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Fusing GNSS, Dead-Reckoning, and Enhanced Maps
for Road Vehicle Lane-Level Navigation
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Abstract—Nowadays, it is common that road vehicle navigation
systems employ maps to represent the vehicle positions in a local
reference. The most usual process to do that consists in the esti-
mation of the vehicle positioning by fusing the Global Navigation
Satellite System (GNSS) and some other aiding sensors data, and
the subsequent projection of these values on the map by applying
map-matching techniques. However, it is possible to benefit from
map information also during the process of fusing data for posi-
tioning. This paper presents an algorithm for lane-level road ve-
hicle navigation that integrates GNSS, dead-reckoning (odometry
and gyro), and map data in the fusion process. Additionally, the
proposed method brings some benefits for map-matching at lane
level because, on the one hand, it allows the tracking of multiple
hypothesis and on the other hand, it provides probability values
of lane occupancy for each candidate segment. To do this, a new
paradigm that describes lanes as piece-wise sets of clothoids was
applied in the elaboration of an enhanced map (Emap). Experi-
mental results in real complex scenarios with multiple lanes show
the suitability of the proposed algorithm for the problem under
consideration, presenting better results than some state-of-the-art
methods of the literature.

Index Terms—Enhanced maps, Global Navigation Satellite
System (GNSS), maps, multisensor data fusion, navigation, par-
ticle filter.

1. INTRODUCTION

N the frame of the European 6th framework program

(e-SAFETY call) and particularly in the frame of the
Cooperative Vehicle Infrastructure Systems (CVIS) integrated
project, the researchers of the geolocalization division of the
LCPC introduced the concept of enhanced map, or Emap
[1]. Within CVIS, the POsitioning and MApping (POMA)
subproject—to which LCPC belongs—aims at developing,
testing and finally supplying applications with advanced po-
sitioning and mapping solutions. Some of these applications
require lane-level accuracy, e.g., “Enhanced Driver Awareness”
warning the driver of any hazard along its trajectory, or new
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services called “Lane Allocation” or “Intelligent Speed Alert.”
Emap, in combination with on-board vehicle sensors, have
been introduced to make possible the determination of accurate
lane occupancy and lane change when overtaking or splitting
off to an exit for instance.

In this paper, we present the feasibility of a new Map Aided
Localization (MAL) that extends the original concept to Emap
(EMAL). With this concept, both ego-positioning of the vehicle
and map-matching are achieved together in a unique process.
Due to its accuracy and its completeness, the Emap offers a
priori information of great interest with regard to the onboard
sensors fusion algorithm, in the core of which it will be consid-
ered as a constraint. Additionally, a multiple hypotheses Emap
tracking will be performed, using particle filter: here, this fil-
tering strategy appears all the more interesting since the map
itself contains many more alternatives than standard maps.

The rest of the paper is organized as follows. First, in
Section II, some interesting works of the literature of this topic
are analyzed. Section IIl summarizes the Emap contents and
its creation process. The proposed data fusion algorithm that
employs GPS/EGNOS, dead-reckoning, and Emap observa-
tions is explained in Section IV. Finally, the results achieved in
our experiments and the conclusions obtained from them are
discussed in Sections V and VI.

II. RELATED WORK

In an urban environment, automotive applications cannot
rely on GNSS based geolocalization only, since satellites out-
ages are frequent, due to the surrounding building structures,
tree canopies, and high vehicles [2]. Therefore, usual naviga-
tion generally couples dead-reckoning and GNSS positions
or pseudo-ranges (distances to satellites), with a minimum of
four satellites in the first case (loose coupling), whereas even
one satellite brings about an observation that can update the
navigation process in the second case (tight coupling). Usu-
ally in cars, dead-reckoning is based on the use of an onboard
low-cost Inertial Measurement Unit (IMU) and the measurement
of the performed distance (available through ABS wheels speed
sensors). Many recent improvement in the characterization of
acceleration and rotation rate measurement offsets due to thermal
stability of microelectromechanical system components made
these sensors compliant with car navigation requirements. How-
ever, random errors still remain. Consequences are as follows.

* Dead-reckoning drifts so much due to random errors in-

tegration, that detection and isolation of outliers in obser-
vations is not reliable (multipath affected observations re-
main statistically acceptable).

e Map-mismatching may happen, particularly inside dense

urban centers, or at junctions.
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* Practically an acceptable maximum duration of GNSS out-

ages constrains the availability of the application.

An alternative approach to 3-D IMU integration consists
in approximating the problem in 2-D, assuming a planar
movement of the vehicle. In this case, a single axis gyro only,
coupled with the vehicle odometer, offers a good compromise.
Once its position is determined, map-matching consists in ve-
hicle tracking in map data with optimal criteria, like minimum
distance point to segment, including heading difference vehicle
to segment, etc., and taking advantage in this tracking process
of connectivity between segments. A comprehensive summary
of these techniques can be found in [3].

Whereas ego-localization and map-matching are made se-
quentially, Map Aided Localization will fuse the map data in
the point positioning process itself altogether. Authors in [3]
list these methods in a category called advanced map-matching
algorithms.

Various research investigations were actually carried out by
past on Map Aided Localization, among which are [4]-[10].

The way one can take into account the a priori information
contained in road map vary from Bayesian filtering to fuzzy
logic: in particle filters, suppression or down-weighting of par-
ticles far from the matched poly-line [7]; in extended Kalman
filters, introduction of line heading or distance to line as a ob-
servation [9].

Our work claims a certain originality, to the extent that it com-
bines a new description of road, including a detailed geometry,
as well as a particle filter a priori suitable for multiple-hypoth-
esis tracking in map data. To the authors’ knowledge, none has
used such a detailed description of the road geometry.

We actually make the assumption that the road network has
been formerly surveyed. Reference [11] also presents a geomet-
rical filtering of the trajectory, but in the Simultaneous Location
And Mapping (SLAM) approach where the parameters of the
road are identified in the same process as the ego-positioning it-
self. In order to increase the robustness of positioning, we will
consider that the Emap is available a priori.

III. OVERVIEW OF EMAP CONTENTS AND MAPPING PROCESS

The objective of fusing GNSS, dead-reckoning, and Emap at
lane-level accuracy requires first an offline mapping process,
and second a real-time filtering system. The present section
gives an overview of Emap contents as well as it summarizes
the mapping process that was carried out for their construction.
Real-time filtering will be addressed further in Section IV.

An Emap contains the geometrical description (by series
of clothoids) of the middle of each lane of each carriageway.
For us, a carriageway is a set of lanes having the same travel
direction. It does not contain intersections, since we consider
that large crossroads have not necessarily identified lanes
in their middle, but only identified lanes until their bounds.
Roundabouts, like crossroads, have not yet been modeled,
but they should be in the near future (at least the larger ones,
particularly those with several lanes). Exits and entrances
of highways are completely represented, making locally an
additional lane in the concerned carriageway. Clothoids are
characterized by their origin coordinates, origin direction and
curvature, and the variation rate of their curvature along with
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Fig. 1. Offline Emap data processing.

the curvilinear abscissas. Circles and straight lines are singular
clothoids, either curvature or both curvature and its variation
rate being null.

The computation of =,y Cartesian coordinates at a given
abscissas consists in a couple of non-explicit integrals (known
under the name of Fresnel integrals). With a computer, these
integrals will be approximated by a classical piece-wise
decomposition.

Differences between Emaps and standard maps delivered by
map providers for car navigation systems today regarding the
completeness and the accuracy of the geometry make the Emap
model closer to ground truth than standard.

Fig. 1 shows the data flows included in the offline mapping
process that we made [12]. The different steps of this process
consist of the following.

1) Collecting GPS dual-frequency phase data, gyrometer, and
odometer measurements on-board a vehicle used for mo-
bile mapping the area.

2) Data postprocessing with a local GPS station, smoothing
the kinematic solutions with the dead-reckoning sensors
(this is made with our Gyrolis software [22]).

3) Extracting clothoids from the series of points.

4) Linking every clothoid to its neighbor to make topology
available for further real-time map-matching.

A dedicated algorithm has been designed for computing the
geometrical and topological features [12], with no implementa-
tion constraints since this process is executed offline. Each road
element (each clothoid) is identified by its ID, and connected
IDs are listed as attributes. They can be either at left or right, or
in front of the current ID. Road elements are oriented similarly
as the driving direction.
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To conclude, let us notice that this mobile mapping and data
processing were experimental, and they have not been optimized
with the objective of an industrial production.

IV. GNSS/DR/EMAP DATA FUSION

This section focuses on the data fusion filter employed to inte-
grate GPS positions corrected by EGNOS, dead-reckoning mea-
surements, and the road shape data available in the Emap.

In the current literature, there are numerous filters appli-
cable to nonlinear systems. Extended Kalman filters or EKF
(linearizations of Kalman filter in different approximations),
particle filters or PF (sequential Monte Carlo based methods),
and unscented Kalman filter or UKF, (based on sigma-points)
are some of the most employed in the researcher community.
Each of them presents some benefits depending on the concrete
implementation under consideration [6], [8], [13]-[19]

Among these methods, the particle filter is specially suitable
for the issue addressed in this paper. As it will be shown, the
functioning principle of particle filters results very convenient
for the implementation of map observation updates.

A. PFarticle Filter Cycle

The principle of the particle filter is to represent by means of
a set of IV samples {X;}N | and their corresponding weights
{w} } N, the probability density function p(X/Y1.x) at instant
k of the state vector Xy, given past observations, is as follows:

X = i i

P\y )= Xy - wy,

1:k =1

where Y7., stands for the observations collected from the ini-

tialization until instant k. Each sample X can be described as
a Dirac delta expression &} (X}) in the form
5.(Xx) =0 if Xy # X
§.(Xp) =1 if X = Xj. (1)
The process of particle filtering can be summarized as
follows.
1) Initialization: Generation of IV particles, or samples of the
state vector, X é, with equal weights 1/N.
2) Prediction: Estimation of X, following the model dy-
namics.
3) Measurement update: Update of the weights of the parti-
cles with the observations Y}, following the expression

wi = wi_, - e(FOB0R=RD) (RH(Mi=h(x))
where h(X} ) is the observation function that relates at in-
stant k the state X} and observations Y} (in our case it will
be the second-order identity matrix), and R the covariance
matrix of observations.

4) Normalization of the weights: wi, = wi/ S wi.

5) Resampling: To prevent high concentration of probability
mass on only a few particles, (leading to the convergence
of a single w; to 1), particles are resampled when next
equation is verified

< < 0.5N

;(%)2
6) End of cycle: Making k = k + 1, and iterating to step 2.
Further details of particle filtering can be found in [6].

A

y
(North)

x (East) "

Fig. 2. Cartesian x, y and Frenet "™, d™ coordinates for a point P, position
of a vehicle driving segment rn with a given half lane width H L. Initial angle
of the segment 7o, and angle at any Frenet abscissas 7(1, ).

B. Frenet/Cartesian Definition

The state vector of our filter is a composition of a Cartesian
and a Frenet sub-states, X = [X%, X*], where X¢ stands
for the Cartesian part and X" for the Frenet one (in the fol-
lowing, these superscripts will be used to distinguish both sub-
systems). X is defined by [z, y, /], representing East, North,
and heading angle, respectively, at the middle point of the rear
wheel axle of the vehicle, while X*" includes [I™, d™, m)], that
represent the values of abscissas and ordinates referred to the
lane segment m. The state variables of the proposed filter are
represented in Fig. 2.

The inclusion of Cartesian and Frenet definitions for the same
point in the space introduces a partial redundancy in the state
vector. However, the convenience of both sub-states in the filter
state brings some benefits to the its implementation:

* On the one hand, Frenet variables are more adequate for
evaluating the transitions between lane segments of the
road. If the calculations required to carry out this process
would have to be done by using Cartesian coordinates, the
computational costs would constrain this solution only to
applications in which the use of very high-end computers
is feasible.

* On the other hand, the provision of East, North, and
heading angle in a reference map appears necessary in a
number of location based services in which this algorithm
could be applied. In addition to that, the inclusion of a
Cartesian sub-state allows uninterrupted navigation also
when the Emap reference is not present. This is of special
interest in very complex scenarios such as multiple lane
crossroads where the definition of lane segments by means
of clothoids becomes very difficult.

In spite of its benefits, the use of a partially redundant state
vector implies some particularities in the implementation of the
particle filter and its evolution model, that will be discussed
along the paper.

1) Relation Between Frenet/Cartesian Reference Systems:
Taking into account the proposed particle filter-based imple-
mentation, the notation of state vector for a particle + at instant
k will be given by

Xi = [}, b Vb, BV, A, mi). )
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It is possible to relate both Frenet and Cartesian representa-
tions of the same point by means of the following expressions:

i
r=x5 + / cos(T™(I™))dl — d™ sin(7™(I"))
Jo
i

y=yy' + sin(7™(™))dl + d™ cos(7™ ("))  (3)
Jo
where x(", yg" are the East and North coordinates of the initial
point of the road segment and 7,,, (I") is the azimuth angle of
the segment at abscissas [, given by
cm . (Im 2
Tm(lm):Tgn-l-IiBn-lm-l-i( ) .

“

being 73", kg' and ¢c™ shape parameters of the clothoid def-
inition of segment m, and representing initial heading, initial
curvature, and linear curvature rate, respectively. These are the
parameters that define the clothoid description of the road shape
(see Fig. 2).

C. Initialization of the Filter

The filtering process for the real-time navigation is schemati-
cally represented in Fig. 3. The basic idea is to explore multiple
hypothesis for map matching using particles that move according
to the vehicle dead-reckoning model. Update is either due to the
Emap (applying a geometrical constraint that removes the parti-
cles beyond the bounds of their matched road element) or due to
GPS observations. This process is explained in the next sections.

The filter begins with the initialization of the particles X .
To realize this, first the Cartesian sub-state variables z,y are
randomly generated following a Gaussian distribution with the
first accepted GNSS point as mean value. Standard deviations
values are proposed following the sensor specifications and the
results obtained in our own trials described in Section V, being
as follows:

* 0.3 m in case of using EGNOS;

¢ 0.1 m for the RTK receiver;

* 3 m for stand-alone GPS fixes.

Since it is assumed that no information about the initial heading
is available, values of ¢)? are uniformly spread through the whole
range of 27 radians.

For the initialization of the variables of the Frenet sub-state,
X 5 *, we must first find out the lane segment in which each par-
ticle of the corresponding sub-Cartesian state XOC "* is placed.
With no a priori information of the vehicle position or orienta-
tion, it is not possible to employ topological or orientation in-
formation in the selection of the most appropriate road segment
[3]. In this case, we assume that the computational time for the
initialization is not necessarily bounded to real time constrains
(this situation would happen only once and corresponds to the
beginning of the circuit) and we follow a single-criterion method
based on the distance to lane segments.

In the usual case that some a priori information about the ve-
hicle positioning and its current road segment would be avail-
able for the initialization of the filter (for example, when the ve-
hicle was previously navigating in the zone of an standard map
and it enters in an area described by an Emap), this process could
be assisted by that map, constraining the search to a very re-
duced number of Emap segments linked to the previous map arc,
making possible a real time initialization process. Both possi-
bilities, with and without a priori positioning and map informa-

I | - initial gnss solution
list of clothoids
with their id, parameters
and list of connected ids

(]

Initial positioning
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closest clothoid id

e
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sample time: 10Hz
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- in bounds id
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of particles

and modify weights
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Il - gnss so.lutions — GNSS update
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Fig. 3. Real-time GNSS/DR/Emap aided location.

tion, are contemplated in the algorithm design. The problem of
collaboration between commercial and our proposed enhanced
maps is under study.

Once the segment is chosen, Frenet variables referred to it
[I™%, d™"] can be directly obtained since d™* is the minimum
distance between |27, ] and segment m(7), and ™" its corre-
sponding abscissas in the Frenet system (see Fig. 2). As can be
noticed, d™" is actually the value of the shortest distance found
when searching the corresponding segment m(%).

D. Filter Prediction

The prediction of the Cartesian sub-state for each particle will
be calculated as follows:

xék“«—l) =z + A
Yelk—1) = Yk—1 + By
Diip-1) =Vho1 + & )
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Fig. 4. Vehicle test prototype.

where

st (Do)

{(Dz sin(¢") + Dy COS(I/ ) + 6% (6)

A7 =ds" smc<—> s1n< )
2

w'(Dz cos(v') + Dy sin(¢)) + 6,; 7

1\3|E

€

and

+ ' is an input of the filter, and represents the vector of an-
gular velocity values for every particle, following w® ~
N (wgyr, 05y)» Where wgy, is the gyro measurement of the
heading rate and oy, its variance, that can be character-
ized using the angular random walk provided by its manu-
facturer.

* ds' is an input of the filter, and represents the vector of
traveled distance for every particle, that can be calculated
by adding to the measurement of the traveled distance of
the odometer, ds,q4o, @ uniform distribution of noise around
[—stePodo, St€Podo], Where stepoqo is the odometer step
equal to 0.2615 m in our case.

* Dz and Dy are the Cartesian distances in the body frame
of the vehicle between the position of the antenna and the
middle point of the rear wheel axle, which is the assumed
representative point for the vehicle pose (Fig. 4).

* terms o, 5;/ stand for the error in the prediction of
x(kl k—1)" y(kl k—1) in the navigation frame, modeled as
random walk processes in such a way that after 1 s, the
error due to the model inaccuracy is assumed to be 0.2 m,
what was found a suitable tuning for our algorithm.

Fig. 4 illustrates the body reference frame and the positions

of the sensors in our vehicle prototype.

As it can be noted, error terms that represent the distribution
of particles were included in the prediction of the Cartesian sub-
state. Hence, as each particle must refer to the same pose in
both reference systems, the prediction of the Frenet variables
will be dependent on the Cartesian estimates. By following this
principle we manage that predictions errors are coupled in both
reference systems.

Assuming straight movements between samples, it can be
demonstrated that, for a given lane segment m, the prediction
of the Frenet variables can be approximated by using the nu-
merical expression

l%; = lkfl + cos(T™)AL + sin(Tm)A;
d%;_l) =d" + sin(T™)AL — COS(Tm)A; (8)

that corresponds to a simple coordinate transformation (see
Fig. 2).

E. Filter Update

Whether or not there are valid GNSS positions available at
one execution step, the process of update will consist respec-
tively of consecutive Emap and GNSS updates, or only the
Emap update phase.

1) Emap Update: The prediction cycle presented in
Section IV-D is applied at every input sample scan. However,
as it was commented, the result obtained by (8) is only valid
when the pose predicted for a particle ¢ is still within the
bounds of the segment associated to this particle at the instant
that the prediction is made (mjjx—1) = M(x—1)). Therefore,
after every prediction phase the condition given by (9) must be
verified by using the Emap observations

(0 <y <2™) and (=HL<dfjj, ;) <HL)
©)
where L™ is the length of the segment in the Frenet abscissas
(stored in the Emap) and HL is the value for the half of a lane
width, assumed constant in our tests and with value 2.25 m. This
value comes from the addition to 1.75 m (half of the width of a
standard lane in Europe) of 0.5 m, that stands for an acceptable
threshold of the error made in the mobile mapping process.

In case that (9) is satisfied, the prediction performed in (8)
is accepted, and mjy = my—; . If any prediction of the Frenet
variables does not verify (9), results of (8) must be disregarded
and a different process must be followed. In this last case, two
possibilities arise.

1) The vehicle moved from previous segment to a different
one my # mp—1 being new segment my in the list of
candidates of my_1 (stored in the Emap).

2) The vehicle is not within the bounds of any road segment
and this particle must be eliminated, making wi, =0.

To estimate the segment towards which the vehicle moved
from mj_1, a search based on distance criterion is launched
among candidate segments. The reduced number of them (typ-
ically 3 or 4, and maximum 7 in the Emap of Cheviré bridge)
keeps computational times of this search very low.

After the selection of the most likely segment, we must verify
whether or not (9) is true. In case this expression is positive, we
update the new value of my, in the vector state and reevaluate
", d"" according to it, in the same way that was performed
in the last step of the initialization. In the negative case, this
particle is eliminated by making its weight wfc = 0, and the
weights must be normalized (step 3 of the particle filter cycle
presented Section IV-A) for the rest of the active particles.

2) Resampling: We have seen that after every prediction, in
the map update phase, the weights of those particles that do not
verify the constraints given by map observations are set to zero.
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Hence, to avoid a possible concentration of weights on only a
few particles, the resampling condition introduced in step 4 of
the algorithm (Section IV-A), must be evaluated. For compu-
tational reasons, in most of the cases this condition should be
negative to prevent an excessive number of resamples. However,
the condition must be effective to prevent a low number of ac-
tive particles anytime.

Similar considerations regarding both Cartesian/Frenet sub-
systems as those made for the initialization must be taken into
account. Following this idea, the Cartesian variables of the state
are uniformly and randomly resampled, according to the cu-
mulative distribution of the weights of the active particles, fol-
lowing a Kitagawa strategy for the redistribution [20]. For the
estimation of the Frenet subsystem, in order to diminish the
computational charges of the process, the number of candidate
segments in which the new particle may lay must be constrained.
In all the experiments carried out, it appeared that the corre-
sponding new segments after every resample always belonged
to the set of segments represented in the state variable mi, of the
active particles. This implies typically only one or two possible
segments associated to the new resampled Cartesian variables,
and consequently a low computation. Finally, let us remind the
need of estimating again new values for /", d;"" referred to
the selected segment.

3) GNSS Update: When valid GNSS measurements are
available, a GNSS update will be carried out just after the
Emap update phase. Nevertheless, prior to the update with
GNSS fixes, we must evaluate the quality of these data, in
order to prevent from GNSS outliers (typically consequence of
multipath effects). We decided to use the well-known Nyquist
method based on the Mahalanobis distance. Details of how to
implement it can be found in [21].

The GNSS update phase corresponds to step 2 of the particle
filter cycle introduced in Section I'V-A, and can be directly ap-
plied by simply making the following:

* Yi = [zaps, Ycps), representing East and North values;

e Xj = [xi,y.], thatis, the Cartesian position subset of the
state vector;

« function h(X}) will be the constant matrix H, described
by H = I, the identity matrix of second order;

* R = ognss - Iz, where the value of ognss will depend
on the GNSS position quality and was previously given in
Section I'V-C.

After the GNSS update, the normalization and the evaluation of
the resample condition must be run again.

F. Navigation Out of the Emap Covered Area

Since Emaps are intended to cover specific areas of interest
of the road network, a continuous definition of the road based
on them should not be expected. For this reason, the algorithm
must be prepared for interruptions in the provision of Emap ob-
servations. For example, due to the high complexity of the defi-
nition of lane segments in crossroads, in the current state of our
investigations Emap data are not available when the vehicle en-
ters these areas. In these situations, all the particles of the filter
would be eliminated at the instant they leave the bounds of the
last Emap segment (the case of the last selected segment being a
segment with no neighbors). To prevent this, the algorithm was
designed to be capable to navigate also in areas without Emap

observations in a simple Cartesian mode. In this way, in those
cases where no neighbors are found for the current set of m}, the
Frenet processes that involve Emap observations are disabled,
and the vehicle navigates exclusively with the predictions of the
Cartesian variables and the GNSS updates.

When running in Cartesian mode, at every prediction step the
position of the vehicle is compared to the initial points of the
Emap segments of the area of interest, and the distance from
it to the closest segment is estimated. This calculation can be
done very rapidly, since an Emap can only be joined through the
initial points of its segments. In case that, the distance value is
lower that 2.25 m (assumed width of half a lane), the algorithm
switches to Frenet/Cartesian mode and keeps working with all
its functionalities.

V. EXPERIMENTAL TESTS

Main objectives of the experiments presented in this section
are as follows.

1) Validation of the proposed map model based on sets of in-
terconnected clothoids to describe precisely the horizontal
alignment of the road at lane level.

2) Analysis of the EGNOS capabilities as the plausible GNSS
data source for lane-level-based services, taking into ac-
count aspects such as its accuracy, coverage, and integrity.

3) Evaluation of the proposed GNSS/DR/Emap data fusion
filter with real data-sets in a complex scenario with mul-
tiple lane roads.

4) Determination of the capabilities of the particle filter as the
data fusion technique for fusing GNSS/DR/Emap, taking
into account computational aspects.

5) A comparison between integrated GNSS/DR and
GNSS/DR/Emap based solutions to the problem of
lane-level positioning of a road vehicle.

For these purposes, different campaigns were carried out
in the area of Nantes, France, near the facilities of the LCPC
Center. Prior to the presentation of the test results, the prototype
employed in our experiments is briefly introduced.

A. Test Vehicle Prototype

Fig. 4 shows the test vehicle used for collecting data-sets and
evaluation purposes. The vehicle was equipped with the fol-
lowing sensors.

* EGNOS capable GPS receiver: Trimble Ag 132, mono-

frequency, L1.

* Dual-frequency RTK receiver for evaluation: ZMax by

Ashtech.!
* Yaw rate gyroscope: E-core RD-2000 FOG gyro by KVH.
* One odometer with resolution of 1 pulse per 26.15 cm
placed on the gear box coupled to the rear wheels axle.
For this research, we are using a fiber-optic gyrometer (FOG),
despite its cost does not comply with automotive requirements.
This sensor deployment serves well our purposes of validating
the algorithm under proposition. Nevertheless, the cost of on-
board unit could be optimized with hardware such as near tac-
tical grade MEMS, which would certainly apply. Additional
tests should be done for showing comparative results of different
instrumentation.

IThe RTK Zmax by Ashtech was also used for the elaboration of the Emap.
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Fig. 5. Mappy (TeleAtlas data) map rendering of Cheviré south interchange.
One-way roads are represented by one poly-line, which makes two poly-lines
for highways (in blue), and one for exits (in orange). Shape points are visible in
curves. Multiple lane exits are simplified. Lanes separation due to bridge piles
at highways crossing is not represented.

Fig. 6. Emap made by mobile mapping superimposed onto a Google Earth
image. Each color represent a different clothoid.

B. Validation of a Piece-Wise Clothoid Based Map Model

Fig. 5 displays a standard map rendering of the Cheviré south
interchange, whereas Fig. 6 superimposes a Google image and
the mobile mapping output. Each color represents a different
clothoid, extracted from postprocessed kinematic (PPK) GPS
solutions, smoothed using odometry and yaw rate measurement
[12], [22]. The estimated accuracy has an order of magnitude of
a few decimeters (this accuracy can reasonably be bounded by
0.5 m), mainly due to the unknown exact lateral position of the
vehicle in its lane, when surveying. This 0.5 m is considered as
compatible with the Emap-based CVIS applications. In case of
future higher accurate requirement, additional vision on-board
could help improving this accuracy.

C. Exploitation of EGNOS

Benefits that EGNOS should bring to the proposed navigation
system are as follows:

* augmentation of the positioning accuracy, thanks to the
GPS corrections broadcast by the geostationary satellite;

» provision of positioning integrity, by means of the integrity
values included in EGNOS, that allow the calculation of the
SBAS-based horizontal protection level (HPL) and vertical
protection level (VPL) parameters.
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Fig. 7. RTK fix (dotted black), RTK float (dotted blue) and GPS/EGNOS
(dotted red) values logged in this test scenario.
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Fig. 8. Availability and multipath problems of GPS/EGNOS (dotted red), RTK
fix (dotted black) and RTK float (dotted blue) in a road stretch of the test.

In this section, we focus exclusively on accuracy aspects, since
the study of the integrity aspects requires a very specific and
detailed attention.

For evaluation purposes, RTK and GPS/EGNOS positions
were logged simultaneously during the same trajectory along
the Cheviré bridge Emap. Fig. 7 shows a stretch of the resultant
positions. As it can be seen, the availability of satellite signals is
affected in a similar manner in both GPS/EGNOS and GPS solu-
tions. In this image, we have distinguished between RTK fixed
values (in dotted black) and RTK float values (dotted blue), a
priori less precise. The need of extra sensors not only for nav-
igation purposes, but also for the elaboration of the Emap, is
clear from this image.

Apart from the gaps of coverage, some other problems were
found during the tests performed. Fig. 8 shows the effects of
multipath propagation of the satellite signal. As can be easily
seen, the multipath phenomenon affects both EGNOS-aided
GPS (red dotted) and dual frequency RTK GPS (blue dotted) in
this part of the trajectory. This confirms that EGNOS correc-
tions cannot solve the multipath problems of GPS, one of its
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most problematic issues since consequent errors are not prop-
erly considered by integrity figures that reflect signal-in-space
errors.

The estimated horizontal positioning errors (HPE) accom-
plished by EGNOS-corrected GPS along the whole trajectory
test can be seen in Fig. 9. For the estimation of this error, RTK
values are assumed to provide the true path. GPS/EGNOS
values were collected at the frequency rate of 1 Hz, being the
total test duration higher than 11 min. As it is confirmed in
this image, multipath propagations impoverish noticeably the
quality of the solution. The mean value of the horizontal posi-
tion error during this test was 0.345 m, with standard deviation
of 0.382 m, values that encourage the use of EGNOS in our
system. However, a maximum error of 2.467 m is still too far
from the aimed performance of the GNSS sensor aboard. To
overcome this problem, we are currently conducting investiga-
tions on the detection of outliers in GPS/EGNOS positions.

D. Evaluation of the Proposed GNSS/DR/Emap Fusion

1) Positioning Accuracy: This section discusses the accu-
racy of the proposed GNSS/DR/Emap fusion algorithm (being
GNSS an EGNOS-capable GPS in our case). To do it so, our pro-
posal was compared to some other state-of-the-art fusion tech-
niques. The results presented next show the benefits achieved in
terms of accuracy as compared to a GNSS/DR solution running
a particle filter. Some other tests with GNSS/DR based EKF so-
lutions were realized obtaining similar results to the GNSS/DR
based PF. However, the PF approach was found less dependent
of good initial conditions, what it consistent with the literature
of the topic [23], [24]. For this reason, and taking into account
that the computational demand of the PF verified the realtime
constraints, this was finally selected for the comparison. In the
following, the GNSS/DR/Emap PF is noted as Frenet Cartesian
Particle Filter (FCPF) and the GNSS/DR PF is noted as Single
Cartesian Particle Filter (SCPF).

Let us remark here that to the authors’ understanding, a com-
parison between a navigation solution and a map-matching so-
lution would bring no conclusions in terms of accuracy, and for
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Fig. 10. Stretch of the trajectories provided by the FCPF (solid red) and the
SCPF (solid blue), referred to the Emap (solid black). EGNOS positions (black
diamonds: ¢) were masked during periods of 110 and 30 s.

this reason it has not been performed. As it is traditionally un-
derstood in the literature, map-matching processes provide po-
sitions projected on a map segment (typically its centerline).
The concept of map-matching is associated to the determina-
tion of the road segment any time, and consequently the final
position accuracy is determined by the accuracy of the map it-
self. By contrast, our algorithm does not project the position of
the vehicle to the map segments or centerlines. Each particle of
our filter can freely move according to the filter inputs and the
vehicle model within the limits of the segment to which it is
associated. Therefore, the accuracy of the results is not exclu-
sively determined by the map, although map observations affect
its value as long as they constrain the position of each particle
to the map segment bounds. The determination of the vehicle
position anywhere within the edges of the carriageway can be
found an important contribution to map-matching for transport
applications [3].

A stretch of the trajectories achieved by both the SCPF and
the FCPF during a test with a GPS mask of 110 s is displayed
in Fig. 10. In this image, solid black line represents the Emap,
blue the SCPF solution, red the FC, and EGNOS positions are
represented by black diamonds (¢). SCPF presents good results,
with low drifts as compared to some methods proposed in the
literature. Nevertheless, in cases of long GNSS outages, it is
a matter of time that the estimated position drifts, due to the
accumulation of errors in the dead-reckoning sensors and the
vehicle model.

On the other hand, the proposed FCPF presents no drifts along
the same stretch of the road, obtaining similar results during
every trial. The use of Emap observations that take into account
the road geometry maintains the particles within the bounds of
Emap segments. The result is that particles are adapted at every
filter execution step to the Emap segments shape, and drifts are
constrained to the segments limits.

Fig. 11 shows the positioning errors accumulated by both
SCPF and FCPF methods during a test performed following
the same trajectory employed for the test presented in Fig. 10.
True reference at every instant is assumed to be given by RTK
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Fig. 11. Horizontal positioning errors (HPEs) obtained by both SCPF and
FCPF algorithms in a test through Cheviré bridge.

TABLE I
SOME STATISTICAL VALUES ACHIEVED BY SCPF AND
FCPF DURING A TEST ALONG THE EMAP

Filter Mean Std Max
SCPF 2.13 2.35 | 8.79
FCPF 0.57 0.67 | 3.56

fixes and two periods of EGNOS masks of 110 and 30 s dura-
tion were simulated to test the performance of the system under
poor coverage conditions. In the analysis of accuracy values, pe-
riods without RTK fixes were not considered for the evaluation,
to avoid possible mistakes derived from interpolation processes.
In addition to that, the stretches outside the Emap covered area
were also removed for the same reason.

Table I summarizes some statistical values of interest ob-
tained in this test. These results appeared consistently during
all the trials performed, and yield several conclusions.

1) The results achieved by the SCPF are good as compared
to the values obtained by similar systems reported in the
literature.

2) Nevertheless, a mean value of 2.13 m with standard de-
viation of 2.35 m is not good enough for lane-level loca-
tion-based applications.

3) The inclusion of Emap observations in a combined fusion/
matching process increases the accuracy of the provided
positioning.

4) The values achieved by the proposed FCSP of 0.57 m and
0.67 m for mean and standard deviation, respectively, are
good enough for lane-level matching and positioning. If
a Normal distribution is assumed for the HPE values, the
proposed FCPF filter provides more than the 95% of the
output positions within an error ellipsis of 1.9 m, even in
cases with very long absences of GNSS positions (110 s).

5) The maximum value of 3.6 m corresponds, as a matter
of fact, to a stretch with EGNOS coverage, in which an
EGNOS outlier due to multipath effects was not properly
classified by the Nyquist test. Therefore, the effective elim-
ination of multipath effects in EGNOS positions appears
to be very recommendable for the application of lane-level
based safety and comfort applications.
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Fig. 12. Example of particles dispersion in parallel lane segments. Lane seg-
ments are represented in cyan, violet, and yellow solid lines with a thinner black
solid line in the middle and identifiers within a bounding box in the middle value
of their abscissas. Green points correspond to the positions of the predicted par-
ticles during a few filter steps. Blue points are the remaining particles after the
Emap update phase. Finally, red squares stand for the filter positioning output.

2) Lane Occupancy: Fig. 12 shows an example of particle
propagation and the result of updating with the Emap observa-
tions. Road segments are represented in cyan, violet, and yellow
colors with a longitudinal black solid line and the identifiers
within a bounding box in the middle value of their abscissas.
The dispersion of the predicted positions for the particles (green
points) depends on the error assumed for the inputs and the
prediction model, becoming higher with high error considera-
tions. Blue points represent particles with non-null weight (sur-
vivors after the Emap update). It can be clearly seen where is
the bound for the right side of the lower lanes with labels 413
and 414 (consecutively in cyan and violet). However, on their
left side some particles appear “alive” although they are much
further than the 2.25 m value for half a lane. This is due to the
fact that these particles are assigned to segment 102, and placed
within its bounds. In the same figure, red squares represent the
weighted composite positioning solution provided by the filter.
The elimination of those particles that laid outside the limits of
the segment avoided the filter solution to drift out of the road
(the accumulation of green points is clearly offset to the right).
Although some particles were assigned to segment 102, due to
its limited number and weight their influence on the filter output
is almost negligible.

The probability that the vehicle occupies lane segment 7 at
instant k ;™=" can be easily calculated as the addition of the
normalized weights of those particles that are associated to seg-
ment 7 as follows:

N
pp=r = wm = (10)
i=1

The provision of probability values for lane segment occupancy
anytime offers a first solution to the problem of map-matching
at lane level, answering the question “in which lane the vehicle
is,” and brings another important contribution to map-matching
for transport applications [3].
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Fig. 13. Particles dispersion and filter solution in the case of the vehicle taking
a highway exit. Lane segments are represented in cyan, violet, and yellow
solid lines with a thinner black solid line in the middle and identifiers within
a bounding box in the middle value of their abscissas. Blue points stand for
the particles with non-null weight after the Emap update phase. Red squares
represent the filter positioning output.
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3) Multi-Hypothesis Capabilities: Fig. 13 presents one very
common situation on highway environments that typically in-
duces errors in map matching algorithms. As it was commented,
lane segments are represented as solid cyan, violet, and yellow
lines with a black thinner line and their identifiers. For the sake
of clarity in the image, on this occasion predicted positions for
each particle have been omitted and only active particles after
the Emap updates are plotted. GNSS values were masked during
this test and therefore are not included in the graph.

The capability of the proposed particle filter for multi-hypoth-
esis tracking can be observed in this image. The main core of
the particles are distributed around segments 414 and 415. Pre-
dicted particles out of their bounds were removed from the so-
lution by making its weight equal to zero. The filter positioning
output represents therefore a vehicle driving from segment 414
to segment 415, what corresponds to the real trajectory of the
vehicle. However, some particles that laid out of the limits of
segments 414 and 415 were not removed, and their predictions
were considered valid during some filter steps. It is the case of
the particles of the upper side of the image that were associated
to segment 102. These were kept “alive” until their predictions
were located outside of this segment bounds. Despite the fact
that these particles represent a very small part of the whole set
and their influence on the solution is almost negligible, the pos-
sibility of having different sets of particles associated to multiple
lanes bring some very positive benefits to our algorithm: in the
process of map-matching for the determination of the vehicle
trajectory there is no need to make a “fast” decision about the
lane segment in which the vehicle is. On the contrary, it is pos-
sible to benefit from multiple threads of probability values for
several lanes, making possible a “slow” decision as the particles
evolve at every filter step (what depends on the vehicle model
and the inputs anytime). This can be found very useful to prevent
from many errors in segment assignments that lead to corrupted
map-matched solutions and the necessary re-initialization of the
positioning system [3].

TABLE II
PROBABILITIES OF LANE OCCUPANCY DURING A SHORT STRETCH OF THE TEST
Step  pilt pA15 102
k—3 091 0.00 0.09
k—2 059 035 0.06
k—1 021 076  0.03
k 0.00 099 0.01
TABLE III

COMPUTATION TIMES OBTAINED WITH DIFFERENT NUMBERS OF PARTICLES

Test duration | Number of particles | Computational time
500 178 s
674 s 1000 354 s
2000 668 s

Table II shows the probability values calculated following
(10) and associated to each lane at several instants of the stretch
shown in Fig. 13. As the particles associated to segment 102
evolve and leave the segment, the probability that the vehicle
occupies lane segment 102 diminishes. We can also appreciate
the transition from segment 414 to 415.

As a consequence of the multi-hypothesis feature of the algo-
rithm and the diminution of the probability values of one seg-
ment, the number of particles decreases. Let us remind here that,
following the PF principles presented in Section IV-A, particles
must be resampled to avoid the deterioration of the solution.

4) Computational Aspects: Since the algorithm must be ca-
pable to provide real-time positioning to a road vehicle, compu-
tational aspects were taken into account in its implementation.
Different experiments were realized with different number of
particles and circuits. Table III shows the computational times
obtained with different number of particles during the test on
Cheviré bridge, running in Matlab and using a standard laptop
at 1.67 GHz. The results obtained with both 500 and 1000 parti-
cles were very good. Nevertheless, 1000 was found more robust
in some cases of particularly bad conditions, such as simulated
GPS masks of long duration. The results presented in this sec-
tion were obtained with 1000 particles. As can be seen in this
table, these results show the capability of the algorithm to be
executed under real-time conditions. Even so, due to the impor-
tance of this issue future work will be focused on the compu-
tational aspects of the algorithm and its implementation on a
single-board computer.

VI. CONCLUSION AND FUTURE WORK

This paper presented a novel algorithm for the localization
of vehicles at the lane level, employing EGNOS-capable GPS,
dead-reckoning, and map observations. In addition to that, a
new method to define road lane segments as a piece-wise set
of clothoids for the horizontal alignment was proposed. These
proposals were evaluated in real complex scenarios with mul-
tiple lanes. Main contributions achieved in these investigations
are as follows.

* An Emap (enhanced map) based on a geometrical repre-
sentation of each road lane with series of clothoids was
proposed. This Emap can supply to vehicular applications
information of the road geometry and topology at the lane
level, and can be very useful for many systems such as
navigation, lane determination, or lane departure warning
systems.
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* The inclusion of the observations of the Emap in the al-
gorithm for vehicle navigation brings important benefits in
terms of accuracy. The navigation filter proposed in this
paper was compared to a state-of-the-art solution such as a
GPS/EGNOS/DR running a particle filter, obtaining much
better results in usual situations of poor satellite coverage.

* The vehicle positions provided by the filter can be anywhere
within the edges of the carriageway (contrary to the tradi-
tional map-matched positions projected in the centerline of
the map segment). Each particle of our filter can freely move
according to the filter inputs and the vehicle model within
the limits of the segment to which it is associated.

* The provision of probability values for lane segment occu-
pancy anytime offers a solution to the problem of “in which
lane the vehicle is.” To the best of the authors’ knowledge,
the problem of lane occupancy was not solved yet in the
literature.

Additionally, the capability of GPS/EGNOS to be employed
as GNSS data source for our purposes was also studied. Re-
sults show that although accuracy values in normal operation
are good enough to meet the demanded standards, outliers as a
consequence of multipath effects impoverish noticeably the per-
formance quality of the system. An efficient method to detect
and remove these outliers must be found before being capable
to completely rely on GPS/EGNOS to this problem.

Finally, some other future works will be focused on the use of
3-D Emaps and a 3-D positioning filter, with terrain modeling
and tightly coupled GNSS data.
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