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Abstract— This paper is to present the conclusions obtained
from the parametric study of the application of the uncer-
tain variable (UV) theory to the problem of the interactive
multi-model method (IMM) in the navigation system of a
road vehicle. The proposed navigation system implements an
interactive multi-model method based on a loosely coupled
extended Kalman filter architecture (EKF). The descriptions of
the navigation system and the representation of the problem
based on uncertain variables are presented in this paper.
Selected simulations and their conclusions are commented.
Finally, this parametric study is presented as a helpful tool
for the optimization of an IMM based data fusion algorithm
for navigation systems in road vehicles.

I. INTRODUCTION

It is well known the importance of the vehicle model
definition in the development of navigation systems for road
vehicles. However, it is not easy to find a proper unique
model suitable in any situation. In the recent years, several
authors have been centering their efforts in models capable
to combine the information coming from the odometry of
the vehicle, inertial sensors and satellite navigation [1]-[8].

The implementation of interactive multi-model (IMM)
based methods allows the possibility of using highly dy-
namic models just when required, diminishing unrealistic
noise considerations (in non maneuvering situations) and the
computational charge of the system. Some solutions based
on this approach can be seen in [9], [10]. As can be seen
in [11], the combination of IMM techniques with different
probabilistic data association methods has improved the sin-
gle IMM results in the aerial navigation field. Recently, some
authors like Huang and Leung in [12] have applied those
techniques to the road field, obtaining interesting results of
their simulations.

The solution presented in this paper is based on the use
of the uncertain variable theory in the decision making
problem of the vehicle model in an interactive multi-model
based method. As can be seen in [13], [14], different ap-
proaches based on knowledge representation with unknown
parameters have been applied to the Intelligent Transport
System (ITS) problems in the last years. In this field, the
theory of the uncertain variables (UV) has been proved as
a useful tool for the optimization process, like presented in
the works [15]-[19]. In [19], examples of the application
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of the uncertain variable theory to several simple problems
can be found. This interesting book analyzes the advantages
of using the uncertain variables in the optimization process
of the decision making problem, taking into account the
user constraints, and describing the system in a relational
knowledge representation by equation and inequations with
unknown parameters.

In order to apply the UV to the problem of the op-
timization of data fusion in an interactive multi-model
based method, certain considerations regarding its knowledge
representation must be done. In this work, the uncertain
variables are used as estimators of the suitability of two
proposed kinematical models of the vehicle. In this sense, the
models are understood as experts with respective certainty
distributions associated to their estimates. Since the aim of
this work is not to realize a complete study of the uncertain
variables but its application to our specific problem, the num-
ber of possible distributions supplied by the experts has been
reduced. Additionally, only one knowledge representation of
the relation between the defined uncertain variables and the
kinematical observations is considered.

Along this paper, firstly, the description of the proposed
navigation system is presented, including the vehicle and the
sensor models and the interactive multi-model bases. Sec-
ondly, the description of the uncertain variable representation
is explained. Finally, selected simulations of the parametric
study and their conclusions are commented.

II. THE NAVIGATION SYSTEM IMPLEMENTATION

The navigation system proposed in this paper is based on a
GNSS/SBAS/INS integrated system. On one hand, the use of
combined GNSS/SBAS (Satellite Based Augmentation Sys-
tems), as compared with the single GPS solution, provides
noticeable improvements, but nevertheless, they cannot fulfill
the requirements of high integrity demanding applications,
specially in city environments. On the other hand, the INS
(Inertial Navigation System) units supply accelerations and
rates of turn relative to the three Cartesian axis of the
sensor body frame. Although these measurements comple-
ment the GNSS/SBAS lacks and provide positioning during
the outages of the satellite signal, the double integration
process required to obtain position from the acceleration is
the main source of error for the INS units. In order to avoid
excessive drifts, often updates must be performed by a global
system. In addition, only low cost inertial units, based on
micro-electro-mechanical (MEM) technology, are affordable



considering a real mass market road side equipment (RSE).
Unfortunately, these sensors present bad noise features and
drifts and the implementation of error models is advisable. In
order to diminish the drifts during the GNSS outages, odom-
etry measurements coming from the ABS (Anti-Blocking
System) encoders of the vehicle are also considered in
our system. The ABS system provides non precise velocity
information, with a very low increase of the final cost, since
no further installations or sensors are needed. Apart from
the precision problem due to the low level of performance
of the ABS encoders, typical odometry problems, such as
glides, unequal wheel diameters or effective wheel diameter
uncertainty are also presented.

To obtain the proper inputs to the data fusion filter from
the raw measurements coming from the sensors, observation
models are implemented, and considerations about the sensor
performances done.

A. The Multisensor Data Fusion Filter

The data fusion filter developed to combine the informa-
tion coming from the GNSS, INS and odometry sensors is
based on a loosely coupled extended Kalman filter archi-
tecture, implementing an interactive multi-model method to
employ the vehicle model definition which better describes
the current vehicle’s behavior.

1) The Kalman Filter: The Kalman filter is a recursive
least squares estimator. It produces at time k a minimum
mean squared error estimate X(k|k) of a state vector x(k).
This estimate is obtained by fusing a state estimate prediction
R(k|k — 1) with an observation z(k) of the state vector x(k).
The estimate X(k|k) is the conditional mean of x(k) given all
observations Z* = [z(1),---z(k)] up until time k,

R(k[k) = E[x|2"] (1)

where ZF is the sequence of all observations up until time k.

2) The Vehicle Models: In order to represent the move-
ments of the vehicle along roads, two models have been
developed. Both are based on the rigid solid definition of
a four wheel vehicle, the back wheels of which can rotate
only about a transversal axis of the vehicle, and the forward
wheels turn describing curves centered in their instant rota-
tion center. The straight model (or non-maneuvering model)
represents a basic non-maneuvering behavior of the vehicle,
being its transition equation defined as:

X(k+1) = f(x(k)) + G(x(k))v (k) 2

where f is the state transition matrix and G the noise matrix,
and the state and noise vectors are respectively:

= [xc(k) ye(k) O(k) (k) ve(k) ¢c(k) sc(k)]"
v(k) = [B(k) ve(k) Pe(k) sc(k)]" 3)

where x.(k), yc.(k) are the coordinates of the geometrical
centre of the vehicle (g.c.), 8(k) the vehicle orientation, v, (k)
the velocity in the g.c., ¢.(k) is the angle of the velocity
ve(k), and s.(k) the slide correction angle. In the straight
model, ¢.(k) is modelled by a first order function, so both

straight and mild trajectories fulfill the kinematical definition
of the model. However, when sharp curves are performed, it
is advisable to represent ¢.(k) by a second order equation.
Thus, the state and noise vectors of the curved model (or
maneuvering model) are:

x(k) = [xe(k) ye(k) O(k) (k) ve(k) ¢c(k) fe(k) sc(k)]"
v (k) = [6(k) ve(k) §e(k) se(k)]" )

Fig. 1. The kinematical model nomenclature.

Fig. 1 shows graphically the kinematical model and its
nomenclature.

3) The Sensor Models: In order to obtain the filter obser-
vations z(k) at the scan k, different transformations must be
done. The observation vector of our system is defined as:

2(k) = [x&(k) S (k) xL(k) yL(k)
0" (k) 69 (k) v2 (k) 92 (k) vi()]"  (5)

where x%(k), y9(k) and xL(k), y.(k) are the Cartesian co-
ordinates of the g.c. according to the GNSS and the INS
measurements respectively, 8/(k) and v/ (k), obtained from
the inertial measurements, define severally the orientation
and the velocity of the g.c. of the vehicle and finally, 8 (k),
vO(k) and ¢2(k) are respectively the angular velocity, the
linear velocity and its angle in the g.c. observed by the odom-
etry system. Some of these variables can be easily obtained
from the sensor measurements. In this section we present the
transformations required to obtain the observations 8¢ (k),
vO(K), 92 (k). xL(K). yL(K) and V. (k).

4) The Odometry Observations: Regarding the odometry
observations, taking into account the assumption of the
vehicle as a rigid solid, the velocity in the g.c. v.(k) can
be calculated as:

cos(A— &y (k))
cos(A — (k) —sc(k))

where v (k) and &7 (k) are respectively the velocity and the
angle of the forward left wheel. The angular velocity can be

v (k) = v (k) ©)



calculated depending on these variables as:

Shﬂ5f(k» 7

Finally, to calculate the angle of the velocity in the g.c. (fig.
1), the geometrical transformations from the angles of the
forward wheels to the g.c. are given by:

6° (k) = vy (k)

! b
= an(sy) T2
tan(¢. (k) + sc(k)) = 1/72 ®)

Thus, the angle of the velocity is:

B I-tan(87:(K))
02 (k) = arctan (21 Y tan(5ﬂ(k))> —sc(k) 9

5) The Inertial Observations: To obtain the inertial ob-
servations four different phases must be performed:

Whereas low cost inertial sensors are used, error models
must be considered. The first step must be the implemen-
tation of error models for the inertial measurements. The
models implemented in our work are based on the Billur
Barshan work [20], and can be described by the expression:

e:cl(l—e%’)JrCz (10)

where € represents the error model for the acceleration
in the body frame of the sensor and Cj, C; and 7T are
model parameters. Fixing the values C; = — 0.0043,
C; = —0.007 and T = 500 by using a Nelder-Mead
non-restricted non-linear multidimensional method where the
minimizing function was the mean squared error, a mean
value of —3.2172 x 10~* and a standard deviation value of
0.0033 were achieved for the compensation of the forward
acceleration of the body frame. With these values, in tests
where no forces were applied to the sensors (but the Earth
gravity) and no external updates were performed, the position
drifted 70 cm. after 60 seconds. In the same tests, but without
applying any error model, the position drifted up to 55 m.

Secondly, in order to obtain the acceleration vector refe-
renced to the global frame (North-East-Down) (G) from the
local reference (S), the rotation matrix “SR defined in [10]
can be used.

Then, a gravitational model must be applied to compensate
the Earth gravity effects. Typically, in terrestrial applica-
tions with mobile units, the gravity is assumed to value
—9.81 m/ s%. in the z axis of the global reference frame (local
tangent plane).

As a final step, the inertial observations x/ and y’ can be
calculated by applying the equation

xL (k1) = xe (k) +ve, (k)T +0.5 - a, T?
Yh(k+1) =y (k) +ve, (k)T +0.5 - ayT?

where x.(k) and y.(k) are the state variables just after the
last update, T is the difference between the time stamp
of the inertial measurements and the time stamp of the
last measurement which updated the state vector, a, and a,
are the acceleration values in the global reference system,

(11
12)

as obtained from the previous step, and the values of the
velocities v¢, and v, are given by the equations

Vey (k) = ve(k)cos (G(k) + ¢ (k) + Sc(k))
ey (k) = ve(K) sin (k) + 0 (k) + 5 (k)

The observation v/ can be calculated by using the expres-
sion

13)
(14)

Vi(k4+1) = ve(k) +alT (15)

where v.(k) is the state variable just after the last update
and a! represents the module of the acceleration tangential
to the vehicle’s trajectory, calculated according to the inertial
measurements. To calculate a{, we will assume that the
geometrical and the gravity center of the vehicle coincide
in (x.,y.). Naming o the angle between the absolute accel-

eration vector of the vehicle, a, and the x axis, we can affirm

that a
o = arccos (—x) , a=\/at+al
a

where a,, a, are the horizontal components of the vector a
and a its projection on the xy plane. Besides, the module of
the tangential acceleration can be calculated as

(16)

aj = acos (@ — (6 + P +s5¢)) (17)

Thus, next expression for the a,’ value can be obtained

al= \/a%Tag-cos (arccos (%) — (6(k)+ 9. (k) ‘Hc(k)))

(18)

B. The EKF Implementation

The implementation of the EKF is developed in three
phases: prediction and observation of the state and its co-
variance X(k|k—1), P(k|k—1), calculation and validation of
the observation innovations coming from the sensors v(k),
and calculation of the Kalman gain W (k) and update of the
state and its covariance X(k|k), P(k|k). More details on the
Kalman implementation can be found in [10].

C. The IMM Filter

In most of the real driving situations it is not possible
to know in advance which kind of maneuvers will be per-
formed, and the idea of selecting routes with only mild ma-
neuvers is not very realistic. Therefore, an interactive multi-
model filter has been developed and implemented. The IMM
filter calculates the probability of success of each model at
every filter execution scan, supplying a realistic combined
solution for the vehicle’s behavior. These probabilities are
calculated according to a Markov model for the transition
between maneuver states. The likelihood calculation and the
model probability update are performed according to the
statistical distance value, given by

d>=vTs vy (19)

Given an IMM approach, there will be a different residual
covariance matrix, S;(k) and distance d?(k) associated with
each of the i models, for the update at the scan k. Assuming
measurement dimensionality M, and Gaussian statistics, the



likelihood function for the observation model given model i
is
exp|—d} (k) /2]

i(k) =
A= ams @)

(20)
Finally, using Bayes’s rule, the updated model probabilities
become

ui(k) = Ai(k)Ci(k—1)/C 21

where the normalization constant C and C;, the probability
after interaction that the vehicle is in state i, can be calculated
as described in [10].

III. THE UV-IMM APPROACH

The uncertain variable based interactive multi-model
method, UV-IMM, deals with the decision making problem
of which model reproduces in a most suitable way the vehicle
behaviour anytime, on the basis of the uncertain varible
theory. Let us introduce the following notation:

« ¢ is the observation variable.

e x1,Xxp represent the statistical distances calculated by
applying (19).

e X},x; are the certainty distribution parameters of xi,x,.

e up is the probability that the model 1 is the optimum
(analogous for uy), and u; + up must sum to unity.

« Bj1,B; are specified by the user, and define the validation
thresholds of the models (typically, times of standard
deviations). B is the maximum value adjusted to the
maximum value of By and B».

The problem consists of the determination of u,u> con-
sidering B and knowing that

By <xiu1 , Bx <xoup (22)

According to (22), the relation between the variables x|
and x, can be easily understood, paying attention to the
definitions of xj,x, and up,u>. Equation (22) defines the
probability that a model is currently the most suitable option,
as inversely proportional to the statistical distance value of
this model estimate to the observation solution. We assume
that x;,x; are unknown values of uncertain variables X, X,
characterized by certainty distributions £ (x;),h2(x2) given
by experts. Many different relations could be established both
for the representation of the relation between the uncertain
variables and the model parameters of the system, and for
the calculation of the defined distance between the model
estimates and the observation.

Now, we can formulate the following decision making
problem: find the distribution (u;,u;) maximizing the cer-
tainty index that the user’s requirement B(x,x;) < o (where
B =max{B,B,}) is approximately satisfied, i.e. the certainty
index V[B(Xl,)fz) é OC].

We define the certainty distribution given by an expert
according to the Fig. 2 (analogous for x»).

To determine the distribution u; = u],us = u5, maximizing
the certainty index v, veryfing B <  for given ¢ > 0, the
next assumption is considered:

h,(x,)
dl < X*l

Fig. 2. Triangular certainty distribution offered by the expert.

N_%
— =—==o0. (23)
di  dy
It may be shown that for
u-(c—1)-x7-x3 u-xj-x; 24)
o-(xf+x3) T 7 (x7+x})
the result is:
L_wxs e
Tty T Ty (25)
and the certainty index
a- * *
v:G[W—I}—H. (26)
M'.X,'l ')C2

Analogously, for a parabolic distribution, the certainty
index will be
2 [o- (] +x3) 2
xX] x5

IV. RESULTS OF THE SIMULATION

The determination of the proper decision requires a very
complicated optimization problem that implies numerical
methods. To design a proper algorithm able to select the
proper model in an optimal way, it is necessary to investigate
the properties of the relationships between the uncertain
parameters and the certainty index of the solution, which
is the main objective of this work. Selected examples of the
results obtained in our simulations are shown in this paper.
Particularly, the results presented are:

o the relationship between the certainty index of the
solution and the parameters xj,x; in the certainty dis-
tributions,

« the influence of the parameter ¢ of the certainty distri-
butions on the certainty index of the expert solution,

« the impact of the expert estimation on the final result.

Figs. 3 and 4 illustrate some examples of relationships
obtained as a result of our simulations.

In the investigation of the relationship between the cer-
tainty index v and the variables x7,x5 (Fig. 3), the values of
u, o and o are fixed to 1, 0.5 and 3 respectively. For a fixed
value of xj , the parameter x] has a significant influence
on the certainty index v. For example, for u =8, 0 = 2,
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o =12, x] = 3.1, x5 = 3, the certainty index for a triangular
distribution calculated by (26) is v = 0.9516. However, for
the same distribution and u =8, 6 =2, @ =12, x] =3.2, x3,
the certainty index v = 0.9062. It can be seen that, since v
decreases when x] is increased, the condition of B < a, will
be satisfied with a higher certainty index when xJ is closer
to the value of x5 (analogous results are obtained for fixed
x] and different values of x3). This means that, when the
distances observation-estimates for every model are similar,
the certainty of satisfying the requirement is higher.

The sensitivity of the certainty index v with respect to the
expert estimation can be observed in the Figs. 5 and 6.

In Fig. 5, a comparison between the triangular and a
parabolic distribution is shown. It is observed how the
parabolic distribution offers higher certainty index for fixed
u, o, o, x5, through all the values of x] satisfying (24).
Concretely, for u =1, 6 =3, o =0.5, x] =2, x5 = 0.85,
the certainty index obtained considering the triangular distri-
bution, and calculated by (26) is v = 0.5147. For the same
values but considering a parabolic distribution a certainty
index of v =0.7647 can be obtained applying (27). Higher
values of % (x;),hy(x,) in the parabolic certainty distribution
for x1,xo result in a higher certainty index. In the Fig. 6, the

Relation between xj and xj fixing u, @ and ¢ in a triangular

triangular vs parabolic
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Fig. 5. A comparison between a triangular and a parabolic distribution.
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Fig. 6. Dependency on o in a parabolic distribution.

relationship between the certainty index v and o is shown.
For fixed values of u =1, a = 0.5, x; = 2, the certainty index
strongly depends on the value of ©.

The influence of the certainty distribution on the certainty
index can be seen with the next example. For u =8, o0 = 12,
x; =3.2, x; =3, 0 = 10, the certainty index for a triangular
distribution calculated by (26) is v = 0.6875. For the same
values of u, 0, x], x5, and o = 4, the certainty index v =
0.8750. On the other hand, the fact that the index v decreases
when o is being increased implies that the certainty of
success of the vehicle model definition is higher when the
problem constraints are less restrictive.

V. CONCLUSIONS

The uncertain variables are proved to be a useful way
of studying complex problems in the field of the intelligent
transport systems. In the paper presented, a real complex data
association problem has been studied according to its param-
eters and different expert estimations. Selected simulations
of numerical experiments have been presented in order to
identify how the problem variables affect the certainty index
of the solution and how the expert characterization of the cer-
tainty distribution affects the problem solution. Explanations
of these simulations have been discussed. Future researches



should be focused on the further development of the study
proposed in this paper.

VI. ACKNOWLEDGEMENTS

The authors would like to thank the Spanish Ministerio
de Fomento, European Space Agency (ESA) and the C.
A. Regién de Murcia for sponsoring the research activities
under the grants FOM/3595/2003, GIROADS 332599 and
ISIS/2104SU009, respectively.

REFERENCES

[1] J. Wang and C. Wilson, Safety at the Wheel. Improving KGPS/INS

Performance and Reliability. GPS World pp. 16-26 May 2003.

D. Berdjag and D. Pomorski, DGPS/INS data fusion for land

navigation. Fusion 2004. Stockholm, Sweden, June 2004.

C. Boucher and A. Lahrech and J.C. Noyer, Non-linear filtering for

land vehicle navigation with GPS outage. IEEE Int. Conference on

Systems, Man and Cybernetics. The Hague, The Netherlands, October

2004.

A. Lahrech and C. Boucher and J.C. Noyer, Fusion of GPS and

odometer measurements for map-based vehicle navigation. IEEE Int.

Conference on Industrial Technology. Hammamet, Tunisia, December

2004.

[5] B. Liu and M. Adams and J. Ibaez-Guzman, Multi-aided Inertial

Navigation for Ground Vehicles in Outdoor Uneven Environments.

IEEE Int. Conference on Robotics and Automation. Barcelona, Spain,

April 2005.

C. Hay, Turn, Turn, Turn. Wheel-Speed Dead Reckoning for Vehicle

Navigation. GPS World. pp. 37-42 October 2005.

[7]1 S. Rezaei and R. Sengupta, Kalman Filter Based Integration of

DGPS and Vehicle Sensors for Localization. IEEE Int. Conference

on Mechatronics and Automation. Ontario, Canada, August 2005.

P.A. Boysen, H. Zunker, Integryty Hits the Road, Low Cost, High

Trust for Mobile Units. GPS World, pp. 30-36, July, 2005.

[91 G. Chen, D.A. Grejner-Brzezinska, Land-Vehicle Navigation using

Multiple Model Carrier Phase DGPS/INS. Proceedings of the Amer-

ican Control Conference, pp. 2327-2332, Arlington, USA, 2001.

R. Toledo, A High Integrity Navigation System for Vehicles in

Unfriendly Environments. PhD. Thesis. University of Murcia. Murcia,

Spain. November 2005.

[11] Y. Bar-Shalom, W. Dale Blair, Multitarget-Multisensor Tracking:
Applications and Advances.Vol 1I1. Artech House, 2000.

[12] D. Huang, H. Leung, EM-IMM Based Land-Vehicle Navigation with

GPS/INS. Proceedings of the IEEE ITSC Conference, pp. 624-629,

Washington, USA. October 2004.

Abbas, A.J et al. Public transportation schedule based on modular

controlled stochastic Petri nets. Proc. of 15th Triennial World Congress

of IFAC. Barcelona, 2002.

Figueiredo, L. et al. Research issues in intelligent transportation

systems Proc. of the European Control Conference ECC 01. Porto,

Portugal. 2001.

Bubnicki, Z. Uncertain variables and their applications for a class

of uncertain systems International Journal of Systems Science, 32, pp.

651-659. 2001.

[16] Bubnicki, Z. Uncertain variables and their application to decision
making TEEE Trans. On SMC, Part A: Systems and Humans, 31, pp.
587-596. 2002.

[17] Bubnicki, Z. Application of uncertain variables to decision making
in a class of distributed computer systems Proc. of 17th IFIP World
Computer Congress 2002.

[18] Bubnicki, Z. Stability and stabilization of discrete systems with
random and uncertain parameters Proc. of 15th Triennial World
Congress of IFAC, vol. E (Camacho E. F.,, Basanez L. and de la Puente
J. A)) pp. 193-198. Pergamon, Oxford, 2002.

[19] Bubnicki, Z. Analysis and Decision Making in Uncertain Systems
Springer-Verlag, Berlin, London, N.York. 2004.

[20] B. Barshan and H. F. Durrant-Whyte, Inertial Navigation Systems
for Mobile Robots. IEEE Internatinal Transactions on Robotics and
Automation. Vol. II NO. 3: 328-342. June 1995.

[2

—
(98]
= =

[4

=

[6

=

[8

=

[10

[13

[14

[15



