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 Understanding: Users need to understand, quantify and manage risk
 Transparency: Users need to comprehend how the model makes certain 

predictions
 Trustworthiness: Users can debug the model based on their knowledge
 Discovery: Users need to distil insights and new knowledge from the 

learned model
 Avoid implicit bias: Users need to be able to check whether the model does 

not learn biases

vanderschaar-lab.com

Machine learning interpretability is essential
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Black-Box
MLData

Post-hoc Explanations

We need to go beyond interpretability of  static prediction models

Static/Cross-sectional Predictions
Time-series Predictions

Treatment-effects
Etc.

Tabular, Images,
Text
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What do clinicians want from an explanation?

www.vanderschaar-lab.com/making-machine-learning-interpretable-a-dialog-with-clinicians/



5 classes of  explanation methods

vanderschaar-lab.com
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Today’s talk: Four types of  interpretability



vanderschaar-lab.com

vanderschaar-lab.com/
 Research pillars
 Interpretable ML

Overview of  our lab’s work related to 
interpretability

Interpretability Resources



Interpretability Resources

Open Source Code
github.com/vanderschaarlab/Interpretability



ML Interpretability GitHub

Code
github.com/vanderschaarlab/Interpretability
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Our Resources to go Further

Our Code
github.com/vanderschaarlab/Interpretability

Our Papers
vanderschaar-lab.com/interpretable-

machine-learning/



1. Feature-based interpretability
- Static (global/personalized)
- Time-series
- Causal effect inference

vanderschaar-lab.com

Four types of  interpretability
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Black Box 
Predictive Model

Age, Gender, 
Diabetes, 

Hypertension, 
SBP, ….

Mortality due to 
Covid-19: 0.78

From Global to Individual Feature Importance

vanderschaar-lab.com



Method Feature 
importance

Individualized 
feature importance

Model-independent Identifying the set of 
relevant features for

each instance

LASSO
[Tibshirani, 1996]

 

Knock-off
[Candes et al, 2016]

 

L2X
[Chen et al, 2018]

  

LIME
[Ribeiro et al, 2016]

  

SHAPE
[Lundberg et al, 2017]

  

DeepLIFT
[Shrikumar et al, 2017]

 

Saliency
[Simonyan et al, 2013]

 

TreeSHAP
[Lundberg et al, 2018]

 

Pixel-wise
[Batch et al, 2015]

 

INVASE
[Yoon, Jordon and van der Schaar, 2019]

   

Limitations of  other methods for model interpretability

INVASE discovers 
the number 
of  relevant 
features 
for each instance
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INVASE

Black Box 
Predictive Model

Age, Gender, 
Diabetes, 

Hypertension, 
SBP, ….

Mortality due to 
Covid-19: 0.78

Age, Gender,
Diabetes, 

Hypertension, 
SBP

Which features of  an individual are relevant for a prediction? 

Mary

[Yoon, Jordon, vdS, ICLR 2019]

vanderschaar-lab.com



• How can we learn individualized feature importance?
• Key idea: Use Reinforcement Learning (RL)

• Make observations 
• Select “actions” on the basis of these observations
• Determine “rewards” for these actions

• Ultimately learn a policy which selects the best actions 
• i.e. actions that maximize rewards given observations

• We use the Actor-Critic approach to RL

INVASE [Yoon, Jordon, vdS, ICLR 2019]
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• Selector network (actor) takes instances and outputs vector of  selection 
probabilities.

Selector 
Network
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𝑥

𝑥

…

𝑥

Features Label 
estimation

Element-wise 
productActor

INVASE
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• Predictor network (critic) receives the selected features, makes 
predictions and provides feedback to the actor.

Selector 
Network

𝑥

𝑥

𝑥

…

𝑥

Features
Selection 

Probability

Random
Sampler

Predictor 
Network

�̂�

�̂�

…

�̂�

Predictor Loss⊚

Back-propagation

Black-box 
Model 

(e.g. NN)

𝑝

𝑝

…

𝑝

0

1

…

0

Error in
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…
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0

1

…

0

𝑥

𝑥

𝑥

…

𝑥
Selection 

Selected 
Features

Label
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Label 
estimation

Back-propagation

𝑥

𝑥

𝑥

…

𝑥

Features Label 
estimation

Element-wise 
productActor

Critic
INVASE
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Time-series forecasting  - Dynamask [ICML 2021]

Unsupervised learning methods – Label-free explainability [ICML 2022]

Causal effect inference – ITErpretability [NeurIPS 2022]

Feature-based explanation – in medicine, we need to go beyond 
interpretability of  static predictions
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NO! [Ismail et al., NeurIPS 2020] 

Time-series forecasting –
Do standard interpretability methods work? 



Challenge: Time context matters!

Standard methods treat each input x , as a feature

⟹ Time dependency is ignored

Dynamic Perturbation Operator

Idea: perturb each  x ∗, by using neighbouring times:

π x ∗,  ; t∗, i =  c (t∗, i) × x ,

∗

∗ 

⟹ Time dependency is integrated in perturbation

vanderschaar-lab.com

Perturbed input Linear combination

How to take the time context into account? [Crabbé, vdS, ICML 2021]

t

x ,

t∗

t

c (t∗, i)

Past window perturbation:



Dynamask [Crabbé, vdS, ICML 2021]

vanderschaar-lab.com

Black Box
f

time

feature

Input Time Series
𝐗 ∈  ℝ ×

Mask
𝐌 ∈  [0,1] ×

Perturbation
Operator

Π𝐌

Output
f(𝐗)

Perturbed
Output

f ∘ Π𝐌(𝐗)

Error
ℒ (𝐌)

Adapt Saliency Scores (Backpropagate)



We need “parsimonious” explanations

What do we mean by parsimonious?

Masks should not highlight more features than necessary

⟹ Feature selection

How to enable parsimony?

User selects desired fraction a of  most important features

Dynamask adds a regularization to enforce sparsity:

ℒ 𝐌 = vecsort 𝐌 − 𝐫  

vanderschaar-lab.com

Useless:

Useful:

time

feature



What do we mean by congruous?

Masks should avoid quick time variations of  the saliency

(Robustness)

How to enable congruity?

Dynamask adds a regularization to penalize saliency jumps 
over time:

ℒ 𝐌 = m , − m ,

vanderschaar-lab.com

time

feature

We need “congruous” explanations



Dynamask enables the saliency map to be “legible”

vanderschaar-lab.com

Introduced
Mask information 
& 
Mask entropy

[Crabbé, vdS, ICML 2021]

How to we know if  the “legibility” is achieved by an interpretability method? 
We need a quantitative measure
We use Information Theory!



Dynamask - Example

True saliency Dynamask saliency

Baseline saliency

[Crabbé, vdS, ICML 2021]

vanderschaar-lab.com
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• Unsupervised learning: e.g. clustering/phenotyping

• Self-supervised learning: e.g. polygenic risk scores [VIME, NeurIPS 2020]

Desiderata: 

 Both feature and example-based explanations

 Understand and compare representations learned by different ML encoders

 Work with a variety of  explanation methods (e.g. SHAP, Influence Functions)

Work with a variety of  neural network architectures (e.g. Autoencoder, SimCLR)

Explaining Unsupervised Models [Crabbé, vdS, ICML 2022]



1. Feature-based interpretability
2. Example-based interpretability

vanderschaar-lab.com

Four types of  interpretability



Bob

1-year mortality 
due to cancer: 

0.28

Age, cancer 
stage, tumor 
grade, PSA 
status, ….

Example-based explanations

vanderschaar-lab.com

Black Box

Post-hoc Explanations

Generic

• select particular instances of  the dataset to explain the behavior of  ML models



Bob’s
clinician

Personalized example-based explanations –
Beyond “one-size-fits-all” example explanations

vanderschaar-lab.com

Post-hoc Explanations

Personalized

Bob

1-year mortality 
due to cancer: 

0.28

Age, cancer 
stage, tumor 
grade, PSA 
status, ….

Black Box

• select particular instances of  a dataset selected by the user (a corpus) to 
explain the behavior of  ML models



Personalized explanations with reference to a freely selected set of  examples, 
called the corpus

 Which corpus examples explain the prediction issued for a given test example? 
 What features of  these corpus examples are relevant for the model to relate them 

to the test example?

Desiderata

vanderschaar-lab.com



 SimplEx – able to reconstruct the test latent representation as a mixture 
of  corpus latent representations

 Novel approach (Integrated Jacobian) allows SimplEx to make explicit 
the contribution of  each corpus feature in the mixture

 Bridge between feature importance & example-based explanations

 SimplEx gives the user freedom to choose the corpus of  examples to 
explain model predictions in a user-centric way

 SimplEx provides user-centric explanations for any ML methods on 
diverse data (tabular, imaging, time-series, multi-modal)

Our solution: SimplEx [Crabbe, Qian, Imrie, vdS, NeurIPS 2021]

vanderschaar-lab.com
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Linear
Representation

Latent spaceFeature space Prediction space

Corpus

Example

SimplEx: Problem set-up

Goal: explain the prediction
for the example in terms of 
the corpus predictions

Black-box
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Linear
Representation

Latent spaceFeature space Prediction space

Corpus

Example

SimplEx: Key idea



• Find the best corpus decomposition of  the example 

ℋ

• May have a residual 𝒞 ℋ

vanderschaar-lab.com

Corpus Decomposition

𝒉

𝒉𝟐

𝒉𝟑

𝒉𝟏

𝒉 𝑟𝒞 𝒉



Idea: 
fix a baseline input 𝟎 with representation 𝟎

𝒉 − 𝒉𝟎 ≈ 𝑤 (𝒉𝒄 − 𝒉𝟎)

Compare each corpus member 𝒄 to the baseline 

Understand total shift in latent space in terms of  
individual contributions from each corpus member

vanderschaar-lab.com

How to transfer corpus explanations in the input space?

𝒉

𝒉

𝒉𝟐

𝒉𝟎

𝒉𝟏

𝑤

𝑤
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Integrated Jacobian & Projection

𝒋𝟏
𝒄

𝒋𝟐
𝒄

𝑝𝟏
𝒄

𝑝𝟐
𝒄
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Linear
Representation

Latent spaceFeature space Prediction space

Corpus

Example

SimplEx: Feature sensitivity analysis
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SimplEx Explanations: Going beyond current interpretability

Expanding the picture: SimplEx unifies example and feature-based explanations

Enhancing the picture: SimplEx captures insights from the model’s latent space 



1. Feature-based interpretability
2. Example-based interpretability
3. Concept-based interpretability

vanderschaar-lab.com

Four types of  interpretability



What do we mean by concept?

vanderschaar-lab.com

A concept is

Defined by the user with concept positive and negative examples

A binary human annotation on the examples fed to ML models

Deducible from the ML model input features 

Concept Positives Concept Negatives

Stripe Concept



Concept-Based Explainability

vanderschaar-lab.com

Neural 
Network

Image

Label

Is the prediction sensitive to the stripe concept?



Concept-Based Explainability

vanderschaar-lab.com

Patient 
Features

Prostate 
Cancer 

Mortality

Is the prediction sensitive to the 
prostate cancer grading system?

Neural 
Network



vanderschaar-lab.com

Concept Activation Vectors (Kim et al, 2017)

𝒉
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Concept Activation Vectors (Kim et al, 2017)
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Concept Activation Regions 
(Crabbe, vdS, NeurIPS 2022)
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Concept Activation Regions 
(Crabbe, vdS, NeurIPS 2022)



Idea. Borrow the smoothness assumption from semi-supervised learning

vanderschaar-lab.com

CAR Formalism



Idea. Borrow the smoothness assumption from semi-supervised learning

A concept 𝑐 is well encoded in ℋ if  we can split ℋ = ℋ ⨆ℋ¬ , where

1. The CAR ℋ mostly overlaps with positives 𝒫

2. The region ℋ¬ mostly overlaps with negatives 𝒩

3. If  two ℎ , ℎ  𝜖 ℋ are close and in a high-density region, then ℎ , ℎ  𝜖 ℋ xor ℎ , ℎ  𝜖 ℋ¬

vanderschaar-lab.com

CAR Formalism



Idea. Borrow the smoothness assumption from semi-supervised learning

A concept 𝑐 is well encoded in ℋ if  we can split ℋ = ℋ ⨆ℋ¬ , where

1. The CAR ℋ mostly overlaps with positives 𝒫

2. The region ℋ¬ mostly overlaps with negatives 𝒩

3. If  two ℎ , ℎ  𝜖 ℋ are close and in a high-density region, then ℎ , ℎ  𝜖 ℋ xor ℎ , ℎ  𝜖 ℋ¬
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CAR Formalism



Concept Density. Define a signed density to measure the presence of  a concept

𝜌 𝒉 = ∑ 𝜅 𝒉, 𝒉 −𝒉  𝒈(𝒫 ) ∑ 𝜅 𝒉, 𝒉𝒉  𝒈(𝒩 )

Concept Activation Region. Use concept density with SVMs to infer the CAR ℋ

ℋ =  (𝑠 ) (1)

vanderschaar-lab.com

CAR Formalism



Concept Density. Define a signed density to measure the presence of  a concept

𝜌 𝒉 = ∑ 𝜅 𝒉, 𝒉 −𝒉  𝒈(𝒫 ) ∑ 𝜅 𝒉, 𝒉𝒉  𝒈(𝒩 )

Concept Activation Region. Use concept density with SVMs to infer the CAR ℋ

ℋ =  (𝑠 ) (1)

Global Explanation. Measure the relationship between class 𝑘 and concept 𝑐 with score

TCAR  ≡  
𝒈 𝒟 ∩ℋ

𝒟

vanderschaar-lab.com

CAR Formalism



Concept Density. Define a signed density to measure the presence of  a concept

𝜌 𝒉 = ∑ 𝜅 𝒉, 𝒉 −𝒉  𝒈(𝒫 ) ∑ 𝜅 𝒉, 𝒉𝒉  𝒈(𝒩 )

Concept Activation Region. Use concept density with SVMs to infer the CAR ℋ

ℋ =  (𝑠 ) (1)

Global Explanation. Measure the relationship between class 𝑘 and concept 𝑐 with score

TCAR  ≡  
𝒈 𝒟 ∩ℋ

𝒟

Feature Importance. Use any attribution method 𝑎 to assign concept importance to features

Importance 𝑥  for 𝑐 ≡ 𝑎 (𝜌 ∘ 𝒈, 𝒙)

vanderschaar-lab.com

CAR Formalism



What do we get by allowing ℋ and ℋ¬ to be nonlinearly separable?  

More precision. CAR classifiers better capture how concepts are spread in ℋ

Better agreement with humans. TCAR scores better correlate with human annotations

Consistent feature importance. CAR feature importance captures concept associations

vanderschaar-lab.com

CAR Advantages
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CAR Applications 

• Doctors use 5 grades (5 concepts) to determine the likelihood of  prostate cancer spreading
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CAR Applications 

• Doctors use 5 grades (5 concepts) to determine the likelihood of  prostate cancer spreading

• DNNs implicitly encode prostate grading system (CAR classifiers with > 90% ACC)

• In DNNs representations, higher grade is associated with higher mortality
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CAR Applications 

• Doctors use 5 grades (5 concepts) to determine the likelihood of  prostate cancer spreading

• DNNs implicitly encode prostate grading system (CAR classifiers with > 90% ACC)

• In DNNs representations, higher grade is associated with higher mortality
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• CAR explanations are invariant to latent isometries

• CAR explanations are robust to adversarial perturbations and background shifts

• CAR explanations can be used to understand abstract concepts discovered

• CAR explanations can be used with a wide variety of  modalities (images, time series, tabular)

CAR – Other advantages not covered in this talk



1. Feature-based interpretability
2. Example-based interpretability
3. Concept-based interpretability
4. Discovering governing laws - Explicit-functions

vanderschaar-lab.com

Four types of  interpretability



- Discover powerful models!

- Why? 
Models are needed to 

understand variables, relationships, components
experiment
act

We need to go beyond feature & example interpretability

Discover the governing models of  medicine 

vanderschaar-lab.com



Discovery of  governing models using ML

Our focus: governing equations –
compact and closed-form equations

Benefits:
Concise
Generalizable
Amenable to further analysis (e.g., identifying stable equilibria)
Transparent
Interpretable to human experts

vanderschaar-lab.com



Breast 
cancer 

data

Example: Predicting breast cancer risk survival (5 years)

NHS Predict/
AutoPrognosis Prediction

Clinical Risk Prediction 
[Alaa, Gurdasani, Harris, Rashbass & vdS, Nature MI, 2021]

vanderschaar-lab.com

NCRAS
> 390,000Nearly 1 million 

patients involved in 
the analysis.



Breast 
cancer 

data

Example: Predicting breast cancer risk survival (5 years)

Method AUC-ROC

PREDICT 0.75 ± 0.0033

AutoPrognosis 0.84 ± 0.0032

AutoPrognosis Prediction

vanderschaar-lab.com

Metamodeling

Clinical Risk Prediction 
[Alaa, Gurdasani, Harris, Rashbass & vdS, Nature MI, 2021]



Symbolic
Metamodeling

Black-box ML model Explicit function

Metamodels

Turning black boxes into white boxes using symbolic 
metamodels [Alaa & vdS, NeurIPS 2019] [Crabbe, Zhang, vdS, NeurIPS 2020]

Operates on a trained machine learning model and outputs a 
symbolic formula describing the model’s prediction surface

vanderschaar-lab.com



Metamodel space

Metamodel 
representation Model space 

(uninterpretable)
Model space 

(uninterpretable)

Black-box ML model

MetamodelMetamodel

White-box model

Building transparent risk equations of  black-box ML

vanderschaar-lab.com

[Alaa & vdS, NeurIPS 2019] 
[Crabbe, Zhang, vdS, NeurIPS 2020]



Breast 
cancer 

data

Example: Predicting breast cancer risk survival (5 years)

𝑓(𝐴𝑔𝑒, 𝐸𝑅, 𝐻𝐸𝑅2, 𝑇𝑢𝑚𝑜𝑟 𝑠𝑖𝑧𝑒, 𝐺𝑟𝑎𝑑𝑒, 𝑁𝑜𝑑𝑒𝑠, 𝑆𝑐𝑟𝑒𝑒𝑛𝑖𝑛𝑔)

AutoPrognosis Prediction

Risk equations

Interpretability using symbolic metamodeling in practice 
[Alaa, Gurdasani, Harris, Rashbass & vdS, Nature MI, 2021]

vanderschaar-lab.com

Metamodeling



Breast 
cancer 

data

Example: Predicting breast cancer risk survival (5 years)

Method AUC-ROC

PREDICT 0.75 ± 0.0033

AutoPrognosis 0.84 ± 0.0032

Metamodel 0.83 ± 0.0020

AutoPrognosis Prediction

Risk equations

Interpretability using symbolic metamodeling in practice 
[Alaa, Gurdasani, Harris, Rashbass & vdS, Nature MI, 2021]

vanderschaar-lab.com

Metamodeling



Nancy

ML Model
Risk 

prediction

Age
gender

diabetes
BMI

Individual-level feature importance

Illustration

vanderschaar-lab.com

Explicit risk 
formulae



Explicit function Implicit function Ordinary 
differential 
equation

Partial 
differential 
equation

Typical form

Examples Relativity Bernoullis’ Eq Newton’s law Heat equation

𝑦 = 𝑓(𝑥) 𝑓 𝑥, 𝑦 = 𝑐
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑡)

𝜕𝑢

𝜕𝑡
= 𝑓(𝑢, 𝑥)

𝐸 = 𝑚 ⋅ 𝑐 𝑣

2
+ 𝑔𝑧 +

𝑝

𝑞
= 𝑐

𝑚
𝑑 𝑥

𝑑𝑡
= 𝐹(𝑥)

𝜕𝑢

𝜕𝑡
= Δ𝑢

Discovery of  governing equations using ML

Symbolic 
Metamodels
[NeurIPS ‘19, ’20]

D-Code
[ICLR ‘22]

D-CIPHER
[archive]
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Our Resources to go Further

Our Code
github.com/vanderschaarlab/Interpretability

Our Papers
vanderschaar-lab.com/interpretable-

machine-learning/
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Online engagement sessions for 
ML researchers in healthcare; 
themed presentations & Q&A

https://www.vanderschaar-lab.com/ 
 Engagement sessions
 Inspiration Exchange

Engagement sessions: Inspiration Exchange


