Air Quality 2018

11th International Conference on Air Quality - Science and Application

Thursday 15 March 2018

DESCRIBING AIR QUALITY-CLIMATE INTERACTIONS WITHIN THE REPAIR PROJECT

Laura Palacios-Peña¹, López-Romero, J.M., Jerez, S., Fast, J., Gómez-Navarro, J.J., Lorente-Plazas, R., Medina, J., Tarín-Carrasco, P., Montávez, J.P. & Jiménez-Guerrero, P.

1 Department of Physics, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain

Contact: laura.palacios1@um.es

MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD

Motivation and Objectives

UNIVERSIDAD DE MURCIA

Air quality-climate interactions and their impact on renewable energies under climate change scenarios (REPAIR)

Objectives

To study the impact of the air qualityclimate interactions (AQCI) and potential future emission reductions due to the increased use of renewable energies (including wind and solar) on climate change in Europe through its mitigating role in radiative forcing and air quality.

The REPAIR project is a Spanish competitive-funded initiative. The objectives of the REPAIR proposal are decisively comprised in the goals of the Horizon 2020 programme, since it will provide science-based information.

WP2. Modelling System

UNIVERSIDAD DE MURCIA

Simulation Matrix (Scenarios)					
Code	Model	IC/BC	Emiss	Period	
REA	WRF	ERA-20C	-	1991-2010	
REA- CHEM_P	WRF- Chem	ERA-20C	EDGAR- HTAP	1991-2010	
PRE	WRF	EC6- 20C3M	-	1991-2010	
PRE- CHEM_P	WRF- Chem	EC6- 20C3M	EDGAR- HTAP	1991-2010	
FUT85	WRF	EC6- RCP8.5	-	2031-2050	
FUT85- CHEM_P	WRF- Chem	EC- RCP8.5	EDGAR- HTAP	2031-2050	
FUT85- CHEM_F	WRF- Chem	EC- RCP8.5	EDGAR- HTAP fut	2031-2050	
FUT85- CHEM_R	WRF- Chem	EC- RCP8.5	EDGAR- HTAP fut + ALT8.5	2031-2050	

Domain 1 (1.32°) → Total Saharan dust intrusions capture

WP2. Modelling System

UNIVERSIDAD DE MURCIA

RDEX

Model configuration		
Parameterization	Reference	
Physics		
Microphysic	Lin	
Radiation (SW & LW)	RRTM	
Planetary Boundary Layer	YSU	
Cumulus	Kain-Fritsch	
Soil option	Noah	
Chemistry		
Gas-phase	RACM-KPP	
Aerosol	GOCART	
Photolysis	Fast-J	
Biogenic emissions	MEGAN	
Dry deposition	Wesely	
Wet deposition	Wet deposition + Grid- scale wet deposition	

Domain 1 (1.32°) \rightarrow Total Saharan dust intrusions capture

WP3. Present-day climatologies (2001-2010): REA-CHEM_P

UNIVERSIDAD DE MURCIA

Near-Surface Air Temperature

Aerosol Optical Depth at 550nm

Tropospheric ozone

Particulate Matter PM₁₀

WP3. Present-day climatologies (2001-2010): REA-CHEM_P

UNIVERSIDAD DE MURCIA

Evaluation against				
Variable	Observation	Temporal resolution	Spatial resolution	Reference
NO ₂	OMI/Aura NO ₂ Tropospheric Column	Daily L3	Global (0.25º)	Krotkov, N.A. (2013), OMI/Aura NO2 Cloud-Screened Total and Tropospheric Column L3 Global Gridded 0.25, NASA GSFC, GES DISC, 10.5067/Aura/OMI/DATA3007
O ₃	Gridded data observations	MDA8	Europe (1º)	Schnell, J., et al.: Skill in forecasting extreme ozone pollution episodes with a global atmospheric chemistry model, Atmos. Chem. Phys., 14, 7721-7739, https://doi.org/10.5194/acp-14- 7721-2014, 2014.
PM ₁₀	observations	^{290,0} ² Daily at 550nm	Europe (1º)	Provided by J. Schnell. Methodology analogous to: Schnell, et al., 2014 articulate Matter PM ₁₀
AOD	MODIS L2	Daily from L2	Global (10 km)	Levy, R., Hsu, C., et al., 2015. MODIS Atmosphere L2 Aerosol Product. NASA MODIS Adaptive Processing System, GSFCnter, USA
Near-Surface Air Temperature	E-OBS (v16.0)	Daily	Europe (0.5°)	Haylock, M. R., et al., 2008. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. Journal of Geophysical Research: Atmospheres, 113: D20119. DOI: 10.1029/2008JD010201.
Precipitation	E-OBS (v16.0)	Daily	Europe (0.5°)	Haylock, M. R., et al., 2008.
	Here a			
	Aerosol Optical Thickness AOD550 0,02 0,04 0,06 0,08	0,10 0,12		5,00 10,00 15,00 20,00 25,00

WP3. Present climatologies (2004-2010): Evaluation NO₂ (REA-CHEM_P)

UNIVERSIDAD DE MURCIA

0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90

-6,00 -4,67 -3,33 -2,00 -0,67 0,67 2,00 3,33 4,67 6,00

WP3. Present climatologies (Summer 2001-2010): Evaluation O₃ during summer (REA_CHEM_P)

UNIVERSIDAD DE MURCIA

WP3. Present climatologies (2003-2010): Evaluation PM₁₀ (REA_CHEM_P)

UNIVERSIDAD DE MURCIA

WP3. Present-day climatologies: WRF (REA) vs. WRF-Chem (REA_CHEM_P)

UNIVERSIDAD DE MURCIA

-6,00 -4,67 -3,33 -2,00 -0,67 0,67 2,00 3,33 4,67 6,00

WP3. Present-day climatologies: WRF (REA) vs. WRF-Chem (REA_CHEM_P)

UNIVERSIDAD DE MURCIA

Mean	Media (mm/day)	BIAS (mm/day)	% BIAS
E-OBS	1.58		-
WRF	1.73	0.51	32.28
WRF-Chem	1.71	0.47	29.75

Precipitation

Number of consecutive wet days

ECACWD	Mean (days)	BIAS (days)	% BIAS
E-OBS	13.65	-	-
WRF	-	2.72	19.93
WRF-Chem	-	2.56	18.75

WP4. CLIMATE CHANGE PROJECTIONS: Impact of evolving greenhouse gas forcing on the warming signal in regional climate model experiments

UNIVERSIDAD DE MURCIA

Impact of including the evolving GHG forcing in regional climate simulations on the temperature projections under 1.5°C global warming.

The inclusion of the GHG forcing in regional climate model experiments is a non-regulated, non-documented practice.

Its significant impact on the simulated regional warming trends even **doubles the climate change signals** under 1.5°C global warming (see points in the figure).

Nature Communications (2018), in press, DOI: 10.1038/s41467-018-03527-y

WP4. CLIMATE CHANGE PROJECTIONS: RCP 8.5

UNIVERSIDAD DE MURCIA

Near-Surface Air Temperature

Near-Surface Air Temperature (RCP8.5 vs 20C3M)

Tropospheric ozone (RCP8.5 vs. 20C3M)

-1,20 -0,93 -0,67 -0,40 -0,13 0,13 0,40 0,67 0,93 1,20

-3,00 -2,33 -1,67 -1,00 -0,33 0,33 1,00 1,67 2,33 3,00

PM10 (RCP8.5 vs. 20C3M)

Summary and Conclusions

- WP2. The evaluation of the air quality variables indicates a good representation of:
 - NO₂: low BIAS over Europe but lower correlation values over the Mediterranean Basin.
 - O₃ during summer: a general overestimation of MDA8 levels but really high temporal correlation
 - PM₁₀: a general underestimation of the levels. Low temporal correlation may due to low density of station.
- WP3. Both, air-surface temperature and precipitation, the model representation improves when aerosol-radiation-clouds interactions are taken into account.
- WP4. Future climate projection under the RCP8.5 scenario indicate:
 - Regional climate change projection should include GHG variations.
 - An increase in temperatures and radiation and changes in PM₁₀ due to atmospheric dynamic.

Future Works: CLIMATE PROJECTIONS INCLUDING RENEWABLE ENERGIES AND THEIR IMPACT ON EMISSIONS (WP5)

UNIVERSIDAD DE MURCIA

The impact of climate change on photovoltaic power generation in Europe

Changes in PV power generation potential for the end of this century (expressed in % with respect to present-day estimates) as displayed by the ensemble mean of a set of Euro-Cordex simulations.

None of current Euro-Cordex simulations includes ARI or ACI dynamically, hence the **effect of atmospheric aerosols** is missing in the currently available **projections for the renewable resource**. REPAIR will allow to elucidate so, by applying the same methodology described in this paper to the new set of simulations from REPAIR.

Jerez et al 2015, Nature Communications, 6:10014, DOI: 10.1038/ncomms10014

- We acknowledge the funding of REPAIR-CGL2014-59677 R project (Spanish Ministry of Science and Innovation and FEDER program of the European Union).
- Laura Palacios-Peña the FPU scholarship (Ref. FPU14/05505).

Cartagena 17-19 octubre 2018

REPAIR Tasks

The REPAIR project is a Spanish competitive-funded initiative. The objectives of the REPAIR proposal are decisively comprised in the goals of the Horizon 2020 programme, since it will provide science-based information. Moreover, this project is going to contribute to the Euro-CORDEX initiative, special emphasis is put in the two WP related to management and dissemination:

- WP1. COORDINATION AND MANAGEMENT OF THE PROJECT
- WP2. DEFINITION OF THE MODELLING SYSTEM, SCENARIOS AND DATA NEEDED
- WP3. GENERATION AND EVALUATION OF PRESENT-DAY CLIMATOLOGIES
- WP4. CLIMATE CHANGE PROJECTIONS
- WP5. CLIMATE PROJECTIONS INCLUDING RENEWABLE ENERGIES AND THEIR IMPACT ON EMISSIONS
- WP6. DISSEMINATION AND EXPLOITATION OF THE RESULTS OF THE PROJECT

WP3. Present climatologies (2001-2010): Evaluation O₃ (REA_CHEM_P)

UNIVERSIDAD DE MURCIA

0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90

-6,00 -4,67 -3,33 -2,00 -0,67 0,67 2,00 3,33 4,67 6,00

WP3. Present climatologies (2003-2010): **Evaluation AOD (REA_CHEM_P)**

UNIVERSIDAD DE MURCIA

AOD (MODIS L2)

Combined Dark Target, Deep Blue AOT at 0.55 micron for land and ocean. (None)

0,125 0,175 0,150 0,200 0,225 **Observations: MODIS Atmosphere L2 Aerosol** Product

> In general, temporal correlation > 0.5High values over the south of the domain

BIAS AOD

WP3. Present-day climatologies: WRF (REA) vs. WRF-Chem (REA_CHEM_P)

UNIVERSIDAD DE MURCIA

Minimum Temperature (E-OBS) Underestimation of Lower improvement minimum temperature than for maximum but lower than temperature maximum minimum temperature (Celsius) Diff. Abs. Error (CHEM -5,00 -2,50 0,00 2,50 5,00 7,50 10,00 12,50 15,00 Temp. BIAS (NO-CHEM) vs NO-Chem) Difference in Abs. Error (K) Bias Minimum Temperature (K

-6,00 -4,67 -3,33 -2,00 -0,67 0,67 2,00 3,33 4,67 6,00

-0,20 -0,15 -0,10 -0,05 0,00 0,05 0,10 0,15 0,20

WP3. Present-day climatologies: WRF (REA) vs. WRF-Chem (REA_CHEM_P)

UNIVERSIDAD DE MURCIA

ECACWD (Number of consecutive wet days)ECACMeanBIAS%WD(days)(days)BIASE-OBS13.65--

2.56

19.93

18.75

WRF

WRF-

Chem

