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In meta-analysis, the usual way of assessing whether a set of single studies is homogeneous
is by means of the Q test. However, the Q test only informs meta-analysts about the presence
versus the absence of heterogeneity, but it does not report on the extent of such heterogeneity.
Recently, the I2 index has been proposed to quantify the degree of heterogeneity in a
meta-analysis. In this article, the performances of the Q test and the confidence interval
around the I2 index are compared by means of a Monte Carlo simulation. The results show
the utility of the I2 index as a complement to the Q test, although it has the same problems
of power with a small number of studies.

Keywords: meta-analysis, effect size, heterogeneity, I2 index, Monte Carlo method

In the past 25 years, meta-analysis has been widely ac-
cepted in the social and health sciences as a very useful
research methodology to quantitatively integrate the results
of a collection of single studies on a given topic. In a
meta-analysis, the result of every study is quantified by
means of an effect-size index (e.g., standardized mean dif-
ference, correlation coefficient, odds ratio, etc.) that can be
applied to all studies, enabling meta-analysts to give the
study results in the same metric (Cooper, 1998; Cooper &
Hedges, 1994; Egger, Smith, & Altman, 2001; Glass, Mc-
Gaw, & Smith, 1981; Hedges & Olkin, 1985; Hunter &
Schmidt, 2004; Rosenthal, 1991; Sutton, Abrams, Jones,
Sheldon, & Song, 2000; Whitehead, 2002).

Typically, meta-analysis has three main goals: (a) to test
whether the studies results are homogeneous, (b) to obtain a
global index about the effect magnitude of the studied
relation, joined to a confidence interval and its statistical
significance, and (c) to identify possible variables or char-
acteristics moderating the results obtained if there is heter-

ogeneity among studies. Here, we focus on how to assess
the heterogeneity among the results from a collection of
studies. Basically, there can be two sources of variability
that explain the heterogeneity in a set of studies in a meta-
analysis. One of them is the variability due to sampling
error, also named within-study variability. The sampling
error variability is always present in a meta-analysis, be-
cause every single study uses different samples. The other
source of heterogeneity is the between-studies variability,
which can appear in a meta-analysis when there is true
heterogeneity among the population effect sizes estimated
by the individual studies. The between-studies variability is
due to the influence of an indeterminate number of charac-
teristics that vary among the studies, such as those related to
the characteristics of the samples, variations in the treat-
ment, variations in the design quality, and so on (Brockwell
& Gordon, 2001; Erez, Bloom, & Wells, 1996; Field, 2003;
Hunter & Schmidt, 2000; National Research Council,
1992).

The assessment of the heterogeneity in meta-analysis is a
crucial issue because the presence versus the absence of true
heterogeneity (between-studies variability) can affect the
statistical model that the meta-analyst decides to apply to
the meta-analytic database. So, when the studies’ results
only differ by the sampling error (homogeneous case), a
fixed-effects model can be applied to obtain an average
effect size. By contrast, if the study results differ by more
than the sampling error (heterogeneous case), then the meta-
analyst can assume a random-effects model, in order to take
into account both within- and between-studies variability, or
can decide to search for moderator variables from a fixed-
effects model (Field, 2001, 2003; Hedges, 1994; Hedges &
Olkin, 1985; Hedges & Vevea, 1998; Overton, 1998; Rau-
denbush, 1994).
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The usual way of assessing whether there is true hetero-
geneity in a meta-analysis has been to use the Q test, a
statistical test defined by Cochran (1954). The Q test is
computed by summing the squared deviations of each
study’s effect estimate from the overall effect estimate,
weighting the contribution of each study by its inverse
variance. Under the hypothesis of homogeneity among the
effect sizes, the Q statistic follows a chi-square distribution
with k � 1 degrees of freedom, with k being the number of
studies. Not rejecting the homogeneity hypothesis usually
leads the meta-analyst to adopt a fixed-effects model be-
cause it is assumed that the estimated effect sizes only differ
by sampling error. In contrast, rejecting the homogeneity
assumption can lead to applying a random-effects model
that includes both within- and between-studies variability.
A shortcoming of the Q statistic is that it has poor power to
detect true heterogeneity among studies when the meta-
analysis includes a small number of studies and excessive
power to detect negligible variability with a high number of
studies (Alexander, Scozzaro, & Borodkin, 1989; Cornwell,
1993; Cornwell & Ladd, 1993; Hardy & Thompson, 1996,
1998; Harwell, 1997; Osburn, Callender, Greener, & Ash-
worth, 1983; Paul & Donner, 1992; Sackett, Harris, & Orr,
1986; Sagie & Koslowsky, 1993; Sánchez-Meca & Marı́n-
Martı́nez, 1997; Spector & Levine, 1987). Thus, a nonsig-
nificant result for the Q test with a small number of studies
can lead a reviewer to erroneously assume a fixed-effects
model when there is true heterogeneity among the studies
and vice versa. On the other hand, the Q statistic does not
inform researchers of the extent of true heterogeneity, only
of its statistical significance.1

Another strategy for quantifying the true heterogeneity in
a meta-analysis consists of estimating the between-studies
variance, �2. Assuming a random-effects model, the be-
tween-studies variance reflects how much the true popula-
tion effect sizes estimated in the single studies of a meta-
analysis differ. As the �2 depends on the particular effect
metric used in a meta-analysis, it is not possible to compare
the �2 values estimated from meta-analyses that have used
different effect-size indices (e.g., standardized mean differ-
ences, correlation coefficients, odds ratios, etc.).

In order to overcome the shortcomings of the Q test and
the �2, Higgins and Thompson (2002; see also Higgins,
Thompson, Deeks, & Altman, 2003) have proposed three
indices for assessing heterogeneity in a meta-analysis: the
H2, R2, and I2 indices. As they are interrelated, here we
focus on the I2 index, because of its easy interpretation. The
I2 index measures the extent of true heterogeneity, dividing
the difference between the result of the Q test and its
degrees of freedom (k � 1) by the Q value itself and
multiplying by 100. So, the I2 index is similar to an intra-
class correlation in cluster sampling (Higgins & Thompson,
2002). The I2 index can be interpreted as the percentage of

the total variability in a set of effect sizes due to true
heterogeneity, that is, to between-studies variability. For
example, a meta-analysis with I2 � 0 means that all vari-
ability in effect size estimates is due to sampling error
within studies. On the other hand, a meta-analysis with I2 �
50 means that half of the total variability among effect sizes
is caused not by sampling error but by true heterogeneity
between studies. Higgins and Thompson proposed a tenta-
tive classification of I2 values with the purpose of helping to
interpret its magnitude. Thus, percentages of around 25%
(I2 � 25), 50% (I2 � 50), and 75% (I2 � 75) would mean
low, medium, and high heterogeneity, respectively. The I2

index and the between-studies variance, �2, are directly
related: The higher the �2, the higher the I2 index. However,
following Higgins and Thompson, an advantage of the I2

index in respect to �2 is that I2 indices obtained from
meta-analyses with different numbers of studies and differ-
ent effect metrics are directly comparable.

Together with this descriptive interpretation of the I2

index, Higgins and Thompson (2002) have derived a con-
fidence interval for it that might be used in the same way as
the Q test is used to assess heterogeneity in meta-analysis.
Thus, if the confidence interval around I2 contains the 0%
value, then the meta-analyst can hold the homogeneity
hypothesis. If, on the contrary, the confidence interval does
not include the 0% value, then there is evidence for the
existence of true heterogeneity. Using the I2 index and its
confidence interval is similar to applying the Q test. Because
the I2 index assesses not only heterogeneity in meta-analysis
but also the extent of that heterogeneity, it should be a more
advisable procedure than the Q test in assessing whether
there is true heterogeneity among the studies in a meta-
analysis. However, the performance of the confidence in-
terval around I2 has not yet been studied in terms of the
control of Type I error rate and statistical power.

The purpose of this study was to compare, by a Monte
Carlo simulation, the performance of the Q test and the
confidence interval around the I2 index in terms of their
control of Type I error rate and statistical power. Different

1 It is important to note that the low statistical power of the Q
test for a small number of studies has promoted the undesirable
practice among some meta-analysts of ignoring the results of Q
when it is not statistically significant and searching for moderator
variables. On the other hand, the meta-analyst can a priori adopt a
statistical model (fixed- or random-effects model) on conceptual
grounds. For example, if the meta-analyst wishes to generalize the
meta-analytic results to a population of studies with similar char-
acteristics than to those represented in the meta-analysis, a fixed-
effects model can be selected. If, on the contrary, the meta-analytic
results have to be generalized to a wider population of studies, a
random-effects model should be the best option (Field, 2001;
Hedges & Vevea, 1998).
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effect-size indices were used, and both the extent of true
heterogeneity and the number of studies were varied. Thus,
it is possible to test whether the confidence interval for I2

overcomes the shortcomings of the Q test.

Effect-Size Indices

For each individual study, we assumed two underlying
populations representing the experimental versus control
groups on a continuous outcome. Let �E and �C be the
experimental and control population means, respectively,
and �E and �C be the experimental and control population
standard deviations, respectively. By including a control
condition in the typical design, we restricted the applicabil-
ity of our results to research fields in which such designs
make sense (e.g., treatment outcome evaluation in behav-
ioral sciences, education, medicine, etc.). Under the as-
sumptions of normal distributions and homoscedasticity, the
usual parametric effect-size index is the standardized mean
difference, �, defined as the difference between the exper-
imental and control population means, �E and �C, divided
by the pooled population standard deviation, � (Hedges &
Olkin, 1985, p. 76, Equation 2),

� �
�E��C

�
. (1)

The best estimator of the parametric effect size, �, is the
sample standardized mean difference, d, proposed by
Hedges and Olkin (1985, p. 81, Equation 10) and computed
by

d � c�m�
y� E � y�C

S
, (2)

with y�E and y�C being the sample means of the experimental
and control groups, respectively, and S being a pooled
estimate of the within-group standard deviation, given by
Hedges and Olkin (p. 79),

S � ��nE � 1�SE
2 � �nC � 1)SC

2

nE � nC � 2
, (3)

with SE
2, SC

2 , nE, and nC being the sample variances and the
sample sizes of the experimental and control groups, respec-
tively. The term c(m) is a correction factor for the positive
bias suffered by the standardized mean difference with
small sample sizes and estimated by Hedges and Olkin
(1985, p. 81, Equation 7),

c�m� � 1 �
3

4m � 1
, (4)

with m � nE � nC – 2. The sampling variance of the d index
is estimated by Hedges and Olkin (p. 86, Equation 15) as

Sd
2 �

nE � nC

nEnC
�

d2

2(nE � nC)
. (5)

Another effect-size index from the d family is that proposed
by Glass et al. (1981; see also Glass, 1976), consisting of
dividing the difference between the experimental and con-
trol group means by the standard deviation of the control
group. Here we will represent this index by g (Glass et al.,
1981, p. 105):2

g � c�m�
y� E � y�C

SC
, (6)

where SC is the estimated standard deviation of the control
group and c(m) is the correction factor for small sample
sizes given by Equation 4 but with m � nC �1 (Glass et al.,
1981, p. 113). The g index is recommended when the
homoscedasticity assumption is violated. Glass et al. (1981)
proposed dividing the mean difference by the standard
deviation of the control group because the experimental
manipulation can change the variability in the group; thus,
under this circumstance, they argued that it is better to
estimate the population standard deviation by the control
group standard deviation. Therefore, in the strict sense, the
g index is estimating a different population effect size from
that defined in Equation 1, �, consisting in dividing the
mean difference by the population standard deviation of the
control group: �C � (�E � �C)/�C (Glass et al., 1981, p.
112). The sampling variance of the g index is given by
Rosenthal (1994, p. 238) as

Sg
2 �

nE � nC

nEnC
�

g2

2(nC � 1)
. (7)

The Statistical Model

Once an effect-size estimate is obtained from each indi-
vidual study, meta-analysis integrates the estimate by cal-
culating an average effect size, assessing the statistical
heterogeneity around the average estimate and searching for
moderator variables when there is more heterogeneity than
can be explained by chance. In general, the most realistic
statistical model to integrate the effect estimates in a meta-
analysis is the random-effects model, because it incorpo-
rates the two possible sources of heterogeneity among the

2 Although Glass et al. (1981) represented this effect-size index
with the Greek symbol �, here we prefer to keep Greek symbols
to represent parameters, not estimates. Thus, we have selected the
Latin letter g to represent this effect-size index.
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studies in a meta-analysis: first, statistical variability caused
by sampling error and, second, substantive variability.

Let Ti be the ith effect estimate in a collection of k studies
(i � 1, 2, . . . , k). Here Ti corresponds to the d and g effect
indices defined in Equations 2 and 6, respectively. In a
random-effects model, it is assumed that every Ti effect is
estimating a parametric effect size �, with conditional vari-
ance � i

2, estimated by �̂i
2. The estimated conditional vari-

ances, �̂i
2, for the d and g indices proposed are defined by

Equations 5 and 7, respectively. The model can be formu-
lated as Ti � � � ei, where the errors, ei, are normally and
independently distributed with mean zero and variance
� i

2[ei � N(0,� i
2)]. The conditional variance represents the

within-study variability, that is, the variability produced by
random sampling.

In turn, the parametric effect sizes, �i, pertain to an
effect-parameter distribution with mean �� and uncondi-
tional variance �2. So, every �i parameter can be defined as
�i � �� � ui, where it is usually assumed that the errors ui

are normally and independently distributed with mean zero
and variance �2[ui � N(0, �2)]. The unconditional variance,
�2, represents the extent of true heterogeneity among the
study effects produced by the influence of an innumerable
number of substantive (e.g., type of treatment, characteris-
tics of the subjects, setting, etc.) and methodological (e.g.,
type of design, attrition, sample size, random vs. nonrandom
assignment, etc.) characteristics of the studies (Lipsey,
1994). Therefore, the random-effects model can be formu-
lated as given by Hedges and Vevea (1998), Overton
(1998), and Raudenbush (1994):

Ti � �� � ui � ei, (8)

where the errors ui and ei represent the two variability
sources affecting the effect estimates, Ti, and quantified by
the between-studies, �2, and within-study, � i

2, variances.
Therefore, the effect estimates, Ti, will be normally and
independently distributed with mean �� and variance �2 �
� i

2[Ti � N(��, �2 � � i
2)].

When there is no true heterogeneity among the effect
estimates, then the between-studies variance is zero (�2 �
0), and there only will be variability due to sampling error,
which is represented in the model by the conditional within-
study variance, � i

2. In this case, all of the studies estimate
one parametric effect size, �i � �, and the statistical model
simplifies to Ti � � � ei, thus becoming a fixed-effects
model. So, the fixed-effects model can be considered as a
particular case of the random-effects model when there is no
between-studies variability and, as a consequence, the effect
estimates, Ti, are only affected by sampling error, � i

2, fol-
lowing a normal distribution with mean � (being in this case
� � ��) and variance � i

2[Ti � N(�,� i
2)] for large sample

sizes.
Assessing the extent of heterogeneity in a meta-analysis

helps to decide which of the two models is the most plau-
sible, and this decision affects, at least, the weighting factor
used to obtain an average effect size. The usual estimate of
a mean effect size consists of weighting every effect esti-
mate, Ti, by its inverse variance, wi (Shadish & Haddock,
1994):

T �

�
i

wiTi

�
i

wi

. (9)

In a fixed-effects model, the weighting factor for the ith
study is estimated by wi � 1/�̂ i

2. In a random-effects model,
the weights are estimated by wi � 1/��̂ 2 � �̂ i

2�. For the d
and g indices, the estimated within-study variances, �̂i

2, are
defined in Equations 5 and 7, respectively. A commonly
used estimator of the between-studies variance, �2, is an
estimator based on the method of moments proposed by
DerSimonian and Laird (1986):

�̂2 � �
Q � �k � 1�

c
0

for Q 	 (k � 1)

for Q 
 (k � 1)

(10)

being c

c � �wi �
�wi

2

�wi

, (11)

where wi is the weighting factor for the ith study assuming
a fixed-effects model (wi � 1/�̂i

2), k is the number of studies,
and Q is the statistical test for heterogeneity proposed by
Cochran (1954) and defined in Equation 12. To avoid neg-
ative values for �̂2 when Q 
 (k � 1), we equated �̂2 to 0.
Note that because of this truncation, �̂2 is a biased estimator
for �2.

Assessing Heterogeneity in Meta-Analysis

Quantifying the extent of heterogeneity among a collec-
tion of studies is one of the most troublesome aspects of a
meta-analysis. It is important because it can affect the
decision about the statistical model to be selected, fixed or
random effects. On the other hand, if significant variability
is found, potential moderator variables can be sought to
explain this variability.

The between-studies variance, �2, is the parameter in the
statistical model that mainly represents the true (substan-
tive, clinical) heterogeneity among the true effects of the
studies. Therefore, a good procedure for determining
whether there is true heterogeneity among a collection of
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studies should be positively correlated with �2. At the same
time, it should not be affected by the number of studies and
should be scale free in order to be comparable among
meta-analyses that have applied different effect-size
indices.

The statistical test usually applied in meta-analysis for
determining whether there is true heterogeneity among the
studies’ effects is the Q test, proposed by Cochran (1954)
and defined by Hedges and Olkin (1985, p. 123, Equation
25) as:

Q � �wi�Ti � T�2, (12)

where wi is the weighting factor for the ith study assuming
a fixed-effects model, and T is defined in Equation 9. If we
assume that the conditional within-study variances, � i

2, are
known,3 then under the null hypothesis of homogeneity (H0:
�1 � �2 � . . . � �k; or also H0: �2 � 0), the Q statistic has
a chi-square distribution with k � 1 degrees of freedom.
Thus, Q values higher than the critical point for a given
significance level (�) enable us to reject the null hypothesis
and conclude that there is statistically significant between-
studies variation.

One problem with the Q statistic is that its statistical
power depends on the number of studies, with power being
very low or very high for a small or a large number of
studies, respectively. To solve the problems of the Q statis-
tic and the noncomparability of the between-studies vari-
ance, �2, among meta-analyses with different effect-size
metrics, Higgins and Thompson (2002) have recently pro-
posed the I2 index. The I2 index quantifies the extent of
heterogeneity from a collection of effect sizes by comparing
the Q value with its expected value assuming homogeneity,
that is, with its degrees of freedom (df � k � 1):

I2 � �
Q � �k � 1�

Q
� 100% for Q 	 (k � 1)

0 for Q 
 (k � 1)

. (13)

When the Q statistic is smaller than its degrees of freedom,
then I2 is truncated to zero. The I2 index can easily be
interpreted as a percentage of heterogeneity, that is, the part
of total variation that is due to between-studies variance, �̂ 2.
Therefore, there is a direct relationship between �̂ 2 and I2

that can be formalized from Equations 10 and 13 as,

I2 �
c�̂2

Q
. (14)

To show empirically this relation, we present in Figure 1 the
results of a simulation, assuming a random-effects model
with � � 0.5, k � 50, an average sample size N � 50 (nE �
nC for every study), and manipulating the parametric be-

tween-studies variance, �2, with values from 0.0 to 0.45 and
five replications per condition. Figure 1 represents the ob-
tained values of �̂ 2 and I2 for every replication. So, for the
manipulated conditions, �̂ 2 values around 0.025, 0.05, and
0.15 correspond to I2 values of 25%, 50%, and 75%, re-
spectively. Further, note that beyond a certain value of �2,
there is relatively little increase in I2. In particular, I2 values
higher than 85% will subsequently increase only slightly
even if the between-studies variance increases substantially.
Therefore, the I2 index seems particularly useful in describ-
ing heterogeneity in a meta-analysis with a medium-to-low
between-studies variance and not so useful for large �2

values.
Higgins and Thompson (2002) have also developed a

confidence interval for I2. The interval is formulated by
calculating another of their proposed measures of heteroge-
neity, the H2 index obtained by Higgins and Thompson (p.
1545, Equation 6),

H2 �
Q

k � 1
, (15)

also known as Birge’s ratio (Birge, 1932). Then they de-
fined I2 in terms of H2 by means of Higgins and Thompson
(p. 1546, Equation 10),

I2 �
H2 � 1

H2 � 100%. (16)

This allows us to express inferences of H2 in terms of I2.
For practical application, Higgins and Thompson (2002, p.
1549) recommend a confidence interval for the natural
logarithm of H, ln(H), assuming a standard normal distri-
bution, that implies the Q statistic and k, given by,

exp{ln(H)  �z�/2�SE[ln(H)]}, (17)

where |z�/2| is the (�/2) quantile of the standard normal
distribution, and SE[ln(H)] is the standard error of ln(H) and
is estimated by

SE�ln(H)	 � �
1

2

ln(Q) � ln(k � 1)

�(2Q) � �(2k � 3)
if Q 
 k

�� 1

2(k � 2)�1 �
1

3(k � 2)2�� if Q 
 k
.

(18)

The confidence limits obtained by Equation 15 are in

3 In practice, the population within-study variances never will
be known, so they will have to be estimated from the sample data.
For example, Equations 5 and 7 are used to estimate the within-
study variances for d and g indices.
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terms of the H index. Consequently, they can be easily
translated into the I2 metric by applying Equation 16 to both
confidence limits.

An example will help to illustrate the calculations for the
Q statistic and the I2 index. Figure 2 presents some of the
results of a meta-analysis about the effectiveness of delin-
quent rehabilitation programs (Redondo, Sánchez-Meca, &
Garrido, 1999). In particular, Figure 2 presents the results of
eight studies that compared a control group with one of two
different correctional programs: three studies that compared
a control group with a cognitive–behavioral treatment

(CBT) and five studies that compared a control group with
a therapeutic community program (TC). The comparisons
were measured by the d index such as it is defined by
Equation 2. The purpose of the example is to illustrate the
problems of the Q statistic and how the I2 index is able to
solve them.

As Figure 2 shows, the forest plot for the two groups of
studies (the three studies for CBT and those for TC) reflect
high heterogeneity in both cases, but heterogeneity is more
pronounced for CBT studies than for TC studies. In fact, the
estimated between-studies variance, �̂ 2, for CBT is clearly

Figure 1. Results of the simulation relating I2 values to estimated between-studies variance.

Figure 2. Forest plot of three studies for cognitive–behavioral treatment (CBT) and five studies for
therapeutic community (TC). Filled circles represent the individual effect size for every study; the
boxes refer to the average effect sizes for CBT studies, TC studies, and all of the studies; the
horizontal lines around the circles and boxes indicate the width of confidence intervals; and the
central vertical line represents the null effect size. N1 and N2 � sample sizes for treatment and
control groups, respectively; Effect: standardized mean difference following Equation 2 (d index).
StdErr � standard error of the d index obtained by calculating the square root of Equation 5.
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higher than for TC (0.24 and 0.06, respectively). However,
the Q statistic is very similar and statistically significant in
both cases: CBT, Q(2) � 11.647, p � .003; TC, Q(4) �
11.931, p � .018. Thus, a direct comparison of the two Q
values is not justified because their degrees of freedom
differ and can erroneously lead to the conclusion that the
two groups of studies are similarly heterogeneous. But if we
calculate the I2 index for both groups, then differences in the
extent of heterogeneity are clearly apparent: Whereas CBT
studies present an I2 value of 82.8%, implying high heter-
ogeneity, the TC studies present an I2 value of medium size
(66.5%). Thus, the I2 index has been able to reflect differ-
ences in the degree of heterogeneity between two groups of
studies when the Q statistic offers very similar results for
them.

The Q statistic is only useful for testing the existence of
heterogeneity but not the extent of heterogeneity. The I2

index quantifies the magnitude of such heterogeneity and, if
a confidence interval is calculated for it, then it can also be
used for testing the heterogeneity hypothesis. In the exam-
ple, the confidence limits obtained for the I2 index applying
Equation 15 were for CBT studies from 47.6% to 94.4% and
for TC studies from 12.7% to 87.1%. In both cases, the 0%
value is not contained by the confidence interval, showing
the existence of heterogeneity and coinciding with the re-
sults obtained with the Q statistic. On the other hand, the
width of the I2 confidence interval informs about the accu-
racy of the true heterogeneity estimation. Thus, as the
number of CBT studies is higher than that of TC studies, its
true heterogeneity estimation is more accurate (confidence
width � 46.8% and 74.4%, respectively). Therefore, the I2

index with its confidence interval can substitute for the Q
statistic, because it offers more information.

To further show the usefulness of the I2 index to compare the
extent of heterogeneity among different meta-analyses, we
present in Table 1 the results of four meta-analyses about
treatment outcome in the social and behavioral sciences in
terms of their Q tests and I2 indices. As every meta-analysis
has a different number of studies (k), the Q values are not
comparable. However, the I2 indices enable us to assess the
extent of true heterogeneity as a percentage of total variation.
So, for the three first meta-analyses, their respective Q values
only inform about the existence of heterogeneity, whereas the
I2 values allow us to identify the Sánchez-Meca, Olivares, and
Rosa (1999) meta-analysis as showing the largest heterogene-
ity (I2 � 90.8%, 95% confidence interval � 88.6% and 92.9%)
in comparison with the other two (I2 � 67.3%, 95% confidence
interval � 57% and 75.2%; and I2 � 74.2%, 95% confidence
interval � 64.8% and 82.3%). On the other hand, the only
meta-analysis with a nonsignificant Q test coincides with a
I2 � 0%.

Method

The simulation study was programmed in GAUSS
(Aptech Systems, 1992). For simulating each individual
study, we have assumed a two-groups design (experimental
vs. control) and a continuous outcome. Two different effect-
size indices, both pertaining to the d metric, were defined:
the standardized mean difference d index defined by Hedges
and Olkin (1985) and the g index proposed by Glass et al.
(1981). The main difference between them is the standard
deviation used, as noted above.

To simulate a collection of k single studies, we assumed
a random-effects model. Thus, from a normal distribution of
parametric effect sizes, �i, with mean �� � 0.5 and be-
tween-studies variance �2[�i � N(0.5, �2)], collections of k
studies were randomly generated. The mean effect-size pa-
rameter was fixed at �� � 0.5, as it can be considered an
effect of medium magnitude (Cohen, 1988).4 Once a �i

value was randomly selected, two distributions (for the
experimental and control groups) were generated, with
means �E � �i and �C � 0, variance for the control group
equal to 1 (�C

2 � 1), and variance for the experimental
group equal to 1, 2, or 4 (�E

2 � 1, 2, or 4), depending on the
ratio between �E

2 and �C
2. The distributions for scores in

experimental and control groups might be normal or non-
normal, with different values of skewness and kurtosis in
the nonnormal cases. Then, two random samples (experi-
mental and control) were selected from the two distributions
with sizes nE � nC, and the means (y�E and y�C) and standard
deviations (SE and SC) were obtained. Thus, the standard-
ized mean differences, d (Equation 2) and g (Equation 6),
and their sampling variances, Sd

2 (Equation 5) and Sg
2 (Equa-

tion 7), were calculated. The calculations for the d and g
indices, and their sampling variances, were repeated for
each one of the k studies of each simulated meta-analysis.
Then, for every set of effect estimates (d and g indices), the
calculations to obtain the Q statistic with its statistical
significance and the I2 index with its confidence interval
were carried out, applying Equations 11, 12, and 15, respec-
tively. Thus, the following factors were manipulated in the
simulations:

(a) The between-studies variance, �2, with values 0, 0.04,
0.08, and 0.16. When �2 � 0, the statistical model becomes
a fixed-effects model, because there is no between-studies
variance. The selected values of �2 were similar to those
used in other simulation studies (Biggerstaff & Tweedie,
1997; Brockwell & Gordon, 2001; Erez et al., 1996; Field,
2001; Hedges & Vevea, 1998; Overton, 1998).

4 Additional simulations varying the value of �� showed similar
results to that of �� � 0.5 for the Q statistic and the I2 index. Thus,
we maintained fixed �� to simplify the simulation design.
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(b) The number of studies for each meta-analysis, k, with
values 5, 10, and 20. These values for k are common in real
meta-analyses, and they were selected to study the perfor-
mance of Q and I2 when the number of studies is small,
because the literature suggests poor performance under
these conditions (Hardy & Thompson, 1998; Harwell, 1997;
Sánchez-Meca & Marı́n-Martı́nez, 1997).

(c) The within-study variances for experimental and con-
trol groups were varied using ratios for experimental and
control groups, respectively, of 1:1, 2:1, and 4:1, as sug-
gested in the literature (e.g., McWilliams, 1991; Wilcox,
1987). The variance of the experimental group was in-
creased in comparison with that of the control group be-
cause increases in variability are more plausible when there
is experimental manipulation (e.g., a psychological treat-
ment; Glass et al., 1981).

(d) Usually, the studies integrated in a meta-analysis have
different sample sizes. Thus, the mean sample size for each
generated meta-analysis was varied with values N � 30, 50,
and 80. The sample size distribution used in the simulations
was obtained by a review of the meta-analyses published in
18 international psychological journals. This review en-
abled us to obtain a real sample size distribution character-
ized by a Pearson skewness index of �1.464 (more detailed
information is given in Sánchez-Meca & Marı́n-Martı́nez,
1998). In accord with this value, three vectors of five Ns
each were selected averaging 30, 50, or 80, with the skew-
ness index given above to approximate real data: (12, 16,
18, 20, 84), (32, 36, 38, 40, 104), and (62, 66, 68, 70, 134).
Each vector of Ns was then replicated either two or four
times for meta-analyses of k � 10 and 20 studies, respec-
tively. The within-study sample sizes for the experimental
and control groups were equal (nE � nC, being N � nE �
nC, for each single study). For example, the sample sizes
vector (12, 16, 18, 20, 84) means that the experimental and
control group sample sizes were, respectively, (nE � nC �
6, 8, 9, 10, 42).

(e) Scores for the experimental and control participants in

each pseudostudy were generated assuming a variety of
different distributions: both normal distributions and non-
normal distributions. To generate nonnormal distributions,
we manipulated the normality pattern to obtain skewed
distributions by means of the Fleishman (1978) algorithm,
with the following values of skewness–kurtosis: 0.5–0,
0.75–0, and 1.75–3.75. These values of skewness and kur-
tosis can be considered of a moderate magnitude (DeCarlo,
1997; Hess, Olejnik, & Huberty, 2001).

To simplify the design of the simulation study, we did not
cross all of the manipulated factors. In the condition of
normal distributions for the experimental and control groups
in the single studies, we crossed all of the factors mentioned
above, obtaining a total of 4 (�2 values) � 3 (k values) � 3
(variance ratios) � 3 (N values) � 108 conditions. For the
three conditions in which the score distributions of the
single studies were nonnormal, the design of the simulation
was simplified by reducing the number of studies in each
meta-analysis to only two conditions: k � 5 and 20. Thus,
the number of conditions was 3 (�2 values) � 2 (k values) �
3 (variance ratios) � 3 (N values) � 3 (nonnormal distri-
butions) � 162. Therefore, the total number of manipulated
conditions was 108 (normal distributions) � 162 (nonnor-
mal distributions) � 270 conditions. For each of the 270
conditions, 10,000 replications were generated. To obtain
estimates of the Type I error rate and statistical power for
the Q statistic and the confidence interval for the I2 index,
assuming a significance level of � � .05, we carried out the
following computations over the 10,000 replications in each
condition:

(a) In conditions in which the between-studies variance
was zero (�2 � 0), the proportion of false rejections of the
null hypothesis of homogeneity in the 10,000 replications
was the empirical Type I error rate for the Q statistic.
Similarly, the proportion of replications in which the con-
fidence interval for I2 did not contain the value �2 � 0
represented its empirical Type I error rate. Following Coch-
ran (1952), we assumed that good control of the Type I error

Table 1
Q Tests and I2 Indices for Several Meta-Analyses

Source Issue k Q p I2 index
95% CI

(lower limit minus upper limit)

Redondo, Garrido, and
Sánchez-Meca (1997)

Correctional treatment
outcome

57 171.27 � .0001 67.3% 56.96%–75.16%

Redondo, Sánchez-Meca, and
Garrido (1999)

Correctional treatment
outcome

32 124.07 � .0001 74.2% 64.82%–82.26%

Sánchez-Meca, Olivares, and
Rosa (1999)

Tobacco addiction
treatment outcome

36 389.07 � .0001 90.8% 88.55%–92.93%

Moreno, Méndez, and
Sánchez-Meca (2001)

Social phobia treatment
outcome

39 19.163 
 .05 0%

Note. k � number of studies; Q � homogeneity test; CI � confidence interval.
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rate for � � .05 implies empirical rates in the range
0.04–0.06.

(b) In conditions with nonzero between-studies variance
(�2 
 0), the proportion of rejections of the homogeneity
hypothesis was the empirical power for the Q statistic, and
the proportion of replications in which the confidence in-
terval for I2 did not contain the value �2 � 0 was an estimate
of the power of this procedure. Following Cohen (1988), we
adopted 0.80 as the minimum advisable power.

Results

First, we will present the results obtained through the
manipulated conditions with respect to the control of Type
I error rates achieved by the Q test and the confidence
interval of I2 both for the d and g indices. Then, the results
in terms of statistical power will be shown.5

Type I Error Rate

Estimated Type I error rates were obtained when the
between-studies variance was zero (�2 � 0). For each
condition, the Type I error rate was calculated dividing by
10,000 the number of replications in which the null hypoth-
esis was incorrectly rejected using the Q test or the number
of replications in which the value zero was not in the I2

confidence interval. Figure 3 presents results for Type I
error rates as a function of the number of studies and the
average sample size under the conditions assuming normal-
ity and homoscedasticity in the experimental and control
groups’ distributions. As Figure 3 shows, good control of
the Type I error rate is achieved with both the Q test and the
I2 confidence interval when the d index is used but not with
the g index. The good control of the Type I error for Q and
I2 confidence interval with the d index is neither affected by

the number of studies nor by the average sample size in the
meta-analysis. However, note that the Type I error rate for
I2 confidence interval with the d index is slightly lower than
the .04 limit that we have assumed as representing a good
adjustment to the .05 nominal significance level. On the
other hand, with the g index, Q and I2 confidence interval
present Type I error rates clearly higher than the nominal
� � .05 and importantly above the .06 limit. This poor
performance slightly increases with the number of studies
but diminishes with the average sample size.

When the experimental and control group distributions
were normal but the homoscedasticity assumption was not
met, both Q and I2 confidence interval maintained good
control of the Type I error rate with the d index (although
the Type I error rate for I2 confidence interval being slightly
under the .04 limit). This result was not affected by the
number of studies and the average sample size, as Figure 4
shows. However, with the g index, a dramatic increase of
the Type I error rate for Q and I2 confidence interval was
found as the ratio between experimental and control groups’
variances was increased. As Figure 4 shows, the poor per-
formance of Q and I2 confidence interval for the g index is
affected by the number of studies and the average sample
size, with trends similar to those obtained assuming nor-
mality and homoscedasticity.

When the experimental and control group distributions
were nonnormal and the homoscedasticity assumption was
met, the control of the Type I error rate was good for both
the Q test and I2 confidence interval computed for the d
index. However, as the distributions deviated from normal-
ity, the Type I error rates of Q and the I2 confidence interval
for the g index suffered a drastic increase. Finally, when the
normality and homoscedasticity assumptions were not met,
the Type I error rates of Q and I2 confidence interval for the
d index maintained their proximity to the nominal � � .05,
whereas the performance of Q and I2 confidence interval for
the g index remained very poor (see Figure 5).

Statistical Power

The estimated power values were obtained when be-
tween-studies variance was higher than zero (�2 
 0). For
each condition, the power value was calculated by dividing
by 10,000 the number of replications in which the null
hypothesis was correctly rejected using the Q test or the
number of replications in which the zero value was not in
the confidence interval of I2.

Figure 6 shows the estimated power values when the

5 Because of space limitations, not all of the tables and figures
for all of the manipulated conditions are presented. Interested
readers can request the complete set of tables and figures from
Tania B. Huedo-Medina.

Figure 3. Type I error rates when normality and homogenous
variances for experimental and control groups are assumed as a
function of (a) the number of studies and (b) the sample size for the
Q statistic using the d index by Hedges and Olkin (1985; QH) and
using the g index by Glass (1976; QG), and for the confidence
interval of I2 using the d index by Hedges and Olkin (I2H) and
using the g index by Glass (I2G).
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normality and homoscedasticity assumptions were met as a
function of the number of studies and the between-studies
variance. As expected, the estimated power for all of the
procedures increased as the number of studies and the
between-studies variance increased. The results also
showed that the recommended 0.8 power value (Cohen,
1988) was reached only when there were 20 or more studies
and a large between-studies variance (�2 � 0.16). Similar
power results were obtained as a function of the average
sample size.

With normal distributions and heteroscedastic variances,
the power values for Q and I2 confidence interval showed
similar trends as a function of the number of studies: The

higher the number of studies, the higher the power (see
Figure 7). Although the trend was similar for all of the
procedures, Q and I2 confidence interval achieved a higher
power when the g index was used in comparison with the d
index. The better power obtained with the g index under
heterogeneous variances occurred because g uses the con-
trol group standard deviation, whereas the d index uses a
pooled standard deviation obtained from the experimental
and control groups. In our simulations, we assumed, as
Glass et al. (1981) suggested, control group standard devi-
ations smaller than those of the experimental groups. This
circumstance leads to higher heterogeneity among g indices
than among d indices. As a consequence, it is easier for Q
and I2 confidence interval to detect heterogeneity among g

Figure 4. Type I error rates when normality and heterogeneous
variances for experimental and control groups (experimental
group:control group ratio � 2:1) are assumed as a function of (a)
the number of studies and (b) the sample size for the Q statistic
using the d index by Hedges and Olkin (1985; QH) and using the
g index by Glass (1976; QG), and for the confidence interval of I2

using the d index by Hedges and Olkin (I2H) and using the g index
by Glass (I2G).

Figure 5. Type I error rates when nonnormality and heteroge-
neous variances for experimental and control groups are assumed
as a function of the levels of skewness and kurtosis using a
variance ratio of (a) experimental group:control group � 2:1 and
(b) experimental group:control group � 4:1 for the Q statistic
using the d index by Hedges and Olkin (1985; QH) and using the
g index by Glass (1976; QG), and for the confidence interval of I2

using the d index by Hedges and Olkin (I2H) and using the g index
by Glass (I2G).

Figure 7. Power values rates (�2 � 0.08) when normality and
heterogeneous variances for experimental and control groups are
assumed as a function of the number of studies when (a) experi-
mental group:control group ratio � 2:1 and (b) experimental
group:control group ratio � 4:1 for the Q statistic using the d index
by Hedges and Olkin (1985; QH) and using the g index by Glass
(1976; QG), and for the confidence interval of I2 using the d index
by Hedges and Olkin (I2H) and using the g index by Glass (I2G).

Figure 6. Power values rates when normality and homogenous
variances for experimental and control groups are assumed as a
function of the number of studies when (a) �2 � 0.04 and (b) �2 �
0.16 for the Q statistic using the d index by Hedges and Olkin
(1985; QH) and using the g index by Glass (1976; QG), and for the
confidence interval of I2 using the d index by Hedges and Olkin
(I2H) and using the g index by Glass (I2G).
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indices. Finally, similar power results were obtained when
the normality and homoscedasticity assumptions were not
met. As Figure 8 shows, Q and I2 confidence interval
achieved higher power values with the g index than with the
d index. However, the inflated Type I error rates obtained
with the g index implies an inappropriate performance of Q
and I2 confidence interval with this index.

Discussion

Traditionally, the Q test has been the normal procedure in
assessing the heterogeneity hypothesis in meta-analysis
(Cooper & Hedges, 1994). Recently, a new statistic named
I2, and a confidence interval around it, has been proposed to
estimate the extent of heterogeneity as well as its statistical
significance (Higgins & Thompson, 2002; Higgins et al.,
2003). Assessing heterogeneity in meta-analysis is a crucial
issue because the meta-analyst’s decision to select the sta-
tistical model to be applied in a meta-analysis (fixed- vs.
random-effects model) can be affected by the result of a
homogeneity test. Because of the importance of this issue,
the purpose of this article was to compare the performance
of two procedures, the Q test and I2 confidence interval, to
assess the heterogeneity among a set of single studies in a
meta-analysis. In particular, Type I error rates and statistical
power of the two procedures were examined by means of
Monte Carlo simulation as a function of the number of
studies, the average sample size, the between-studies vari-
ance, and the normality and homoscedasticity of the exper-
imental and control group distributions. On the other hand,
two different effect-size indices pertaining to the d family
were used to calculate the Q test and the I2 confidence
interval: d and g indices. A comparison between the Q test

and the I2 confidence interval has not yet been carried out.
Therefore, the results of our study cast some light on the
performance of both procedures in assessing heterogeneity
in a meta-analysis.

The results of the simulation study helped us reach sev-
eral conclusions related to our goals. With respect to the
control of Type I error rate, the performance of the Q test
and the I2 confidence interval was very similar. In fact, there
were more differences between the procedures based on d
and g indices than between the Q test and the I2 confidence
interval. In particular, with the d index, both procedures
achieved good control of the Type I error rate, whereas the
performance of the Q test and the I2 confidence interval
calculated with the g index was very poor. On the other
hand, Type I error rates for both procedures with the d index
were not affected by the number of studies and the average
sample size. However, the performance of the Q test and the
I2 confidence interval depends on the effect-size metric.
Therefore, confidence intervals around I2 obtained from
meta-analyses with different effect-size metrics should be
interpreted cautiously, because they may not be comparable.

With respect to statistical power, there were no notable
differences between the Q test and the I2 confidence inter-
val. As expected, both procedures exhibited higher power as
the number of studies, the average sample size, and the
between-studies variance increased. However, with a small
number of studies (k � 20) and/or average sample size (N �
80), the power was under the minimum advisable value 0.8.
In fact, both procedures calculated with the d index reached
power values as small as 0.3 in some conditions. Therefore,
the I2 confidence interval suffers the same problem as the Q
test in terms of statistical power.

On the other hand, the power of these procedures calcu-
lated with the g index was higher than that obtained with the
d index. However, the highest power for summaries of the
g index was achieved at the expense of an inadmissibly
large Type I error rate. Therefore, the performance of the Q
test and I2 confidence interval with the g index was poor. In
any case, the usefulness of our results for the g index should
be limited to real meta-analyses in which systematically the
variability in the experimental groups is higher than that of
the control groups; this only will happen when the imple-
mentation of a treatment produces an overdispersion of the
subject scores in comparison with the control group scores.
The poor Type I error performance of the Q test and the I2

index with g index under normality and homoscedasticity
raises various concerns, including the accuracy of the sam-
pling variance of this index. Our results also show a negli-
gible effect on the Type I error rates and statistical power of
the Q test and the I2 confidence interval with the d index
when the usual assumptions about the experimental and
control group distributions (normality and homoscedastic-
ity) are not met.

Figure 8. Power values rates when nonnormality and heteroge-
neous variances for experimental and control groups (experimental
group:control group ratio � 2:1) are assumed as a function of
levels of skewness and kurtosis when (a) �2 � 0.04 and (b) �2 �
0.16 for the Q statistic using the d index by Hedges and Olkin
(1985; QH) and using the g index by Glass (1976; QG), and for the
confidence interval of I2 using the d index by Hedges (I2H) and
using the g index by Glass (I2G).
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In summary, our findings show that the I2 confidence
interval performs in a similar way to the Q test from an
inferential point of view. But the I2 index has important
advantages with respect to the classical Q test. First, it is
easily interpretable because it is a percentage and does not
depend on the degrees of freedom. Another advantage is
that it provides a way of assessing the magnitude of the
heterogeneity in a meta-analysis, whereas the Q test reports
about the statistical significance of the homogeneity hypoth-
esis. On the other hand, the I2 confidence interval informs
about the accuracy of the true heterogeneity estimation.

In addition, the I2 index can be used to assess the degree
of misspecification error when a qualitative moderator vari-
able is tested. In particular, for every category of the mod-
erator variable, an I2 index can be calculated and their
values can be directly compared in order to determine which
categories show a good fit to the statistical model and which
ones do not. On the other hand, the I2 index can be useful to
compare the fitting of alternative models with different
moderator variables regardless of their degrees of freedom.
Future research in this area can help to ascertain the use-
fulness of the I2 index when the statistical model in a
meta-analysis includes moderator variables.

Some warnings for the use of the I2 index have to be taken
into account. The confidence interval around I2 used to
assess the homogeneity hypothesis in meta-analysis suffers
the same problems of low power that the Q test does when
the number of studies is small. The I2 confidence interval
does not solve the shortcomings of the Q test. Therefore,
using either the I2 confidence interval or the Q test to decide
on the statistical model (fixed- vs. random-effects model) in
a meta-analysis can be misleading. With a small number of
studies (k � 20), both the I2 confidence interval and the Q
test should be interpreted very cautiously.

As the I2 index and its confidence interval allow meta-
analysts to assess simultaneously both the statistical signif-
icance and the extent of heterogeneity, they can obtain a
more complete picture of heterogeneity than that offered by
the Q test. Therefore, we propose using I2 and its confidence
interval to assess heterogeneity in meta-analysis, although
taking into account its low statistical power when the num-
ber of studies is small.

On the other hand, our results comparing the d and g
indices have shown very different performances for the I2

confidence interval depending on the effect-size metric.
Under our manipulated conditions, the g index systemati-
cally showed an inappropriate control of the Type I error
rate and, therefore, using the Q test or the I2 confidence
interval with this index is unadvisable. However, the poor
performance that we have found for the Q test and the I2

confidence interval with the g index is only applicable when
the studies systematically present a higher variability in the
experimental group than in the control group. More research

should be carried out to study the comparability of the I2

index with other effect-size metrics, such as correlation
coefficients, odds ratios, and so on. Finally, it should be
noted that the results of our study are limited to the simu-
lated conditions. Consequently, additional research efforts
manipulating other factors, or examining different levels of
these factors, can help to assess the generalizability of our
findings.
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