlow

component 248, 249
displaying, with galleria component 242
displaying, with imageSwitch

component 245-248
transition effects, applying 243

colspan support
in panelGrid component 95-98

columns
reordering, in dataTable component 140-142
resizing, in dataTable component 140-142
state, adding for toggling 146
toggling 144, 145
toggling, in dataTable component 140-142

combined charts
creating 288, 289

commands
accessing, via menubar 218-221

complex layouts
creating, with layout component 113-115

conditional coloring
with dataTable component 364, 365

content
grouping, standard panel used 92

contentFlow component
captions, displaying with images 250
used, for displaying collection of

images 248, 249

context menu
creating, with nested items 197, 198
integrating, with tree component 199-202

CSS specificity
URL 37

CSV
about 302
configuring 302-308
extending, with Bean Validation 321-327
extending, with JSF 315-320
features 302

custom filtering 134
custom keywords

@all 6
@child(n) 6
@composite 6
@form 6
@namingcontainer 6
@next 6
@none 6
@parent 6
@previous 6
@this 6
@widgetVar(name) 6

custom theme
creating 41-43

D
dashboard component

fixed-sized columns, setting 112, 113
new widgets, creating 112
used, for simulating portal

environment 110-112
data

exporting, dataExporter component
used 176, 177

filtering, in dataTable 131-133
listing, with dataList component 153, 154
listing, with orderList component 162
listing, with pickList component 157, 158
sorting, in dataTable component 131-133
visualizing, with dataScroller component 186
visualizing, with tree component 164, 165
visualizing, with treeTable

component 171, 172

379

dataExporter component
export status, monitoring 178
preprocessing and postprocessing,

of documents 177
used, for exporting data 176, 177

dataList component
data, listing with 153, 154

dataScroller component
buffer attribute 186
data, loading with button 187
lazy attribute 187
used, for visualizing data 186

dataTable component
AJAX behavior events 139
columns, reordering in 140-142
columns, resizing in 140-142
columns, toggling in 140-142
data, filtering in 131-133
data, sorting in 131-133
in-cell editing feature 136, 137
responsive, making 147
rows, selecting in 126, 127
used, for conditional coloring 364, 365

defaultCommand component
used, for controlling form

submission 352-354
default theme styles

customizing 35-39
drag and drop

about 257
integrating, with data iteration

components 277-282
with AJAX behavior event 270-277

draggable component
creating 258-260
reference link 264
restricting, by axis 260-262
restricting, by containment 260-262
restricting, by grid 260-262
snapping, to edges of nearest

elements 262-264
tolerance modes 269

droppable component
restricting, by acceptance 267-270
restricting, by tolerance 267-270

droppable targets
defining 265, 266

dynamically generated dialogs
external pages, opening 340-346

dynamically positioned menu
creating 190-192

dynamic content
streaming 253

dynamic image streaming
creating, programmatically 241

E
editor component

contents, clearing 82
embedding, inside a dialog box 82
used, for rich text editing 79-81

Ehcache
URL 368, 369

events
managing, with schedule by leveraging

lazy loading 179-182
exception handling

demonstrating 371-375
external pages

opening, in dynamically generated
dialogs 340-346

F
files

accessing, with listener 231, 232
downloading, with fileDownload

component 235, 236
download status, monitoring 236
maximum size, limiting 232, 233
references 230
showcase example, for uploads 234, 235
upload restriction 232
uploading, with client-side

callbacks 233, 234
uploading, with drag-and-drop 234
uploading, with fileUpload

component 228-231
filtering

options 134

380

filterMatchMode attribute
values 133

Firebug
about 13
URL 13

focus component
used, for managing focus in forms 355, 356

font
adjusting, throughout web application 39, 40

Font Awesome
integrating, with PrimeFaces 48-51
URL 48

form submission
controlling, defaultCommand component

used 352-354
fragments

used, for partial processing 13-15
used, for updating 13-15

G
galleria component

used, for displaying collection of images 242
global filtering 134
gmap component

controls, configuring 293
used, for mapping 292, 293

Grid CSS
about 119
div elements, nesting 122
used, for creating responsive layout 119, 120

gross domestic product (GDP) 364
grouping

subTable component, using 149, 150

H
Hazelcast

URL 368

I
images

camera, accessing 256
capturing, with photoCam 254, 255
cropping 238-240

imageSwitch component
used, for displaying collection of

images 245-248
improved resource ordering

about 24
implementing 24, 25

in-cell editing, with dataTable
component 136, 137

InfoWindow component
enabling, on maps 298

inplace component
display element 83
effects, applying 84
facets, adding 84
inline element 83
used, for advanced editing 83, 84
with AJAX behavior events 85
with confirmation buttons 84

inputMask
asterisk (*) character, using 55
mask value, modifying 56
part of mask, making optional 55
used, for formatted input 54, 55
with placeHolder attribute 55
with slotChar attribute 55

inputTextArea component
about 62
autocomplete, on content 64
usable features 62
with maxlength attribute 63

instant row selection 130
instant validation

developing, with p:clientValidator 308, 309
Internationalization (i18n)

about 17
implementing 18-22

J
JavaScript execution

triggering 333-336
JavaScript Object Notation (JSON) 339
JavaServer Faces. See JSF
JBoss RichFaces

URL 34

381

jQuery Selector API
URL 9

jQuery Sortable plugin
URL 32

jQuery UI icons
URL 94

jQuery UI ThemeRoller
URL 32

JSF
about 302
CSV, extending 315-320

JSF 2 API
reference link 277

JSF Central
URL 369

JSF pages
multimedia content, embedding 251-253

L
layout component

pitfalls of dialogs, avoiding 357-360
pitfalls of menus, avoiding 357-360
used, for creating complex layouts 113-115
used, for element-based layouts 116
used, for nested layouts 116
with AJAX behavior events 118

LazyDataModel
tons of data, handling 152

life cycle phases, JSF
apply request values 7
invoke application 7
process validations 7
update model 7

line chart
creating 284

Localization (L10n)
about 17
implementing 18-22

M
mapping

with gmap component 292, 293
maps

circles, creating 296
InfoWindow component, enabling 298

markers, adding 294
markers, dragging 294, 295
markers, selecting 294, 295
polygons, creating 296
polylines, creating 296
rectangles, creating 296
streetView component, enabling 298

Maven
about 33
URL 33

mega menu
about 210
creating, with megaMenu

component 210-213
menu

about 189
icon, specifying 192

menubar
used, for accessing commands 218-221

menu button
about 216
creating, with menuButton

component 216, 217
multimedia content

embedding, in JSF pages 251-253
multiple files

uploading 233
multiple-item selection

with checkboxes 129

O
OmniFaces

URL 48, 310
orderList component

data, listing with 162
transition effects 163

outputPanel component
deferred loading support 108
panel, used as placeholder component 109
using 108

outputScript tag
reference link 71

overflowed content
displaying, with scrollPanel

component 102, 103

382

P
p:clientValidator

instant validation, developing 308, 309
page load time

reducing, cache component used 368-370
pagination 155-157
panelGrid component

about 95
with colspan support 95-98
with rowspan support 95-98

panel menu
about 214
creating, with panelMenu

component 214, 215
Partial Page Rendering (PPR) 5
partial processing

with fragments 13-15
partial view submit

about 15
using 15, 16

password component
about 86
using 86
with autocomplete attribute 87
with match attribute 87

PFS
about 9, 322, 360
advantage 9
using 10-13

photoCam
images, capturing 254, 255

pickList component
AJAX behavior events 161
buttons visibility, controlling 158, 159
custom JavaScript, executing on

transfer 160, 161
data, listing with 157, 158
POJO support 159
transition effects 160

pie charts
creating 287

Plain Old Java Objects (POJOs) 339
polling

about 347
used, for sending periodical AJAX

requests 347, 348

polygons
creating, in maps 297

polylines
creating, in maps 296

portal environment
simulating, with dashboard

component 110-112
postprocessing events

on sorting/filtering 135
PrimeFaces

about 2
Font Awesome, integrating 48-51
optional libraries 4
Showcase application 5
URL 2, 12

PrimeFaces library
configuring 2-4
setting up 2-4
URL 2

PrimeFacesLocales
URL 22

PrimeFaces Selector. See PFS
PrimeFaces Showcase

URL 28
PrimeFaces Theme Gallery

URL 27
programmatic menus

creating 193-196
Project Object Model XML file 2

R
radio buttons

row, selecting with 128
rating component

about 88
used, for star-based rating 88
with AJAX behavior events 89
with readonly attribute 88

rectangles
creating, in maps 296

regular expressions
URL 319

RequestContext
scrolling with 330-333
used, for programmatic updating 330-333

383

responsive layout
creating, with Grid CSS 119, 120

rich text
editing, editor component used 79-81

right to left language support
example 23
implementing 22

row
editing, to condition 138
selecting, in dataTable component 126, 127
selecting, with click 128
selecting, with radio buttons 128

rowspan support
in panelGrid component 95-98

S
schedule component

AJAX behavior events 184, 185
locale support 185

scrollPanel component
used, for displaying overflowed

content 102, 103
Search Expression Framework (SEF) 6
selectBooleanCheckbox

discovering 65
selection, with AJAX behavior 66

selectCheckboxMenu component
used, for displaying checkboxes 221-225

selectionMode attribute 127
selectManyCheckbox

discovering 65
selectOneMenu component

items, filtering 68
used, for selecting single item 67, 68

simplemagic
URL 232

size
adjusting, throughout web application 39, 40

skinning CSS
about 28
versus structural CSS 28-32

skinning style classes
.ui-corner-all 31
.ui-corner-bottom 31
.ui-corner-top 31
.ui-icon 31

.ui-state-active 31

.ui-state-default 31

.ui-state-disabled 31

.ui-state-error 31

.ui-state-highlight 31

.ui-state-hover 31

.ui-widget 30

.ui-widget-content 30

.ui-widget-header 30
slide menu

about 204
creating, with slideMenu

component 204-206
slider component

manual input, disabling 78
range, selecting 78
used, for providing input 76
value, displaying 77
with AJAX behavior events 78
with step attribute 77

specificity, CSS selector
about 32
reference link 32

spinner component
AJAX update 76
boundaries, applying 75
prefix attribute, adding 75
suffix attribute, adding 75
used, for providing input 74
width, adjusting 75

standard panel
custom actions, adding 94
footer attribute 92
header attribute 92
toggleOrientation attribute 93
toggleSpeed attribute 92
used, for grouping content 92
with AJAX behavior events 94

state
adding, for column toggling 146

stateful theme switcher
JSF converter, using 47
using 44-46

stateless theme switcher
using 44-46

384

statically positioned menu
creating 190-192

Sticky component
used, for sticking component when

scrolling 365-367
streetView component

enabling, on maps 298
structural CSS

about 28
versus skinning CSS 28-32

subTable component
using, for grouping 149, 150

T
tabbed panel

creating 103, 104
dynamic tab, loading 105
orientation, setting 104
transition effects, applying 105

tabView component
used, for creating tabbed panel 103, 104
with AJAX behavior events 105

targetable messages
developing, with severity levels 361-363

ThemeRoller
URL 44

themes
installing 32-34
URL 32

tiered menu
about 207
creating, with tieredMenu

component 207-209
toolbar

buttons, grouping 107
transformation 310-314
tree component

AJAX behavior events 168, 169
context menu, integrating 199-202
context menu support 169, 170
data, visualizing with 164, 165
drag and drop feature 167, 168
horizontal layout 170
node selection 166
node type support 165, 166

treeTable component
AJAX behavior events 175, 176
context menu support 173, 174
data, visualizing with 171, 172
node selection 172
sorting, enabling for columns 173

V
vertical stacked panels

with accordionPanel component 99, 100

W
web application

font, adjusting 39, 40
size, adjusting 39, 40

WebJars
URL 48

World Wide Web Consortium (W3C)
URL 37

Thank you for buying

PrimeFaces Cookbook
Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Mastering PrimeFaces
[Video]
ISBN: 978-1-78398-806-8 Duration: 05:04 hours

Master the PrimeFaces Component framework and
quickly develop sophisticated web applications

1.	 Develop sophisticated user interfaces for your
Java EE applications utilizing the Ajax core
components.

2.	 Master the PrimeFaces powerful JSF component
library to build your application.

3.	 Portray outstanding visual dashboards for
your data.

4.	 Use the PrimeFaces mobile framework to provide
a top-notch mobile front-end interface for your
application users.

PrimeFaces Blueprints
ISBN: 978-1-78398-322-3 Paperback: 310 pages

Create your very own portfolio of customized web
applications with PrimeFaces

1.	 Learn how to use the rich UI components of
PrimeFaces.

2.	 Explore all the major features of PrimeFaces
with real-world examples.

3.	 Step-by-step guide with precise explanations of
code and functionalities.

Please check www.PacktPub.com for information on our titles

Learning PrimeFaces
Extensions Development
ISBN: 978-1-78398-324-7 Paperback: 192 pages

Develop advanced frontend applications using
PrimeFaces Extensions components and plugins

1.	 Learn how to utilize the enhanced Extensions'
components in the existing or newly created
PrimeFaces based applications.

2.	 Explore all the components major features with
lots of example scenarios.

3.	 Features a systematic approach to teach a wide
range of Extensions component features with the
JobHub web application development.

PrimeFaces Cookbook
ISBN: 978-1-84951-928-1 Paperback: 328 pages

Over 90 practical recipes to learn PrimeFaces-the rapidly
evolving, leading JSF component suite

1.	 The first PrimeFaces book that concentrates
on practical approaches rather than the
theoretical ones.

2.	 Readers will gain all the PrimeFaces insights
required to complete their JSF projects
successfully.

3.	 Written in a clear, comprehensible style
and addresses a wide audience on modern,
trend-setting Java/JEE web development.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with PrimeFaces
	Introduction
	Setting up and configuring the PrimeFaces library
	AJAX basics with process and update
	PrimeFaces selectors
	Partial process and update with fragments
	Partial view submit
	Internationalization (i18n) and Localization (L10n)
	Improved resource ordering

	Chapter 2: Theming Concepts
	Introduction
	Understanding structural and skinning CSS
	Installing themes
	Customizing default theme styles
	Adjusting the font and size throughout the web application
	Simple ways to create a new theme
	Stateless and stateful theme switchers
	Integrating Font Awesome with PrimeFaces

	Chapter 3: Enhanced Inputs
and Selects
	Introduction
	Formatted input with inputMask
	Auto suggestion with autoComplete
	Usable features of inputTextArea
	Discovering selectBooleanCheckbox and selectManyCheckbox
	Choosing a single item with selectOneMenu
	Basic and advanced calendar scenarios
	Spinner – different ways to provide input
	Slider – different ways to provide input
	Rich text editing with the editor
	Advanced editing with an in-place editor
	Enhanced password input
	Star-based rating input

	Chapter 4: Grouping Content
with Panels
	Introduction
	Grouping content with a standard panel
	PanelGrid with colspan and rowspan support
	Vertical stacked panels with accordion
	Displaying overflowed content with scrollPanel
	Working with a tabbed panel
	Grouping of buttons and more with toolbar
	Multipurpose output panel
	Simulating the portal environment with dashboard
	Creating complex layouts
	Responsive layout with Grid CSS

	Chapter 5: Data Iteration Components
	Introduction
	Selecting rows in dataTable
	Sorting and filtering data in dataTable
	In-cell editing with dataTable
	Resizing, reordering, and toggling columns in dataTable
	Making dataTable responsive
	Using subTable for grouping
	Handling tons of data – LazyDataModel
	Listing data with dataList
	Listing data with pickList
	Listing data with orderList
	Visualizing data with tree
	Visualizing data with treeTable
	Exporting data in various formats
	Managing events with schedule by leveraging lazy loading
	Visualizing data with dataScroller

	Chapter 6: Endless Menu Variations
	Introduction
	Statically and dynamically positioned menus
	Creating programmatic menus
	The context menu with nested items
	Context menu integration
	Breadcrumb – providing contextual information about page hierarchy
	SlideMenu – menu in iPod style
	TieredMenu – submenus in nested overlays
	MegaMenu – multicolumn menu
	PanelMenu – hybrid of accordion and tree
	MenuButton – multiple items in a popup
	Accessing commands via menubar
	Displaying checkboxes in selectCheckboxMenu

	Chapter 7: Working with Files, Images, and Multimedia
	Introduction
	Basic, automatic, drag and drop, and multiple file uploading
	Downloading files
	Cropping images
	Creating dynamic image streaming programmatically
	Displaying a collection of images with galleria
	Displaying a collection of images with imageSwitch
	Displaying a collection of images with contentFlow
	Embedding multimedia content in JSF pages
	Capturing images with photoCam

	Chapter 8: Drag Me, Drop Me
	Introduction
	Making a component draggable
	Restricting dragging by axis, grid, and containment
	Snapping to the edges of the nearest elements
	Defining droppable targets
	Restricting dropping by tolerance and acceptance
	AJAX-enhanced drag and drop
	Integrating drag and drop with data iteration components

	Chapter 9: Creating Charts
and Maps
	Introduction
	Creating line, area, bar, and pie charts
	Creating combined charts
	Updating live data in charts with polling
	Interacting with charts via AJAX
	Basic mapping with GMaps
	Adding, selecting, and dragging markers in maps
	Creating rectangles, circles, polylines, and polygons in maps
	Enabling InfoWindow and streetView on maps

	Chapter 10: Client-side Validation
	Introduction
	Configuring and getting started with CSV
	Instant validation with p:clientValidator
	Bean Validation and transformation
	Extending CSV with JSF
	Extending CSV with Bean Validation

	Chapter 11: Miscellaneous Advanced Use Cases
	Introduction
	Programmatic updating and scrolling with RequestContext
	Two ways of triggering JavaScript execution
	Adding AJAX callback
parameters – validation within a dialog
	Opening external pages in dynamically generated dialogs
	Polling – sending periodical AJAX requests
	Blocking page pieces during long-running AJAX calls
	Controlling form submission using defaultCommand
	Clever focus management in forms
	Layout pitfalls of menus and dialogs
	Targetable messages with severity levels
	Conditional coloring in dataTable
	Sticking a component when scrolling
	Reducing page load time using content caching
	Possibilities for exception handling in PrimeFaces

	Index

