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Abstract— In the Intelligent Transportation Systems (ITS)
field, the number of applications that demand a high integrity
positioning system is growing. In order to improve the integrity
of localization systems, GPS is usually hybridized with addi-
tional proprioceptive sensors. In this paper, a new hybridization
algorithm based on GPS plus odometry and a gyro is proposed
as an improvement of the most common extended Kalman filter
(EKF) approach. In concrete, these investigations focus on the
performance of the system under bad initial conditions. Results
show the suitability of the proposed system for navigation under
bad initial values of heading, and its benefits as compared to
two state-of-the-art methods of the literature: an EKF, and a
particle filter based solution.

I. INTRODUCTION

New location based services and advanced driver assis-

tance systems (ADAS) provide new interesting features in

our road vehicles. Most of these applications need a high

integrity localization system, and low cost OBEs (On Board

Equipments). However, solutions based exclusively on a

single GNSS receiver cannot guarantee reliable positioning

in unfriendly environments [1].

Main requirements regarding localization systems concern

continuity of an accurate positioning, fault detection and

the provision of an integrity parameter [1]. These features

allow the creation of more complex ADAS applications.

For example, in some collision avoidance support systems

(CASS), a decision making process encourages the creation

and interpretation of a scene in order to determine the vehicle

role in its environment [2].

In mass market location based applications, cost consider-

ations must be taken into account. In the case of navigation

systems, these considerations concern sensor configurations

and technologies, and the complexity of the computational

system.

In previous works of our group, different sensor config-

urations, vehicle models and fusion methods were analyzed

[3], [4], [5]. In this occasion, our investigations are centered

in the problem of bad initial conditions in the performance

of an hybridized GPS/DR-based navigation systems.

In our research, we have adopted a sensor configuration

consisting of GPS plus odometer and a gyro to measure

the yaw angular rate. This configuration avoids the lack of

precision in the heading of the simplest hybrid system based
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on GPS plus odometry (ABS system or odometer), and it is

less complex than some GPS/INS hybrid localization systems

[1]. This hybrid system is able to provide positioning in GPS

outage situations.

The commented configuration provides reliable position-

ing most of the time but it presents some lacks in case that

high integrity positioning is required. In a real-time system,

initial steps after a reset cause a gap where the heading of the

vehicle needs to be known to start the estimation (integration

of the yaw angular rate). Most of the authors extract the

heading from the first GPS points. This is the simplest way,

but some considerations should be taken into account, for

instance if the vehicle is turning. There is a great interest

in the resolution of this problem in the last years [7], [8].

One interesting option to improve initial estimation in a real

time system is the particle filter (PF) [9], [10]. With a PF,

information about the initial conditions is not necessary, at

the expense of much higher computational costs (dependent

on the number of particles) as compared to some other

methods [5]. In this paper, we present a new method based on

GPS points, suitable for initial heading estimation in curves.

Performances of the proposed method, the most commonly

adopted EKF approach, and a particle filter are compared in

the paper, proving the suitability of our proposal.

II. ALGORITHM DESIGN

This section details the kinematic model and the differ-

ent data fusion tools for position estimation used in the

performed tests. The sensor fusion method is based on the

Extended Kalman Filter with special attention to the initial

conditions.

A. Vehicle model with EKF

An important aspect of the positioning is the employed

vehicle model. On one hand, one-dimensional models used in

rail carriages are discarded in road applications. On the other

hand, three-dimensional GPS/INS systems [11] usually used

in aircraft are sometimes used in road vehicles too, bringing

the possibility to use strap-down inertial measurement units

that can offer valuable information on all the degrees of

freedom of the vehicle. But three-dimensional models imply

complexity and high computational cost. Kinematic two-

dimensional models are the most popular option [12], pro-

viding the evolution of the vehicle pose in a two-dimensional

reference frame, in a compliant way with the non-holonomic

constraints.

Due to the road profile in these experiments (without lane

changes and abrupt maneuvers), we consider unnecessary in
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this case the use of multi-model based approaches [1], [2],

and others dynamic considerations about the vehicle.

In this research, we use the classical 2D kinematic model

of a vehicle in a plane (position of a point of the vehicle plus

yaw angle), that is shown in discrete time with the following

equation:

x(k + 1) = x(k) + ds(k)cos(ψ(k) + w(k)T/2)

−w(k)T (Dxsinψ(k) + Dycosψ(k))

y(k + 1) = y(k) + ds(k)sin(ψ(k) + w(k)T/2) (1)

+w(k)T (Dxcosψ(k) − Dysinψ(k))

ψ(k + 1) = ψ(k) + w(k)T

where (x(k), y(k)) is the NE (North-East) projected position

of the center of the GPS antenna in the vehicle, ψ(k) the yaw

angle, and T the sampling period. The increment of travelled

distance ds(k) and angular rate w(k) are measured by the

odometer and the gyroscope respectively. The odometer is

assumed to be situated at the rear wheels axle, and the

gyroscope is fixed in the vehicle body frame. The x-axis

and y-axis correspond to the North and the East respectively.

(Dx, Dy) are the coordinates of the GPS antenna in the body

frame.

In the classical 2D model it is assumed that the trajectory

is locally linear or circular. Exact equations in case of circular

trajectory would exhibit sinc (sinus cardinal) of the angular

increment, which we can approximate to unity due to their

small value.

B. Modified EKF with yaw observation from GPS data

The previous model representing the pose of the vehicle

may be improved by taking into account an important aspect,

the gyro bias. This bias may be constant or may change with

time, being temperature-dependent. If the algorithm is left in

open loop, without GPS updates, this bias increases quickly,

resulting in a deviation of the path from the true one. As an

example, in one of the tests, a bias of 3.910−4rad/s. was

found, what caused the yaw angle to drift about 24.6◦ during

the 18 minutes of the experiment. Fortunately, this bias can

be estimated, as it is a systematic error, and this will be done

in this section. The bias should not be mistaken for random

walk, which appears due to the integration of noise.

One good method to improve the system performance

in this aspect is the estimation of the bias by adding a

fourth state variable (ξ). The gyroscope bias is estimated

then through the Kalman gain. In order to let the Kalman

filter estimate the bias, the covariance matrix of the state

needs to be updated properly at every prediction step. Thus,

the two Jacobian matrices have to be recomputed.

Now, the equations for updating the state variables be-

come:

xk+1 = xk + dsk cos
(

ψk + (ωk−ξ) T

2

)

−(ωk − ξ)T (Dx sinψk + Dy cos ψk)

yk+1 = yk + dsk sin
(

ψk + (ωk−ξ) T

2

)

(2)

+(ωk − ξ)T (Dx cos ψk − Dy sinψk)

ψk+1 = ψk + (ωk − ξ) T

ξk+1 = ξk

where Jacobians respect to the state F s and the input Fu can

be simplified taking into account following assumptions:

ωk − ξk ≈ ωk

sin

(

ψk +
ω T

2

)

≈ sinψk

sin

(

ψk +
ω T

2

)

≈ cos ψk (3)

As the P matrix increases, an initialization for its last row

and column should be provided. This reflects our knowledge

about the bias. The bias is not correlated with the vehicle

position or orientation. On the contrary, it depends on the

temperature and electrical noise. Therefore, the non-diagonal

elements of P on the fourth row and column should be 0.

The remaining element, p44, should reflect the probability

distribution of the bias for the family of gyroscopes used. A

higher grade gyroscope will usually have lower biases. For

the gyro used in our experiments, the offset was assumed

to be between −2 · 10−3 and 2 · 10−3 rad/s in 95% of

situations. This interval is the 2σ confidence interval for a

normal Gaussian distribution, and the variance is equal to

λξ = (σξ)2 = 10−6(rad/s)2.

According to our experiments, both filters, the original

EKF and the EKF-bias, still have troubles converging to the

real yaw angle for some particular values when the initial-

ization provided is wrong, especially when the difference

between the initial angle provided and the real angle is close

to 180◦ and the GPS data is corrupted by noise.

In order to overcome this limitation, another modification

of the EKF algorithm is proposed. The absolute yaw angle

will be estimated for every GPS reading, as the angle

between the current and some previous GPS points.

Considering Fig. 1, let us assume that the yaw should

be estimated using two GPS measurements, these being the

latest GPS reading, at time step k, and one past GPS reading

at time step k−p. The vehicle orientation at time step k−p
does not have to be known at all.

If the two GPS measurements were taken one after an-

other, one may assume that the vehicle did not change its

orientation between them, and therefore, the yaw estimation

may be done by computing the absolute orientation between

the two GPS points, using the atan2 (arc-tangent) function.

In our case, we assume that the vehicle has changed its

orientation between the two GPS measurements, and the

amount of yaw change will be estimated from odometry data.
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Fig. 1. Yaw estimation from GPS and odometry measurements.

The odometry data used here are not corrected in the

Kalman update step. Therefore, it is necessary to run a

separate processing thread that computes the odometry data

in open-loop mode. Variables computed in the open loop

mode will be referred as xOL
k , yOL

k , xOL
k−p, etc. GPS readings

at time step k will be xGPS
k and yGPS

k . Note that, in normal

driving conditions, the odometry sampling frequency would

be higher, and there will not be GPS measurements available

at every instant k. For yaw estimation, it is only needed to

have GPS readings at time steps k and k − p.

In Fig. 1, in the open loop odometry estimation of the path

(left), the initial angle is unknown and can be initialized to

0 or any other value, since this is not used in computations.

By measuring the orientation ψk−p,k of the straight line

that connects the car position at time step k − p and

time step k, it is possible to estimate the current vehicle

orientation ψk. The difference between ψk and ψk−p,k can

be computed from the open-loop estimation of the path.

Since the initial angle is unknown, the path estimated by

open-loop odometry will have the same shape as the true

path with different orientations. Let ψOL
k−p,k be the orientation

of the line connecting
(

xOL
k−p, y

OL
k−p

)

and
(

xOL
k , yOL

k

)

, and

let α be the difference between ψOL
k−p,k and ψOL

k . If all

the measurements were ideal, the difference α would be

equal to the difference between ψk−p,k and the real vehicle

orientation at time step k.

Therefore, one may use the two GPS measurements to

estimate ψk−p,k and correct it with α to estimate ψk:

ψGPS
k−p,k = atan2

(

yGPS
k − yGPS

k−p , xGPS
k − xGPS

k−p

)

(4)

α = ψOL
k − atan2

(

yOL
k − yOL

k−p, xOL
k − xOL

k−p

)

(5)

ψGPS
k = ψGPS

k−p,k + α (6)

Equations (4)-(6) show a computationally-inexpensive way

to estimate the yaw angle at every time step k, provided that

there is available a past GPS measurement at time step k−p.

The complexity of the algorithm increased mainly by adding

a second state vector (xOL
k , yOL

k , ψOL
k ) that has to be updated

every time a new odometry measurement is available, and by

the two uses of the atan2 function in yaw estimation.

To integrate the yaw estimation into the Kalman loop, it is

necessary to compute its variance. The variance of the yaw

estimation is the sum of three terms:

λψ
k = λψ,OL

k + λψ,GPS
k−p,k + λψ,OL

k−p,k (7)

The first term appears due to the integration of the noise

from the gyroscope readings. Since the variance λω = (σω)2

is considered constant, this term can be computed using a

non-recursive equation:

λψ,OL
k = k

(

σω

T

)2

(8)

In order to compute the variance from the two GPS readings,

a simplification hypothesis will be used. Let us suppose,

without loss of generality, that at step k − p the vehicle was

at x = 0, y = 0, and at step k it was at x = d, y = 0. These

are the ideal locations, uncorrupted by noise. The orientation

of the line connecting these two location is 0. The noise

from the GPS receiver is considered to be Gaussian, with

the following model:

xGPS
k−p = 0 + εx

k−p, εx
k−1 = N (0, λGPS)

yGPS
k−p = 0 + εy

k−p, εy
k−1 = N (0, λGPS)

xGPS
k = d + εx

k, εx
k = N (0, λGPS)

yGPS
k = 0 + εy

k, εy
k = N (0, λGPS) (9)

It is also assumed that there is no correlation between the

noise for X and Y axes, therefore the covariance matrix

of GPS measurement noise is diagonal, and the uncertainty

ellipse is a circle:

Rk =

[

λGPS 0
0 λGPS

]

(10)

Let rxx(i) = E
{

εx
k εx

k−i

}

be the autocorrelation of the X
measurement noise from GPS, and ryy(i) its counterpart for

Y axis. Obviously, rxx(0) and ryy(0) will be equal to λGPS .

Since the noise from the two axes is considered uncorrelated,

rxy(i) will be 0 ∀i.
For variance analysis, ψGPS

k−p,k will be linearized around 0.

ψk = 0 + εψ
k (11)

Here, εψ
k will not be Gaussian, but for large values of d,

its distribution will be approximated to a normal Gaussian.

The angle measurement function will be also linearized

around d. These two approximations will be realistic as much

as the distance d is much greater than the standard deviation

of the GPS measurements, σGPS .

ψGPS
k ≈

yGPS
k − yGPS

k−p

xGPS
k − xGPS

k−p

=
εy

k − εy
k−p

d + εx
k − εx

k−p

≈
1

d
(εy

k − εy
k−p) (12)
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Fig. 2. Open loop test (no GPS measurement) without gyro bias compen-
sation.The test was performed during four laps around the shown circuit.

Computing the auto-covariance of εψ = ψGPS for large

values of d with respect to σGPS , by taking into account

that rxy(i) = 0 ∀i:

E
{

(εψ)2
}

= E

{

1

d2

(

εy
k − εy

k−p

)2
}

= E

{

1

d2

[

(εy
k)2 + (εy

k−p)
2 − 2 εy

k εy
k−p

]

}

=
2

d2

[

ryy(0) − ryy(p)
]

(13)

Since the errors for X and Y axes are considered to have

the same autocorrelation sequence, equal to rGPS(i), the

variance of the yaw measurement error is:

λψ,GPS
k−p,k = E

{

(ψGPS)2
}

=
2

d2

[

λGPS − rGPS(p)
]

(14)

C. Particle Filter

An alternative to solve the problem of unknown initial

yaw is the use of a particle filter. The basic idea of the

particle filter is to represent by means of a set of N
samples {Xi

k}
N
i=1 and their corresponding weights {wi

k}
N
i=1

the probability density function p(Xk/Y1:k) at instant k of

the state vector Xk, given past observations, following next

numerical expression:

p(Xk/Y1:k) ≃
N

∑

i=1

Xi
k · wi

k

where Y1:k stands for the observations collected from the

initialization till instant k. The process of particle filtering

designed for our algorithm can be summarized as follows:
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Fig. 3. The open loop test with bias compensation.

1) Initialization: Generation of N particles, or samples of

the state vector, Xi
0, with equal weights 1/N .

2) Prediction: Estimation of Xi
k+1 following the model

dynamics.

3) Measurement update: Update of the weights of the

particles with the observations Yk, following the ex-

pression

wi
k = wi

k−1 · e
(

−0.5(Yk−h(Xi

k
))′(R−1)(Yk−h(Xi

k
))
)

where h(Xi
k) is the observation function that relates

at instant k the state Xi
k and observations Yk (in our

case it will be the second order identity matrix), and

R the covariance matrix of observations.

4) Normalization of the weights: wi
k = wi

k/
∑N

i=1 wi
k.

5) Resampling: To prevent high concentration of proba-

bility mass at only a few particles, (leading to the con-

vergence of a single wi
k to 1), particles are resampled

when next inequation is verified

1
∑N

i=1(w
i
k)2

< 0.5N

6) End of cycle: Making k = k + 1, and iterating to step

2.

Further details of particle filtering can be found in [13].

III. EXPERIMENTAL TRIALS

A. Test conditions and onboard equipment

To test the algorithms, we employed real data-sets lent

for this purpose by the Division of Metrology and Instru-

mentation of LCPC Nantes Centre, and collected during a

three kilometers long circuit near Nantes, west of France
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[14]. These experiments were carried out with a Peugeot van

equipped with a wheels axle odometer (the a priori calibrated

spatial rate is 1 pulse per 24.15 cm), a fiber optic gyroscope

KVH 2100 e-core FOG series, a Crowsbow IMU VG-400

(MEMS technology), and a DGPS receiver Trimble Ag132

receiving Omnistar corrections. The maximum speed during

the tests was 100 km/h and its average value 50 km/h.

These circuits offer good conditions for GPS observation.

Therefore, we artificially simulated GPS masks. A 400

seconds GPS mask was applied after another 400 seconds

period with GPS signal. During the rest of the test, GPS

signals were enabled again. The GPS noise has been modeled

as gaussian with σ = 1m in all the performed experiments.

B. Results

First of all, the influence of the gyro bias in the perfor-

mance of the localization system will be tested. Since all

the tests performed have long gaps without GPS readings,

it is highly recommended to take into account the gyro

bias (in other case the heading of the vehicle degrades the

estimation). In Figs. 2 and 3, it can be seen the influence of

the gyro bias compensation.

Fig. 4 shows the performance of three algorithms, the EKF,

EKF-bias and the EKF-bias-yaw in the same circuit shown

in Figs. 2 and 3, with a long GPS mask (400 s). During the

mask, the influence of the bias estimation is considerable.

The lowest image of the figure shows the performance of

the initial yaw estimation algorithm. The RMS error and

maximum error are slightly lower than the EKF-bias values

due of the faster convergence during the initial steps.

We have seen that the bias compensation is highly advis-

able in this kind of experiment, more than the model of the

vehicle itself. Nevertheless, the main purpose of this research

is the study of the performance of the localization system

with bad initial heading value.

Previously in [5], an approach with particle filter was

tested. A particle filter may allow to converge faster to the

real initial heading, but its main problem is that a high

number of particles increases the computational cost. In this

work, it is presented the computation of the initial conditions

necessary for the traditional fusion tools based on Kalman

filter with a very simple algorithm, and taking into account

GPS measurements. The algorithm is able to find the initial

heading even if the vehicle is turning during the estimation

of the heading through GPS measurements. Both the particle

filter and the EKF-bias-yaw proposed have been compared

with the standard EKF.

The standard EKF has noticeable difficulties in converging

to the real yaw angle when the initial value provided was far

from the real one (eg. real yaw+π radians). As a matter of

fact, the filter “thought” that the vehicle was oriented in the

opposite direction. As the yaw angle was not an observable

variable, EKF tried to correct it through linearization, which

did not work properly.

In the test shown in Figs. 5 and 6, the yaw angle was

initialized to real yaw + π. The 400-second mask from the

previous test was also applied here, to evaluate the ability of
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Fig. 4. Performance of the algorithms during a long GPS mask (400 s).
Upper: EKF, middle: EKF-bias, lower:EKF-bias-yaw.

the EKF-bias-yaw and the PF to estimate the position even

when a wrong initial angle was provided.

Fig. 5 shows how the DGPS reference and the EKF-bias-

yaw and PF estimations appear very similar. Fig. 6 shows

how the EKF algorithm needs more than 800 m to converge,

and the EKF-bias-yaw and the PF (implemented with 500

particles) both show similar performance and they have the

same convergence speed (both were able to converge during

first 50 m, or about 70 iterations). The performance of the

positioning error with the EKF-bias-yaw is even slightly

better than the PF. EKF-bias-yaw was also able to estimate

the sensor bias and it performs the open-loop tests with only

slightly lower performance than in the test with good yaw

angle initialization.

IV. CONCLUSIONS

This paper presents an hybrid localization system based on

the fusion of GPS, odometry and a gyro, capable to provide

high quality positioning in unfriendly conditions.
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Fig. 5. Estimated and reference trajectories corresponding to the first part
of the circuit, and a zoom of the initial steps.

On the one hand, the filter overcomes the negative influ-

ence of the gyro bias in the localization system. A real time

bias estimation has been proposed in this respect. On the

other hand, the problem of bad or unknown initial conditions

has been particularly studied. A novel algorithm for initial

heading estimation that can be applied to Kalman filter based

solutions was developed and tested. Experimental trials with

real data-sets show the very good results obtained by the

proposed method.

These results are comparable to those achieved by a

particle filter based solution that is much more costly in

computational terms.
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