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Antonio F. Gómez-Skarmeta

Department of Information and

Communication Engineering

University of Murcia

Computer Science Faculty 30071

Campus de Espinardo, Murcia, Spain

Email: skarmeta@dif.um.es

Abstract— Actual solutions for new Intelligent Transport
System (ITS) applications cannot fulfill current user require-
ments. Road applications such as traveller information, route
guidance, automatic emergency calls, freight management
or electronic fee collection require a road side equipment
(RSE) capable to offer a high available accurate position
with low price, even in unfriendly environments with low
satellite visibility, such as built-up areas or tunnels. Users
demand from the RSEs not only accurate continuous posi-
tioning, but also integrity information of the reliability of
this position. Specifically in life critical applications, high
integrity monitored positioning is absolutely required. This
paper presents a solution based on the fusion of GNSS and
inertial sensors (a GNSS/INS integrated system), running an
Extended Kalman Filter combined with an Interactive Multi-
Model method (EKF-IMM). The solution developed in this
work supplies not only continuous positioning at a reasonable
price, but also a meaningful trust level of the given solution.

I. INTRODUCTION AND STATE OF THE ART

Most of the current low cost RSEs (Road Side Equip-

ments) for land vehicles are based on a single GNSS

(Global Navigation Satellite System) solution. However,

GNSS devices cannot guarantee high integrity positioning,

specially in unfriendly environments. Low cost, including

easy installation and maintenance, continuous precise posi-

tioning, even during the outages of the GNSS signals, fault

detection, and continuous monitored integrity are the main

features of a solution suitable for mass market applications.

The main objective of this work is the development of a high

integrity navigation system for road vehicles in real driving

conditions, including hostile environments. Since the solu-

tion developed must suit the requirements of mass market

applications to location based services, cost considerations

must be done.

According to the actual literature, the most reliable

solution to the problem of terrestrial vehicle localization

implements a positioning system based on the integration

of a GNSS and some other aiding positioning systems.

Different approaches are being studied in order to guarantee

the proper position quality. All of them rely on an accurate

GNSS position, either as the leading positioning information

input, or as an assistance system, to determine vehicle

movements along roads. A few examples can be found in

[1]–[3]. For this reason, a complete study of a single GNSS

solution viability has been done and the Satellite Based

Augmentation Systems (SBAS) have been also studied.

Regarding the fusion of the American Global Positioning

System (GPS) with inertial sensors, the research group of

the University of Sydney has very interesting works in the

field of robotics. In [4], a low cost navigation system based

on inertial sensors is presented. The navigation system em-

ploys medium price GPS receivers and inertial units based

on MEM (Micro-Electro-Mechanical) technology. MEM

sensors are much cheaper than other inertial sensors based

on traditional technologies, at the expense of lower levels

of performance. In [5], the inertial sensors are presented

as a real alternative approach for robot applications. In the

same paper, data fusion filters are widely developed. Error

models for low cost inertial sensors are also described.

Durrant-Whyte in [6], describes a Kalman filter for GPS

navigation systems. Blackman and Popoli, in [7], present

different filters and architectures for navigation and tracking

systems. The most usual algorithms for data fusion can be

found in this interesting book. Grewal, Weill and Andrews

[8] introduce basics of inertial navigation and mathematical

models, paying special attention to its integration with GPS.

II. THE SYSTEM DESCRIPTION

The solution proposed in this paper is based on a

GNSS/SBAS/INS integrated system. On one hand, the use

of combined GNSS/SBAS, as compared with a single GPS

solution, provides noticeable improvements, but neverthe-

less, they cannot fulfill the requirements of high integrity

demanding applications, specially in city environments.

On the other hand, the INS (Inertial Navigation System)

units supply accelerations and rates of turn relative to the

three Cartesian axis of the sensor body frame. Although

these measurements complement the GNSS/SBAS lacks and

provide positioning during the outages of the satellite signal,

the double integration process required to obtain position

from the acceleration is the main source of error for the

INS units. In order to avoid excessive drifts, often updates
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must be performed by a global system. In addition, only low

cost inertial units, based on MEM technology, are afford-

able considering a real mass market RSE. Unfortunately,

these sensors present bad noise features and drifts and the

implementation of error models is advisable. In order to

diminish the drifts during the GNSS outages, odometry

measurements coming from the ABS (Anti-Blocking Sys-

tem) encoders of the vehicle are also considered in our

system. The ABS system provides non precise velocity

information, with a very low increase of the final cost, since

no further installations or sensors are needed. Apart from

the precision problem due to the low level of performance

of the ABS encoders, typical odometry problems, such as

glides, unequal wheel diameters or effective wheel diameter

uncertainty are also presented.

To obtain the proper inputs to the data fusion filter from

the raw measurements coming from the sensors, observa-

tion models are implemented, and considerations about the

sensor performances done.

A. The Multisensor Data Fusion Filter

The data fusion filter developed to combine the informa-

tion coming from the GNSS, INS and odometry sensors is

based on a loosely coupled extended Kalman filter archi-

tecture, implementing an interactive multi-model method to

employ the vehicle model definition which better describes

the current vehicle’s behavior.

1) The Kalman Filter: The Kalman filter is a recursive

least squares estimator. It produces at time k a minimum

mean squared error estimate x̂(k|k) of a state vector x(k).

This estimate is obtained by fusing a state estimate predic-

tion x̂(k|k−1) with an observation z(k) of the state vector

x(k). The estimate x̂(k|k) is the conditional mean of x(k)

given all observations Zk = [z(1), · · · z(k)] up until time k,

x̂(k|k) = E[x|Zk
] (1)

where Zk is the sequence of all observations up until time

k.

2) The Vehicle Models: In order to represent the move-

ments of the vehicle along roads, two models have been

developed. Both are based on the rigid solid definition of

a four wheel vehicle, the back wheels of which can rotate

only about a transversal axis of the vehicle, and the forward

wheels turn describing curves centered in their instant

rotation center. The straight model (or non-maneuvering

model) represents a basic non-maneuvering behavior of the

vehicle, being its transition equation defined as:

x(k + 1) = f(x(k)) + G(x(k))υ(k) (2)

where f is the state transition matrix and G the noise matrix,

and the state and noise vectors are respectively:

x(k) = [xc(k) yc(k) θ(k) θ̇(k) vc(k) φc(k) sc(k)]
T

υ(k) = [θ̈(k) v̇c(k) φ̇c(k) ṡc(k)]
T (3)

where xc(k), yc(k) are the coordinates of the geometrical

centre of the vehicle (g.c.), θ(k) the vehicle orientation,

Fig. 1. The kinematical model nomenclature.

vc(k) the velocity in the g.c., φc(k) is the angle of the

velocity vc(k), and sc(k) the slide correction angle. In the

straight model, φc(k) is modelled by a first order function,

so both straight and mild trajectories fulfill the kinematical

definition of the model. However, when sharp curves are

performed, it is advisable to represent φc(k) by a second

order equation. Thus, the state and noise vectors of the

curved model (or maneuvering model) are:

x(k)= [xc(k) yc(k) θ(k) θ̇(k) vc(k) φc(k) φ̇c(k) sc(k)]
T

υ(k)= [θ̈(k) v̇c(k) φ̈c(k) ṡc(k)]
T (4)

Fig. 1 shows graphically the kinematical model and its

nomenclature.

3) The Sensor Models: In order to obtain the filter

observations z(k) at the scan k, different transformations

must be done. The observation vector of our system is

defined as:

z(k) = [xG

c
(k) yG

c
(k) xI

c
(k) yI

c
(k)

θI
(k) θ̇O

(k) vO

c
(k) φO

c
(k) vI

c
(k)]

T (5)

where xG
c

(k), yG
c

(k) and xI
c
(k), yI

c
(k) are the Cartesian

coordinates of the g.c. according to the GNSS and the INS

measurements respectively, θI(k) and vI
c
(k), obtained from

the inertial measurements, define severally the orientation

and the velocity of the g.c. of the vehicle and finally, θ̇O(k),

vO
c

(k) and φO
c

(k) are respectively the angular velocity, the

linear velocity and its angle in the g.c. observed by the

odometry system. Some of these variables can be easily

obtained from the sensor measurements. In this Section we

present the transformations required to obtain the observa-

tions θ̇O(k), vO
c

(k), φO
c

(k), xI
c
(k), yI

c
(k) and vI

c
(k).

4) The Odometry Observations: Regarding the odometry

observations, taking into account the assumption of the

vehicle as a rigid solid, the velocity in the g.c. vc(k) can

be calculated as:

vO

c
(k) = vfl(k)

cos(∆ − δfl(k))

cos(∆ − φc(k) − sc(k))
(6)
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where vfl(k) and δfl(k) are respectively the velocity and

the angle of the forward left wheel. The angular velocity

can be calculated depending on these variables as:

θ̇O
(k) = vfl(k)

sin(δfl(k))

l
(7)

Finally, to calculate the angle of the velocity in the g.c.

(Fig. 1), the geometrical transformations from the angles of

the forward wheels to the g.c. are given by:

d =
l

tan(δfl)
+

b

2

tan(φc(k) + sc(k)) =
l/2

d
(8)

Thus, the angle of the velocity is:

φO

c
(k) = arctan

(

l · tan(δfl(k))

2l + b · tan(δfl(k))

)

− sc(k) (9)

5) The Inertial Observations: To obtain the inertial ob-

servations four different phases must be performed:

Whereas low cost inertial sensors are used, error models

must be considered. The first step must be the implemen-

tation of error models for the inertial measurements. The

models implemented in our work are based on the Billur

Barshan work [5], and can be described by the expression:

ε = C1

(

1 − e
−t

τ

)

+ C2 (10)

where ε represents the error model for the acceleration

in the body frame of the sensor and C1, C2 and τ are

model parameters. Fixing the values C1 = − 0.0043,

C2 = − 0.007 and τ = 500 by using a Nelder-Mead

non-restricted non-linear multidimensional method where

the minimizing function was the mean squared error, a

mean value of −3.2172 × 10−4 and a standard deviation

value of 0.0033 were achieved for the compensation of the

forward acceleration of the body frame. With these values,

in tests where no forces were applied to the sensors (but the

Earth gravity) and no external updates were performed, the

position drifted 70 cm. after 60 seconds. In the same tests,

but without applying any error model, the position drifted

up to 55 m.

Secondly, in order to obtain the acceleration vector re-

ferenced to the global frame (North-East-Down) (G) from

the local reference (S), the rotation matrix GSR defined in

[9] can be used.

Then, a gravitational model must be applied to com-

pensate the Earth gravity effects. Typically, in terrestrial

applications with mobile units, the gravity is assumed to

value −9.81 m/s
2
. in the z axis of the global reference

frame (local tangent plane).

As a final step, the inertial observations xI
c

and yI
c

can

be calculated by applying the equation

xI

c
(k + 1) = xc(k) + vcx

(k)T + 0.5 · axT 2 (11)

yI

c
(k + 1) = yc(k) + vcy

(k)T + 0.5 · ayT 2 (12)

where xc(k) and yc(k) are the state variables just after the

last update, T is the difference between the time stamp of

the inertial measurements and the time stamp of the last

measurement which updated the state vector, ax and ay

are the acceleration values in the global reference system,

as obtained from the previous step, and the values of the

velocities vcx
and vcy

are given by the equations

vcx
(k) = vc(k) cos

(

θ(k) + φc(k) + sc(k)
)

(13)

vcy
(k) = vc(k) sin

(

θ(k) + φc(k) + sc(k)
)

(14)

The observation vI
c

can be calculated by using the ex-

pression

vI

c
(k + 1) = vc(k) + aI

t
T (15)

where vc(k) is the state variable just after the last update and

aI
t

represents the module of the acceleration tangential to

the vehicle’s trajectory, calculated according to the inertial

measurements. To calculate aI
t
, we will assume that the

geometrical and the gravity center of the vehicle coincide

in (xc, yc). Naming α the angle between the absolute

acceleration vector of the vehicle, a, and the x axis, we

can affirm that

α = arccos

(ax

a

)

, a =

√

a2
x

+ a2
y

(16)

where ax, ay are the horizontal components of the vector a

and a its projection on the xy plane. Besides, the module

of the tangential acceleration can be calculated as

aI

t
= a cos

(

α − (θ + φc + sc)
)

(17)

Thus, next expression for the aI
t

value can be obtained

aI

t
=

√

a2
x

+ a2
y
·cos

(

arccos

(ax

a

)

−
(

θ(k)+φc(k)+sc(k)
)

)

(18)

B. The EKF Implementation

The implementation of the EKF is developed in three

phases: prediction and observation of the state and its

covariance x̂(k|k−1), P (k|k−1), calculation and validation

of the observation innovations coming from the sensors

ν(k), and calculation of the Kalman gain W (k) and update

of the state and its covariance x̂(k|k), P (k|k). More details

on the Kalman implementation can be found in [9].

C. The IMM filter

In most of the real driving situations it is not possible

to know in advance which kind of maneuvers will be

performed, and the idea of selecting routes with only mild

maneuvers is not very realistic. Therefore, an interactive

multi-model filter has been developed and implemented.

The IMM filter calculates the probability of success of

each model at every filter execution scan, supplying a

realistic combined solution for the vehicle’s behavior. These

probabilities are calculated according to a Markov model

for the transition between maneuver states, as detailed in

[9]. The likelihood calculation and the model probability
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update are performed according to the statistical distance

value, given by

d2
= νT S−1ν (19)

Given an IMM approach, there will be a different residual

covariance matrix, Si(k) and distance d2

i
(k) associated with

each of the i models, for the update at the scan k. Assuming

measurement dimensionality M , and Gaussian statistics, the

likelihood function for the observation model given model

i is

Λi(k) =
exp[−d2

i
(k)/2]

√

(2Π)M |Si(k)|
(20)

Finally, using Bayes’s rule, the updated model probabilities

become

µi(k) = Λi(k)Ci(k − 1)/C (21)

where the normalization constant C and Ci, the probability

after interaction that the vehicle is in state i, can be

calculated as described in [9].

D. The hardware architecture

The hardware architecture of the RSE is based on a stan-

dard single board computer with a 32bit Pentium processor.

The vehicle PC interacts with the user via the HMI (Human

Machine Interface) by a custom-made monitor, keyboard

and mouse. Serial buses communicate the sensors with

the PC via RS232. Some other additional communication

networks are also available. A BlueTooth wireless link

can be used to connect the vehicle PC with a laptop

or other mobile devices such as PDAs, PocketPCs, etc.

A WLAN connection is available through the PCMCIA

slot of the vehicle CPU, facilitating the communication

with nearby vehicles. Finally, a GPRS/UMTS link supply

Internet connection to the system. The GPRS/UMTS link

is used for receiving the EGNOS (European Geostationary

Navigation Overlay System) messages via SISNeT (Signal

In Space through the interNeT), and can also be used to

communicate the vehicle with remote stations (or other

vehicles) for remote location based services.

III. TRIALS AND RESULTS

Concerning the road applications of the GNSS sensors,

two different scenarios must be distinguished. Despite the

fact the objectives and the technologies are the same, the

different problems a GNSS sensor has to deal with in urban

and wide open environments encourage their study from

different points of view [10]. Whereas satellite constellation

visibility in wide open environments is not a problem, and

main efforts are focused on diminishing the pseudorange

errors and increasing the positioning accuracy, in urban

environments the signal availability and the multipath pro-

pagations, performing spurious GPS positions due to the

signal reflection nearby the antenna, are the main problems.

To evaluate the results in closed circuit tests, a custom-

made map developed by using the Trimbel GeoXT

Pathfinder Office version 3.0. package provides 30 cm.

accuracy of the map reference. Next sections explain the

results achieved by double constellation, single GPS, and

EGNOS capable sensors. Finally, the performance of the

GNSS/SBAS/INS solution is discussed.

A. The GNSS/SBAS Trials

1) Double constellation trials: In the tests performed

by using the GPS/GLONASS Thales GG24 double con-

stellation sensor the cumulative distribution function (CDF)

for the HDOP value was calculated in both urban an wide

open areas. In the urban case, assuming HDOP = 3, the

signal availability is not much higher than 80% (in the best

case), while on highways values of 95% are usual. Same

trajectories were logged by using a single GPS sensor and

similar values achieved. According to our results, despite

the fact there is a slight increase of the position availability

by using the double constellation sensor, the main problems,

such as the lack of coverage in city environments and

multipath errors, remain.

2) The SBAS improvements: Table I summarizes some

interesting results obtained in our tests. According to them,

EGNOS can increase significantly the accuracy of the single

GPS position (64.78%), and the use of SISNeT, the EGNOS

corrections via Internet, can raise this increase from 64.78%

up to 89.15% (24.37%). Despite of the important improve-

ments, high demanding applications require more than 96%

of positioning availability, and aiding positioning systems,

specially in city environments where this rate decreases to

60%, are recommended.

B. The GNSS/SBAS/INS performance

The lack of GNSS coverage in some environments is

a considerable problem that cannot be solved by a global

positioning system. As observed in the previous Section,

the use of SISNeT and EGNOS improves the single GPS

solution quality, but cannot guarantee the system success

during the outages of the GPS signal. Next, the performance

of the GNSS/SBAS/INS is presented. Main issues to be

analyzed are fault detection capacity, continuous positioning

availability and ability to reproduce the vehicle’s behavior

in different usual driving situations.

1) Fault Detection: In order to achieve a reliable so-

lution, system failures must be detected and the proper

actions must be performed. The term fault includes not only

hardware and software failures, but also false measurements

coming from the sensors. In this Section, we will focus our

attention on the problem of the wrong measurements.

Spurious positions are one of the main problem for a

high integrity navigation system, specially in city envi-

ronments. We define as spurious (or false) measurements

those outside of the 6σ scaling certainty region centered

TABLE I

GPS/SBAS AVAILABILITY AND ESTIMATE DISTANCE.

Epoch No Pos. GPS EGNOS SISNeT Distance

2777 3.78% 7.05% 64.78% 24.37% 20,07 Km.
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Fig. 2. Trajectory for the GNSS/INS test.

in the real value of the measurement (assuming Gaussian

distributions). Unfortunately, no real values are unknown,

and some other parameters must be used to categorized a

measurement as false. In the case of the satellite sensors,

many GNSS receivers provide useful integrity parame-

ters to the user. Usual parameters are GDOP (Geometric

Dilution of Precision) values, based on the geometry of

the satellite constellation used in the solution, and the

HPLSBAS parameter (when used SBAS capable sensors),

which employs the SBAS corrections for the pseudorange

measurements and considers multipath propagations. Un-

fortunately, these parameters cannot be used as realtime

indicators for rejecting false GNSS measurements. Thanks

to the redundant information coming from the INS sensor,

spurious measurements can be removed most efficiently

from the solution. Apart from the own sensor validation

processes, a Nyquist algorithm has been implemented in

order to eliminate inadequate observations. The result of

applying a validation process can be observed in Fig. 2. As

shown, undesirable multipath errors are efficiently removed.

Additionally, the inertial units are not susceptible to mag-

netic noises, providing efficient anti-cheating enforcement

against GPS jamming.

2) Continuous Positioning: What most users desire, even

more than high accuracy in the positioning, is continuous

accurate positioning. Fig. 2 illustrates a typical situation

in an urban environment. As observed, outages of the

GPS/GEO coverage and multipath problems are usual. The

filter developed provides continuous high accurate position,

also during the gaps of GPS coverage. In the different tests

performed, the position reliability was guaranteed during

short time GNSS outages, usual in built-up areas. For longer

SIS outages, the position drifted up to 5 meters after 30

seconds, and remained below 40 meters during 5 minutes

and 2.5 km. losses.

3) Trials with Abrupt Maneuvers: In most of the usual

situations for in which a road vehicle is involved, a model

representing a straight trajectory as presented in this paper

works correctly. However, when sharp turns and abrupt

maneuvers are performed, this model cannot represent prop-
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Fig. 3. Trajectory provided by the EKF-IMM filter.

erly the vehicle’s behavior, and the use of curved trajec-

tory models is advisable. Unfortunately, the assumption

of every vehicle’s movement as a curve, increases the

noise considerations of the model, having repercussions

on the position quality. The IMM filter implemented runs

both filters (straight and curved) in parallel, estimating the

probabilities of defining the vehicle’s behavior for both

models, and offering a unique common solution by mixing

both filtering processes according to the movement features

at every scan. Since sharp turns and abrupt maneuvers are

usually perform in short distance situations, such as urban

environments or indoor maneuvering, no GNSS information

was supplied to the filter during these tests.

In Fig. 3, a comparison between the trajectory offered

by the EKF-IMM filter and both single model solutions in

a short distance test is shown. The nature of the Markov

transition process generates the switching aspect of the

solution, where the periods of dominance of one model

correspond to high probability values for this model. Fig.

4 presents the values of the model probabilities during the

trajectory. The relation between the model probabilities and

the IMM solution can be appreciated. According to this

figure, key points for the probability values correspond to

scans 220, 450 and 633. The vehicle positions at those

scans are marked with a black square in the trajectory

image (Fig. 3). As observed, these moments correspond

to changes in the state maneuver. Since real trials were

performed, no certain values for the vehicle positions are

available. Nevertheless, the EGNOS positions serve as the

best reference for our tests. distance between the horizontal

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

Scan

Straight Prob.
Curved Prob.

Fig. 4. Model probabilities in the IMM test.
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Fig. 5. Coverage and HTL values during the integrity test trajectory.

position supplied by the EKF-IMM filter and the EGNOS

reference remained below the CEP value (3 m.), and the

suitability of the solution implemented is proved.

C. System Integrity Monitoring

Most of the GNSS sensor manufactures provide extra

information relative to the satellite status, type of GNSS

solution and its quality. As we have already seen, the

GDOP values and the HPLSBAS parameter supply useful

integrity information of the GNSS quality of the solution.

However, these parameters only model the GNSS part of

the navigation system and the levels of performance of the

other sensors employed in the solution are not considered.

In addition, these parameters are not available in the periods

of GPS absence. A parameter which completely describes

the positioning quality, without availability interruptions and

considering all the sensors used must be supplied.

The HTL (Horizontal Trust Level) [11] parameter pro-

vided by our navigation system, represents the level of

reliance on the current position, depending on the sensor

variances and the current state. One of the main Kalman

filter features is the provision of the vehicle state covariance

(matrix P ). Since the two first variables of the vector state,

x and y, are respectively the North and East coordinates of

the vehicle’s geometrical center, the submatrix Pxy , sym-

metric and positive definite, represents the two-dimensional

quadratic form of the squared position error with 1-sigma

scaling, and describes an ellipses. The HTL parameter can

be calculated as HTL = 6
√

λmax, being λmax the higher

of the two eigenvalues of Pxy .

Fig. 2 presents the trajectory selected to test the suitability

of the HTL parameter, while Fig. 5 shows the position

quality (Q) and the HTL value during this test. In the upper

graph, Q = 2 indicates EGNOS quality, Q = 1 single GPS,

and Q = 0 no GPS position. No integrity information would

be available during the frequent periods of GPS outage.

Additionally, the geostationary satellite is often missed, still

with enough GPS satellites in view. In the lower image,

the HTL value presents significant dependence on the GPS

coverage and the filter rejections for avoiding multipath

errors. In it also manifest how the reliability on position

decreases due to the integration process performed by the

filter. When the GEO satellite is visible, the HTL values are

close to 6 m. According to the trust levels on the positioning

during the whole trajectory, and despite of the often GNSS

outages, the system performance may be considered as very

high, remaining the HTL value below 7 m the most of the

time.

IV. CONCLUSIONS AND FUTURE WORKS

A high integrity navigation system suitable for mass

market road applications has been presented. According to

our investigations, actual GNSS/SBAS system cannot fulfill

current road application requirements. Inertial MEM sensors

have been proved as useful to guarantee fault detection, and

continuous high accurate positioning. Regarding the filter,

the implementation of an EKF-IMM solution allows the

use of highly dynamic models, avoiding the increase of the

noise considerations during non-maneuvering situations. In

order to reduce the sensor costs and raise the system perfor-

mance, future works will be focused on the implementation

of tougher coupled architectures.
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