

Logarithmic interpolation methods: the limiting cases

Alba Segurado¹

Interpolation theory plays an important role in the study of function spaces, operator theory and other areas of mathematics. Many of these applications are based on the real method $(A_0, A_1)_{\theta,q}$ introduced by Lions and Peetre (see [1]), where $0 < \theta < 1$.

Logarithmic methods $(A_0, A_1)_{\theta,q,\mathbb{A}}$, defined by means of a broken logarithmic function $\ell^{\mathbb{A}}(t)$, are an important extension of the real method such that, under certain additional assumptions, θ can also take the values 0 and 1. In this talk we will be interested in the limiting cases where $\theta = 0$ or 1, since there were certain natural questions about these spaces that had not been studied before. In particular, we will show that the description of these spaces in terms of the *J*-functional depends on the relationship between q and \mathbb{A} , contrary to the case where $0 < \theta < 1$. As a consequence of these *J*-descriptions, we will be able to investigate the behaviour of compact and weakly compact operators under logarithmic interpolation methods. The contents of this talk are part of a joint work with Fernando Cobos ([2]).

Referencias

- [1] Bergh, Jöran; Löfström, Jörgen; Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976.
- [2] Cobos, Fernando; Segurado, Alba; Description of logarithmic interpolation spaces by means of the *J*-functional and applications. *J. Funct. Anal.* **268** (2015), 2906–2945.

¹Universidad Complutense de Madrid