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Abstract In meta-analysis, dependent effect sizes are very
common. An example is where in one or more studies the
effect of an intervention is evaluated on multiple outcome
variables for the same sample of participants. In this paper,
we evaluate a three-level meta-analytic model to account for
this kind of dependence, extending the simulation results of
Van den Noortgate, López-López, Marín-Martínez, and
Sánchez-Meca Behavior Research Methods, 45, 576–594
(2013) by allowing for a variation in the number of effect
sizes per study, in the between-study variance, in the correla-
tions between pairs of outcomes, and in the sample size of the
studies. At the same time, we explore the performance of the
approach if the outcomes used in a study can be regarded as a
random sample from a population of outcomes. We conclude
that although this approach is relatively simple and does not
require prior estimates of the sampling covariances between
effect sizes, it gives appropriate mean effect size estimates,
standard error estimates, and confidence interval coverage
proportions in a variety of realistic situations.
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Dependence

A complicating factor in meta-analysis is dependence in the
observed measures of association. Dependence is found in a
wide variety of applications and research areas, such as

described and illustrated by Jackson, Riley, and White
(2011). A common source of dependence is the occurrence
within studies of multiple observed measures of association
that are calculated using the same study sample. A studymight
for instance explore the effect of a therapy on two different
constructs, such as anxiety and depression, or might use two
different instruments to measure a specific construct (e.g., two
depression inventories). If two outcome variables are correlat-
ed, then so are the measures of association between the out-
comes and an independent variable. For instance, suppose that
the difference between a control group and an experimental
group is evaluated for two different but related outcomes
(outcome j and j’ respectively) bymeans of standardizedmean
differences (SMDs; dj and dj’), each equal to the difference in
sample means for both conditions, divided by the square root
of the pooled within group variance, sp. Gleser and Olkin
(1994) stated that the sampling variance of dj and the sampling
covariance between dj and dj’, are equal to

σ2
d j
≅
nE þ nC
nEnC

þ δ2j
2 nE þ nCð Þ ð1Þ

and

σd jd j0 ≅
nE þ nC
nEnC

ρ j j0 þ
δ jδ j0ρ2j j0

2 nE þ nCð Þ; ð2Þ

with nE and nC referring to the size of the experimental and
control groups, respectively, δ j and δ j0 to the population
SMDs estimated by dj and dj’, and ρ j j0 to the correlation

between the two outcome variables.
Equation 2 shows that if two outcome variables are posi-

tively correlated, the sampling covariance between the corre-
sponding SMDs is also positive. This means that if in a
specific sample for one outcome the observed SMD is larger
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than the population SMD, we can expect that the observed
SMD for the other outcome will also be larger than the
population SMD. It is important that this dependence is taken
into account when performing a meta-analysis, because ignor-
ing the dependence can result in biased statistical inferences
(Becker, 2000). More specifically, by treating effect sizes as
independent, we ignore the overlap in information that is
delivered by each of the observed effect sizes, resulting in
underestimated standard errors. As a consequence, confidence
intervals will be too small and the Type I error rate will be
inflated when estimating and testing the population effect size.
Becker (2000) therefore concludes that “No reviewer should
ever ignore dependence among study outcomes. Even the
most simplest ad hoc options are better than pretending such
dependence does not exist.” In a review of 56 meta-analyses
in the domain of education, Ahn, Ames, and Myers (2012)
found an average of 3.6 effects per studies. Only one meta-
analysis explicitly mentioned that dependence was not a prob-
lem. In 15 meta-analyses the potential issue of dependence
was not addressed. In the other meta-analyses, dependence
was dealt with in various ways.

One way to deal with the dependence is performing sepa-
rate meta-analyses for each type of outcome. A drawback of
this approach, however, is that in this way each meta-analysis
is done on only a part of the available data, making this
approach less efficient. For some outcomes the number of
studies might even be too small to yield meaningful results.
An often used alternative approach (which was used in 21 of
the 56 meta-analyses studied by Ahn et al., 2012) is to aggre-
gate the effect sizes within each study before combining the
results over studies. S.F. Cheung and Chan (2014) describe
how the effective sample size of the mean effect within each
study can be determined, accounting for the intercorrelation
between the effect sizes within the study. By aggregating
effect sizes, however, we lose information about differences
in the effect on different outcomes and as a result it might
become impossible to estimate and test moderator effects of
outcome characteristics. A combination of both approaches is
also possible: a separate meta-analysis is done for each type of
outcome, and multiple observed effect sizes for outcomes of
the same type are aggregated within studies, before being
meta-analyzed over studies. This combined approach was
used in about 14 % of the meta-analyses studied by Ahn
et al. (2012). Still another approach is to account for the
sampling covariance by using multivariate meta-analytic
models (see Kalaian & Raudenbush, 1996, and Raudenbush,
Becker, & Kalaian 1988, for a description, van Houwelingen,
Arends & Stijnen, 2002, and Arends, Voko & Stijnen, 2003,
for illustrations and Jackson et al., 2011, for an overview of
the state of the art), in which as in a univariate model the
precision of the estimates of the population effect sizes is
maximized by weighting the observed effect sizes by their
estimated precision. However, whereas in a univariate meta-

analysis these precision estimates are based on prior estimates
of the sampling variance for each observed effect size, in a
multivariate meta-analysis not only is the sampling variance
of the observed effect sizes taken into account, but also the
sampling covariances. An important advantage of the multi-
variate approach is that in the analysis, data from all outcomes
are used at the same time, which means that to estimate the
mean effect or the between-study variance for a specific
outcome, ‘strength is borrowed’ from observed effect sizes
for other outcomes, therefore resulting in more accurate effect
estimates or smaller standard errors (Jackson et al., 2011).
Unfortunately, whereas the sampling variance can easily
(and quite accurately) be estimated by replacing the popula-
tion effect size in Equation 1 by the observed effect size,
reliable information about the correlations between the out-
come variables is only rarely reported in primary studies, and
often researcher-designed measures are used to assess the
effect of an intervention, making it difficult to obtain a good
estimate of the sampling covariance (Scammacca, Roberts &
Stuebing, 2013). Whereas Ishak, Platt, Joseph, and Hanley
(2008) suggest that if the interest in a multivariate meta-
analysis is only on the treatment effects and not on the
between-study correlation between outcomes, ignoring the
within-study covariation will not distort the results, Riley
(2009) showed that this is not generally true and that ignoring
the correlations might increase the mean-square error and
standard error of the pooled estimates, as well as their bias
for non-ignorable missing data. Riley (2009) describes some
ways in which this problem could be tackled, for instance by
analyzing the raw data from the primary studies, by using
external data to narrow down the possible values for the
correlation coefficients or by performing sensitivity analyses
over the entire correlation range, but as noted by Scammacca
et al. (2013) performing sensitivity analyses can easily be-
come too laborious and time-consuming and even not feasible
if more than three outcomes are used. A lack of information
about these correlations is, in addition to the relative complex-
ity of the multivariate approach, an important reason why the
multivariate meta-analysis is not often used. For instance, the
multivariate approach was used in none of the 56 meta-
analyses that were studied by Ahn et al. (2012).

Besides the problem of the missing between-outcome cor-
relations, using a multivariate approach is less straightforward
if there is no consensus in the research area about the most
appropriate outcomes, and therefore studies do not report
results for more or less the same outcomes. When there is a
lot of variation between studies in the outcome variables,
using a multivariate model can easily become infeasible be-
cause of the large number of correlations that should be
‘known’ before doing the meta-analysis. As an example, let
us look at the meta-analysis of Geeraert, Van den Noortgate,
Grietens and Onghena (2004), combining the results of 39
studies evaluating the effect of early prevention programs for
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families with young children at risk for physical child abuse
and neglect. The authors found considerable variation in the
criteria that were used to evaluate the effect of the prevention
programs. This is not surprising, because child abuse and
neglect are very difficult to observe directly and there is no
single measure that can be regarded as a highly reliable
indicator of child abuse. More specifically, the authors found
that reported outcomes included direct reports of child abuse
or neglect by child protective services, as well as indirect
indications of child abuse and neglect such as reports of
hospitalization, the frequency of medical emergency service
visits, contacts with youth protection services and out-of-
home placements. A lot of studies also evaluated the reduction
of risk, looking at, for instance, the well-being of the child,
parent-child interaction characteristics, and social support.
Thirty-four studies out of thirty-nine calculated the effect for
more than one outcome variable. The total number of effect
sizes was 587. The number of effect sizes per study varied
from 1 to 52, with an average of about 15.

Hedges, Tipton and Johnson (2010) proposed the robust
variance estimation (RVE) approach. In this approach, the
dependence is not explicitly modelled, but instead the stan-
dard errors for the overall treatment effect or meta-regression
coefficients are adjusted. Although in the Hedges et al. ap-
proach a reasonable guess of the between outcome correlation
is needed to estimate the between-study variance and to ap-
proximate the optimal weights, results are shown to be influ-
enced only slightly by the choice of this value.

An alternative approach that does not require prior covari-
ance estimates is a three-level approach. This approach was
used by Geeraert et al. (2004), modeling the sampling varia-
tion for each effect size (level one), variation over outcomes
within a study (level two), and variation over studies (level
three). The basic model consists of three regression equations,
one for each level:

d jk ¼ β jk þ r jk with r jk∼N 0; σ2
r jk

� �
ð3Þ

β jk ¼ θ0k þ v jk with v jk∼N 0; σ2
v

� � ð4Þ

θ0k ¼ γ00 þ u0k with u0k∼N 0; σ2
u

� � ð5Þ

The equation at the first level, the sample level (Eq. 3),
states that djk, the j

th observed effect size ( j =1, 2,…, J ) from
study k (k =1, 2, …, K), is equal to the corresponding popu-
lation value βjk, plus a random deviation, rjk. The random
residuals are supposed to be normally distributed with zero
mean and a variance, σ2

r jk
, that might be study- and outcome-

dependent, and strongly depends on the size of the study. As in
a typical meta-analysis, this variance is estimated before

performing the three-level meta-analysis. For instance, the
sampling variance for the SMD can be estimated by replacing
the population effect size in Equation 1 by its observed coun-
terpart. The equation at the second level, the level of outcomes
(Eq. 4), states that the population effects for the different
outcomes within a study can be decomposed in a study mean
(θ0k) and random residuals (vjk), that are again assumed to be
normally distributed. At the third level, the study level (Eq. 5),
study mean effects are modeled as randomly varying around
an overall mean (g00). By substitution, we can write
Equations 3 to 5 in one single equation:

d jk ¼ g00 þ u0k þ v jk þ r jk ð6Þ

This three-level model is an extension of the random effects
model that is commonly used and promoted in meta-analysis
(Borenstein, Hedges, Higgins, & Rothstein, 2010):

dk ¼ g0 þ uk þ rk ð7Þ

Whereas in the traditional random effects meta-analytic
model (Eq. 7), observed effect sizes are regarded to vary due
to sampling variance (σ2rk ) and systematic between-study

variance (σu
2), the three-level model (Eq. 6) includes two kinds

of systematic variance: variance between studies (σu
2) and

variance between outcomes from the same study (σv
2).

In the sameway as the traditional random effects model can
be extended to a mixed effects model by including study
characteristics that possibly explain (part of) the between-
study variance, we can extend the three-level random effects
model to a three-level mixed effects model by including
characteristics of the outcomes (e.g., we could use two dum-
my variables to model a possible difference within studies
between direct reports of child abuse, indirect indications and
risk factors) as predictors at the outcome level (as will be done
below, see Eq. 10). Possible variation over studies of the new
coefficients at the outcome level can be described using addi-
tional equations at the study level. Study characteristics (e.g.,
the kind of prevention program that is evaluated) can be used
as predictors in the study level equations, in an attempt to
explain differences between studies.

Parameters that are estimated in a multilevel meta-analysis
are the regression coefficients of the highest level equations
(c.q., g00, interpreted as the mean effect), as well as the
variances at the second and higher levels (c.q., σv

2, the varia-
tion between outcomes within the same study, and σu

2 , the
variation over studies). Multilevel model parameters are typ-
ically estimated and tested using maximum likelihood estima-
tion procedures. Compared to the full maximum likelihood
procedure (ML), the restrictedmaximum likelihood procedure
(REML) decreases the bias in the variance component
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estimates, but will only yield valid results for the likelihood
ratio test when comparing nested models that have the same
fixed part. Therefore, only ifMLwas used, the likelihood ratio
test can be used for testing fixed parameters. For a more
elaborated description of the multilevel approach to meta-
analysis, we refer to Hox (2002), Raudenbush and Bryk
(2002), Van den Noortgate and Onghena (2003) and
Konstantopoulos (2011). M. W.-L.Cheung (2013) described
how the structural equation modelling framework can be used
to perform three-level analyses, which provides a flexible
approach for testing model constraints, for constructing
likelihood-based confidence intervals for the heterogeneity
variances and for handling missing data.

A crucial assumption in a multilevel model is that the
residuals at each level are independent from each other, from
residuals at other levels and from the regression coefficients
(Raudenbush & Bryk, 2002). As a result, the residuals from
the sample level equation (Eq. 3) – referring to the deviations
of the effect sizes of the multiple observed outcomes from the
corresponding population effects – are assumed to be inde-
pendently distributed, more specifically normally distributed
with an outcome- and study-specific variance. Therefore, the
sample level equation does not take into account a possible
sampling covariation that nevertheless can be expected if
multiple effects are estimated for the same sample. However,
the use of three-level models exactly aims at accounting for
covariation between outcomes: because the residuals at each
level are independent from each other, from residuals at other
levels and from the regression coefficients, it is easy to see that
the variance between studies reflects the covariance between
two effect sizes from the same study:

σd jkd j
0
k
¼ σ

γ00þu0kþv jkþr jkð Þ γ00þu0kþv
j
0
k
þr

j
0
k

� � ¼ σu0ku0k ¼ σ2
u ð8Þ

Proof is given in Appendix A. This equality can be
understood as follows: a large positive covariance be-
tween outcomes from the same study means that if in a
study a relatively large effect is observed also other ef-
fects in that study are expected to be relatively large,
resulting in a relatively large study mean. Covariation
between outcomes therefore results in small differences
within studies, but large differences between study means.
If on the contrary the effect of outcomes is independent of
the effect of other outcomes, this will result in differences
between effects within studies, but differences between
the study mean effects will be relatively small. Because
residuals at each level are regarded as independent, only
the third level variance component accounts for correla-
tion between outcomes within the same study.

Van den Noortgate, López-López, Marín-Martínez and
Sánchez-Meca (2013) showed using extensive simulation that
this variance component at the third level reflects the total

dependence between outcomes from the same study (both the
sampling covariance and the covariance between population
effects): the estimated between-study variance was on average
very close to the sum of the covariance between two outcomes
in population effects and the sampling covariance as calculated
using Equation 2. Therefore, although the three-level meta-
analysis does not require prior estimates of the sampling co-
variance, the sampling covariance is accounted for, resulting in
correct statistical inferences: standard errors were found unbi-
ased and confidence interval coverage proportions for the mean
effect estimate corresponded to their nominal levels.

However, because only one parameter, the variance at the
third level, refers to the covariance between effect sizes from
the same study, an underlying assumption of the three-level
model is that the covariance is the same for all pairs of
outcomes and for all studies. Yet, Equation 2 indicates that
the covariance depends on the size of the sample, as well as on
the correlation between the outcome variables, which is not
necessarily the same for all pairs of outcomes. A restriction of
the simulation study of Van den Noortgate et al. (2013) is that
simulated studies were of the same size and the covariance
between outcomes was the same for all pairs of outcomes.
Moreover, data were simulated making some additional strict
assumptions that often are not realistic in practice: in all meta-
analytic datasets, studies reported on the same number of
outcomes and the between-study variance was assumed equal
for all types of outcomes. The purpose of this article is
therefore to explore the performance of the three-level ap-
proach in more complex, but more realistic, situations.
Moreover, in this paper we will discuss the meta-analysis of
effect sizes, rather than on a multilevel analysis of raw data.

The focus of the paper therefore is on the use of a
three-level model to model the dependence within studies
that is due to measuring multiple outcomes in the same
study. we want to contribute to a better understanding of
this approach, as called for by M. W.-L. Cheung (2013)
and Scammacca et al. (2013). Other studies (Stevens &
Taylor 2009; Konstantopoulos, 2011) proposed three-level
models to account for dependence over studies, for in-
stance when studies are nested within research groups or
school districts. Stevens and Taylor (2009) proposed
methods to account for this dependence between studies,
combined with a specific kind of dependence in multiple
effect sizes from the same study –a kind that is also not
the focus of this paper-, dependence that occurs when
mean differences from independent groups are standard-
ized using a common within-group standard deviation
estimate. Another kind dependence occurs if effect sizes
compare multiple treatment groups with a common con-
trol group (see e.g., Scammacca et al., 2013, for a de-
scription of possible approaches in this scenario).

In the remainder of the paper, we first illustrate the three-
level approach by reanalyzing the Geeraert et al. (2004) meta-
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analytic data set. Next, we look at the setup and the results of a
simulation study. For all analyses and simulations, we used the
REML procedure implemented in SAS Proc Mixed (Littell,
Milliken, Stroup, Wolfinger, & Schabenberger, 2006). Codes
used for the example are given in Appendix B.

Example

The results in Table 1 show that using a three-level random
effects model (Eq. 6) for the child abuse and neglect data set
Geeraert et al. (2004) described above yields a mean effect
estimate equal to 0.23 with a standard error equal to 0.026.1

Using the RVE approach, the estimate of the overall effect
equals 0.26 with a standard error of 0.032.

If we would regard effect sizes as independent, as if each
observed effect size came from a separate study, the three-
level model reduces to an ordinary random effects model
(Eq. 9), with only one systematic variance component: where-
as in the three-level analysis we estimate the variance between
outcomes from the same study and the variance between
studies, in the ordinary random effects model we only estimate
the variance between all outcomes (regardless of the study
they stem from).

d jk ¼ g00 þ v jk þ r jk ð9Þ

Table 1 shows that by using this two-level model (Eq. 9),
we would obtain a somewhat smaller mean effect estimate of
0.20. As expected (Becker, 2000), ignoring the dependence
results in a much smaller standard error for this mean effect.

Geeraert et al. (2004) also investigated whether the effect
depends on the kind of outcome. Therefore, they defined two
dummy variables referring to the kind of outcome: X1jk is
equal to one if outcome j from study k refers to an indicator of
child abuse or neglect, zero otherwise; X2jk is equal to one if
outcome j from study k refers to a risk factor of child abuse or
neglect, zero otherwise. To estimate the mean effect for both
types of outcomes, both dummy variables are included as
predictors in the model and the intercept is dropped:

d jk ¼ g100X 1 jk þ g200X 2 jk þ u0k þ v jk þ r jk ð10Þ

An equivalent model is a model with an intercept but with
only the first (or second) dummy variable. In this case the
intercept could be interpreted as the expected effect for the
second (or first) outcome type, and the regression weight of

the dummy variable as the difference between the expected
effects for both kinds of outcomes.

Table 1 shows the parameter estimates of this three-level
mixed effects model without intercept (Eq. 10) as well as of
the corresponding two-level mixed effects model ignoring the
dependence (Eq. 11):

d jk ¼ g100X 1 jk þ g200X 2 jk þ v jk þ r jk ð11Þ

Figure 1 presents the confidence intervals for the overall
mean effects (Eqs. 6 and 9) and for the mean effects for both
types of outcomes (Eqs. 10 and 11). Although the estimate of
the mean effect for the second type of outcome is somewhat
larger than for the first type of outcome, the difference
between both types is statistically not significant, p = .58
and p = .48 for the two- and three-level models, respectively.
The relatively small difference between the two types of
outcomes is also illustrated by the fact that the variance
estimate at the outcome level did not (visibly) change by
including the type indicators in the model. The estimat-
ed percentage of estimated between-outcomes heteroge-

neity, R2
2ð Þ ¼ 100 � 1−bσ2u 1ð Þbσ2u 0ð Þ

� �
with bσ2

u 1ð Þ and bσ2
u 1ð Þ defined

as the between-outcomes variance estimates for the model
with and without the predictor, is zero. The variance at the
study level even increases with the inclusion of the predictor,
as sometimes happens in multilevel analyses while including
predictors. Because R2 is by definition positive, the resulting
negative estimate of the percentage explained variance at the
study level is truncated to zero (M.W.-L. Cheung, 2013).

Again the results illustrate that by considering effect sizes
as dependent, larger standard errors and confidence intervals
are obtained. Furthermore, the effect on the standard errors is
much more pronounced for the second category of outcomes
than for the first category. This can be explained by the fact
that studies typically reported only one or a few outcomes of
the first type (2.6 on average) but plenty of the second type
(12.5 on average).

In the example, the estimate of the variance between
studies (0.015) is relatively small compared to the esti-
mated variance between outcomes within studies (0.046)
and the sampling variance (the sampling variance de-
pends on the size of the study, with a median estimate
equal to 0.078). This means that for typical studies, the
total variance estimate in observed effect sizes is equal
to (0.078 +0.046 +0.015) =0.139, and that only about
11 % (0.015/0.139) of this total variance is variance between
studies. The variance between outcomes from the same study
is about 33 % of the total variance. These ratios are intraclass
correlation coefficients that are often calculated in multilevel
modelling (Raudenbush & Bryk, 2002), and correspond to the
measures I2(3) and I

2
(2) that are proposed by M.W.-L. Cheung

1 Three outlying standardized mean differences ( >2) were not included in
the analysis because of their substantial impact on the parameter esti-
mates, especially on the variance estimates. The analysis therefore is
based on 584 observed effect sizes from 39 studies.
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(2013) in order to extend the measure I2 commonly used in
two-level meta-analyses to express the proportion of variance
that is due to between study heterogeneity rather than to
sampling variance. Because the null hypothesis of the homo-
geneity test for three-level models is the same as for two-level
models, that is, the variance in observed effect sizes is due to
sampling variance alone, Cochran’s homogeneity test can be
used without any adaptation (M.W.-L. Cheung, 2013).
The test clearly shows that there is heterogeneity, Q =3196,
df =583, p < .0001. As explained above, the variance at the
study level can be interpreted as the overall covariance be-
tween outcomes. Dividing this covariance by the product of
the standard deviations of the outcomes therefore yields an
estimate of the between-outcome correlation. Assuming a
common variance for two outcomes, 0.015/0.139 =0.11 thus
refers to the correlation between a pair of outcomes. This
relatively small intraclass correlation (here the correlation
between outcomes within studies) also explains why in our
example ignoring the dependence in effect sizes only makes a
large difference if the number of outcomes per study is large.

Another interesting result is that in general the mean effect
estimates appeared to be larger when using the three-level
modeling approach. This is due to a small negative correlation
between the number of outcomes reported in the study and the
average observed effect size in the study: if a study reports
only a few outcomes, these reported effects are on average
somewhat larger. The correlation was equal to -.09 and -.24
for the two types of outcomes, respectively. A possible expla-
nation of this finding is reporting bias: in studies reporting the
results on only a few outcome variables authors might have
picked out the most remarkable findings, dropping the smaller
or statistically non-significant findings. This kind of reporting
bias will have a larger effect on the results if the dependence in
outcomes is taken into account (this is also true for other
approaches for dependent effect sizes), because in this case
individual effect sizes from studies reporting more effect sizes
are given relatively little weight.

Simulation study

To evaluate the three-level approach for estimating the overall
effect (over outcomes and studies), meta-analytic data sets
were generated in two steps. In a first step, we generated raw
data that could have been observed for a set of experimental
studies with a control and an experimental group and contin-
uous outcome variables. In the second step, the simulated raw
data from each study were used to calculate a standardized
mean difference, more specifically the difference between the
experimental group mean and the control group mean, divided
by the square root of the pooled within group variances. After
generating meta-analytic datasets with multiple observed ef-
fect sizes per study, meta-analyses were performed using a
two- and a three-level model, and results are compared.

Table 1 Parameter estimates (and standard errors) from the child abuse and neglect meta-analysis

Parameter Overall outcomes Accounting for outcome type

Three-level (Eq. 6) Two-level (Eq. 9) Three-level (Eq. 10) Two-level (Eq. 11)

Fixed coefficients

Overall mean g00 0.23 (0.026) 0.20 (0.013)

Child abuse and neglect indicators g100 0.20 (0.040) 0.18 (0.035)

Risk factors g200 0.23 (0.027) 0.20 (0.014)

Variance components

Between-study variance σu
2 0.015 0.016

(percentage of total variance) (11 %) (11 %)

Between-outcome variance σv
2 0.046 0.059 0.046 0.059

(percentage of total variance) (33 %) (43 %) (33 %) (43 %)

Median sampling variance σ2
r jk

0.078 0.078 0.078 0.078

(percentage of total variance) (56 %) (57 %) (56 %) (57 %)

Note: In all analyses, outlying values (observed effect sizes larger than 2) were excluded

Fig. 1 The 95 % confidence intervals for mean effect estimates for the
child abuse and neglect meta-analysis.Note: Equations 6 and 10 are three-
level models, Equations 9 and 11 two-level models. For Equations 9 and
10, the left confidence intervals refer to the mean effect on the child abuse
and neglect indicators, the right ones to the mean effect on the risk factors
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To simulate the raw data in the first step, we used a
multivariate two-level model, with a sample level and a
between-study level (Kalaian & Raudenbush, 1996). At the
first level, Yijk is the score for study participant i from study k
on outcome variable j ( j =1, 2, …, J ) and is regressed on a
treatment dummy variable, equalling 1 for a participant be-
longing to the treatment group, and 0 for a participant from the
control group.

Y i1k ¼ β1k Treatmentð Þik þ ei1k with eeN 0; Vð Þ
⋮

Y iJk ¼ β Jk Treatmentð Þik þ ei Jk

8><>: ð12Þ

The vector of residuals, e, is assumed to follow a
multivariate normal distribution with zero means, and a
J x J covariance matrix V. Therefore, the expected
value in study k for outcome j is equal to 0 if the
participant is measured in the control condition, and
βjk if the participant is measured in the treatment con-
dition. Because the interest in the meta-analysis is in the
treatment effect (expressed as the standardized differ-
ence between the treatment and control group means)
and not in the expected value in the control condition,
we did not include an intercept in the model used to
generate the data (otherwise stated, the intercept is equal
to zero). This is not a restriction of our simulation though,
because analyses will be done on standardized mean differ-
ences which are not affected by the value of the intercept. The
effect of the treatment for each outcome possibly varies over
studies. Therefore, we used an additional set of equations at
the second level, the study level:

β1k ¼ g10 þ w1k with wk eN 0;Ωwð Þ
⋮

β Jk ¼ g J0 þ wJk

8<: ð13Þ

in which gj0 ( j =1, 2, …, J ) refers to the mean
treatment effect for outcome j in the population of
studies, and wjk to the deviation of the treatment effect
in study k from this mean effect. As in the sample level
equation, the vector of residuals, wk, is assumed to follow a
multivariate normal distribution with zero means, and a J x J
covariance matrix Ωw.

In the second step of our data generation, data for each
outcome within each study were summarized using standard-
ized mean differences. The expected value of the standardized
mean difference for outcome j in study k is approximately
equal to the population standardizedmean difference, which is

equal to
β jk

σe
. The observed effect size nevertheless can deviate

from this population value because both the mean difference
and the residual standard deviation is estimated. A correction
factor was used to correct these standardized mean differences

for small-sample bias (Hedges, 1981): d ¼ 1− 3
4 nEþnCð Þ

�
−9Þ

YE−YC
sp

. These standardized mean differences were analyzed

using the three-level model described above (Eq. 6).
Data were generated under several conditions. We start by

describing the simulation of balanced data. We refer to these
conditions as the reference conditions, because after simulat-
ing and analyzing these balanced data, we relaxed one by one
the strict assumptions and compared the results with the
results for the balanced data. A summary of the conditions is
given in Table 2.

Reference conditions

We generated effect sizes for seven outcome variables in each
study (J =7). The number of studies (K) was equal to 30 or 60,
both group sizes within studies (n) equal to 25. The variance at
the first level of our multivariate model (this is σe

2) was equal
to 1 for all outcomes. We want to remark that using a single
value for the level 1 variance is not a real restriction, because
we study the meta-analysis of standardized effect sizes: if for a
study all scores are multiplied by two, both the difference in
mean and the level-1 standard deviation are multiplied by two,
but the standardized mean difference remains unchanged.
Therefore, we did not vary the level-1 variance over studies
or outcomes, only the standardized mean difference. Because
the choice of the value for the level-1 variance is trivial, we
chose to use a value of 1 for all outcomes, so that βjk of
Equation 12 can be interpreted as the population standardized
mean difference for outcome j in study k. We simulated data
sets without systematic heterogeneity between outcomes
(g10 =…= g70 =.40) and data with outcome-specific mean
effects (g10=.10; g20=.20; g30=.30; g40=.40; g50=.50;
g60=.60; g70=.70), values that were chosen to be representa-
tive for the small to large effects commonly found in empirical
behavioral research (Cohen, 1988). We further varied the
covariance between outcomes’ raw data at the sample level
(σe je j

0 = 0 or 0.40), having immediate implications for the

covariance between outcomes’ effect size data. Given that the
first-level variance is equal to 1 for all outcomes, the covari-
ance of 0.40 corresponds to a correlation of 0.40. In behavioral
research, such a correlation can be regarded as a relatively
large correlation, and therefore ensures that the simulated
dependence is large enough to make its possible effect on
inferences clearly visible. Equation 2 can be used to calculate
the corresponding sampling covariance of the observed treat-
ment effect sizes for two outcomes with mean effect 0.40.
These values are 0 and 0.032 respectively. If the mean effect
depends on the outcome, the effect size sampling covariance
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in case σe je j
0 = 0.40 for some pairs of outcomes can be

slightly different from 0.032. We also varied the covari-
ance in treatment effects between outcomes at the study
level (σw jkw j

0
k
= 0 or 0.04). A positive covariance means

that if in a study we find a relatively large effect for one
outcome, we also expect a relatively large effect for anoth-
er outcome (for instance because in this study the treat-
ment was relatively intensive). The between-study vari-
ance in effect sizes, σw

2 , was chosen to be 0.10. Given
that for studies with n =25 the sampling variance of
observed effect sizes is about 0.08 (Eq. 1), the resulting
ratio of the between-study variance and the sampling
variance is realistic and avoids that the effects of cor-
relation at either level become ignorable (Riley, 2009).
Covariances at both levels were defined to represent a null
versus a relatively large correlation in outcomes (covariances
correspond with correlation coefficients of 0 and0.40). Large
differences between the outcomes in the mean effects were
chosen to guarantee that the effect of outcome heterogeneity
on the results would be clearly visible.

These simulation conditions and analyses are similar to
those in our previous study (Van den Noortgate et al., 2013).
There are, however, differences in several aspects. First, the
number of outcomes (J =7) is larger than in our previous study
(J =2 or 5). Secondly, whereas in our previous study we
especially reported the results of the raw data analyses, in this
simulation study we only perform and report on effect size
analyses. Third, whereas the number of conditions is equal to
16, this is 2 (number of studies) ×2 (heterogeneity over
outcomes) ×2 (sampling covariance) ×2 (between-study co-
variance), in the previous simulation we varied more param-
eters, resulting in 432 conditions. We limited the number of
conditions in this paper, because the focus now is on the effect
of relaxing the strict assumptions underlying the reference
conditions.

Varying the number of outcomes per study

A first assumption in the reference conditions is that the
number of outcomes is exactly the same in each study. In
practice, however, the number of outcomes often varies over
studies, as was the case in the meta-analysis of Geeraert et al.
(2004). To investigate the effect of a varying number of
outcomes per study on the results of the three-level analysis,
we first simulated data sets in the same way as in the reference
conditions, and in a second step randomly deleted part of the
effect sizes. More specifically, each effect size had a probabil-
ity of0.50 to be deleted. In this way, each study consisted of a
random sample of size zero to seven outcomes from the fixed
set of seven outcomes, with an expected number of 3.5 out-
comes. If for a study none of the outcomes was retained, the
meta-analytic data set in practice did not include 30 or 60
studies anymore. However, this factor hardly affects our re-
sults because for each study the probability of not observing
any of the seven outcomes is very small and therefore the total
number of studies was always equal or close to 30 or 60.

Varying between-study variances

It is not unlikely that the between-study variance in the treat-
ment effect depends on the outcome.Whereas in the reference
conditions the between-study variance was equal to 0.10 for
all seven outcomes, in this extension we simulated data sets
where in each data set an outcome variable had an equal (one-
third) probability of having a between-study variance of
0.025, 0.10 or 0.40 (resulting in a mean variance of 0.175).
To this end, we multiplied the residuals wjk of Equation 13 for
a specific outcome (over all studies) with 0.5, 1 or 2. As a
consequence, the covariances at the second level also vary
(from 0.01 to 0.16 with an average of 0.07 ). With this
exception, data were simulated as in the reference conditions.

Table 2 Overview of the characteristics of the generated data

Sample Outcomes Studies

N σe
2

σe je j
0

J effects K σw
2

σw jkw j
0
k

Reference conditions 25 1 0 or 0.40 7 Homogeneous or heterogeneous fixed 30 or 60 0.10 0 or 0.04

Varying number of
outcomes

25 1 0 or 0.40 1 - 7 Homogeneous or heterogeneous fixed 30 or 60 0.10 0 or 0.04

Varying between-study
variance

25 1 0 or 0.40 7 Homogeneous or heterogeneous fixed 30 or 60 0.025, 0.10 & 0.40 0 or 0.04

Varying intercorrelations 25 1 0 or (0.20 & 0.80) 7 Homogeneous or heterogeneous fixed 30 or 60 0.10 0 or 0.04

Varying study sizes μ =25
σ =15.12

1 0 or 0.40 7 Homogeneous or heterogeneous fixed 30 or 60 0.10 0 or 0.04

Randomly sampled
outcomes

25 1 0 or 0.40 7 Homogeneous or heterogeneous random 30 or 60 0.10 0 or 0.04

Combination μ =25
σ =15.12

1 0 or (0.20 & 0.80) 1-7 Homogeneous or heterogeneous random 30 or 60 0.025, 0.10 & 0.40 0 or 0.04
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Varying intercorrelations

As explained above, the variance at the study level can be
interpreted as the covariance between outcomes. Because the
three-level model includes only one parameter for the
between-study variance, the three-level analysis implicitly
assumes that the intercorrelations are constant for all pairs of
outcomes. However, if two outcome variables refer to two
operationalizations of the same construct, the correlation is
likely to be larger than when two outcome variables refer to
two different constructs. We released the assumption of a
common correlation, and simulated data with the following
distribution for the sample level residuals:

eeN 0;Vð Þ with V ¼

1
:8 1
:8 :8 1
:8 :8 :8 1
:2 :2 :2 :2 1
:2 :2 :2 :2 :8 1
:2 :2 :2 :2 :8 :8 1

266666664

377777775:

ð14Þ

More specifically, we assumed two groups of outcomes (a
group of four outcomes and a group of three outcomes) with
high correlations within groups but small correlations between
groups.

Varying study sample sizes

In meta-analysis it is very uncommon that all studies have the
same sample size (Osburn & Callender, 1992). Studies with a
smaller size result in less precise effect sizes estimates, and
therefore are given less weight in the meta-analysis. An
interesting question therefore is how the three-level ap-
proach would perform if group sizes vary over studies.
To answer this question, we randomly sampled the
group size within studies using a lognormal distribution
as follows: n ~ (6+lnN(2.7,0.7)), and rounded the group
sizes afterwards to integer values. The distribution has an
expected value of 25 (and therefore results are comparable
with the other simulation results, for which we used group
sizes of 25 for all studies), has a standard deviation of 15.12, is
positively skewed (as is often the case in meta-analytic data
sets), and has a minimum value of 6. Subsequently, data were
simulated as in the reference conditions.

Randomly sampling outcomes

Until now, we assumed that each of the studies uses (a subset
of) the same seven outcome variables. A fixed set of outcomes
can for instance be plausible in biomedical studies in which
the systolic and diastolic blood pressure might be commonly

used criteria to evaluate some medication. In the example of
the meta-analysis of Geeraert et al. (2004), however, we saw
that there is not always consensus about the outcome variables
to be used, and each study may use its own idiosyncratic
measures. To simulate this situation, we assumed that in each
study seven outcome variables are used, but those variables
were randomly sampled from a population of possible out-
comes. More specifically, seven mean effects were sampled
for each study from a normal distribution, N(.40,.04). Because
as before the population effects of the studies are assumed to
randomly vary around the mean effects for the outcome var-
iables that are measured in that study, wjk~N(0,.10), and these
residuals are independent of the size of the mean outcome
effect, βjk~N(.40,.14). For the conditions without heterogene-
ity in outcome effects, we did not simulate and analyze new
data, because the situation is the same as in the reference
conditions for a common outcome effect.

Combination

In practice, a combination of these extensions can be expect-
ed. Therefore, we simulated data combining all these exten-
sions: for each study, we assumed a random sample of out-
come variables, the number of outcomes and the group sizes
varied over studies, and the between-study variance and the
intercorrelations varied over outcomes.

In sum, we explored the so called reference conditions and
six extensions. Each time we had 16 conditions (two study
sizes, two values for the within-study covariance, two values
for the between-study covariance, heterogeneity or no hetero-
geneity over outcomes). Only in the random sample extension
we did not generate new data for the no-heterogeneity case, as
explained above. Therefore, in total we have 104 conditions,
(6 ×16) + (1 ×8). For each combination, we simulated 1,000
meta-analytic data sets, 104,000 in total. Given the large
number of conditions, and given that we do not want to draw
conclusions about specific conditions, but rather about trends
over conditions, 1,000 datasets per condition can be regarded
as sufficiently large. Each data set was analyzed twice: using
the three-level model (Eq. 6) as well as using an ordinary
random effects model, ignoring the dependence in effect sizes
(Eq. 9). Compared to the three-level model, the model ignores
the highest level, the study level.

To evaluate the use of the two- and three-level model
approach, we will look at the estimates of the mean effect,
of the corresponding standard error, and of the variance com-
ponents. By definition, the standard error for the mean effect
parameter is equal to the standard deviation of the sampling
distribution of the mean effect estimator. Because in each
condition we have a relatively large number of data sets
(1,000), the standard deviation of the resulting 1,000 estimates
of the mean effect can be considered as a good approximation
of the standard deviation of the sampling distribution.
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Therefore, we will compare the mean (estimated) standard
errors with the standard deviation of the estimates of the mean
effect. A second way to evaluate the standard errors is to
investigate the coverage proportion of the confidence inter-
vals. For each condition we will calculate for each data set a
90 % and a 95 % confidence interval around the mean effect
estimate using the standard error estimates. We will evaluate
for each condition what proportion of the 1,000 confidence
intervals included the true overall mean effect (equal to 0.40
for all conditions). When confidence intervals are accurate,
this proportion should by definition be close to 0.90 or 0.95,
respectively.

Results of the Simulation Study

Because we found that the bias in estimating the mean effect
was relatively small in all conditions, in the remainder of the
article we will focus on the standard errors and variance
component estimates.

Reference conditions

The upper left part of Table 3 gives the mean variance esti-
mates for the balanced data, for the case where the mean
population effect is the same for all seven outcomes and the
number of studies is 30. Table 4 gives the variance estimates if
the number of studies is 60. The results show that if a tradi-
tional two-level meta-analytic model (ignoring the depen-
dence) is used, the estimated variance between outcomes
(around 0.09) is somewhat smaller than the between-study
variance for each outcome variable from the multivariate
model we used to generate the data (0.10). We found that if
the raw data are analyzed directly (results not shown here)
using a two-level model, the mean estimate of the between-
outcome variance is exactly equal to 0.10. This negative bias
in the estimate of the systematic variance when analyzing the
effect sizes is very similar to the bias observed in earlier
simulation studies for the meta-analysis of effect sizes for
the same size and number of studies. For an explanation of
this bias, we refer to Equation 1, expressing the sampling
variance of the standardized mean differences. The sampling
variance for each observed effect size is estimated by replac-
ing the unknown delta in the formula by the observed effect
size. As explained above, effect sizes with larger estimated
sampling variance are given less weight in the meta-analysis.
Because larger observed effect sizes that are further from zero
will receive smaller weights than relatively small observed
effect sizes, the variance will be underestimated. This is espe-
cially true when studies are relatively small (as in our simula-
tion study), because in this case observed effect sizes will vary

a lot and weights depend to a large extent on these observed
effect sizes.

If a three-level model is used, this variance is distributed
over the study level and the outcome (within-study) level.
Earlier we showed that in the three-level model, the variance
between studies can be interpreted as the covariation between
outcomes from the same study (Eq. 8). This is confirmed by
our simulation study: the estimated between-study variance is
on average close to the total covariance between two outcomes
from the same study, this is the covariance between two
outcomes in population effects, plus the sampling covariance

as calculated using Equation 2. More specifically, the expected

covariance is 0 (if σe je j
0 = 0 and σw jw j

0 = 0 ), 0.04 (if σe je j
0 = 0

and σw jw j
0 = 0.04), 0.032 (if σe je j

0 = 0.4 and σw jw j
0 = 0 ), or

0.072 (if σe je j
0 = 0.4 and σw jw j

0 = 0.04 ). The remainder of the

total variance is attributed to the outcome level within studies.
If the mean effect size depends on the outcome (upper right

part of Tables 3 and 4), the total variance is larger. More
specifically, the variance of the mean outcome effect values
used to simulate data (the variance of 0.10, 0.20, 0.30, 0.40,
0.50, 0.60, 0.70, which is equal to 0.04) is added to the total
variance: whereas previously the total estimated variance for
the two- and three-level model was around 0.09, the total
estimated variance now is around 0.13. For the three-level
model, we see that the between-study variance is slightly
decreased, but that the between-outcome variance is increased.

Despite the negative bias in variance estimates, mean stan-
dard errors of the three-level model are quite accurate: they
closely resemble the standard deviations of the mean effect
size estimates, as shown in the upper part of Table 5 (for
K =30) and Table 6 (for K =60). Only if the (mean) effect
depends on the outcome (upper right) and there is no correla-
tion between effect sizes at either level, the standard errors are
on average slightly too large: whereas the standard deviations
of the estimates are not affected by the heterogeneity of the
effects over outcomes, themean standard error is slightly larger.
As expected, the standard deviation (and standard error) is
getting larger with an increasing within-study covariance and
with an increasing between-study covariance between out-
comes. That the fluctuation in estimates is larger with an in-
creasing covariance, is because the higher the covariation, the
larger the overlap in information given by the observed effect
sizes, and therefore the smaller the information on the overall
effect size that is given by the set of observed effect sizes.

Regarding the two-level model, we found that the standard
deviations of the mean effect estimates are almost identical
compared to those of the three-level model. However, the
standard errors clearly are not affected by a possible correla-
tion between the outcomes. Therefore, standard errors were
found (more or less) appropriate only if there is no correlation
at either level, too small otherwise.
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The findings regarding the standard errors help us in un-
derstanding the coverage proportions (CP) of the 90 and 95 %
confidence intervals around the mean effect estimate. The
upper part of Table 7 (for K =30; very similar results were
found for K =60) shows that for the three-level model, the
CP is quite accurate in all cases, although somewhat too
large if effects are outcome-specific and if there is no
covariance at either level. For the traditional random
effects model, the two-level model, the CP is only
approximately equal to the nominal level if there is no
covariance at either level. If outcomes covary, the CP
can become much too small, with CPs for the 95 %
confidence intervals going down till 71 %.

Varying the number of outcomes per study

Comparing the first two blocks of Tables 3 and 4
reveals that if in studies only a subset of the seven
outcome variables is measured, variance parameter esti-
mates are hardly affected if K =30: the means of the
1,000 estimates for each combination are similar to
those of the reference conditions, especially when K =60.
Standard errors are however larger than in the reference con-
ditions (Tables 5 and 6), which can be explained by the
smaller total number of effect sizes that is used to estimate
the mean effect size: the expected number of effect
sizes per study equals 3.5 instead of 7. This effect is

Table 3 Variance estimates multiplied by 1,000 for the three- and two-level meta-analytic models (K =30)

Common effect Outcome-specific effect

Three-level Two-level Three-level Two-level

σe je j
0 σw jw j

0 bσ2
u bσ2

v bσ2
v bσ2

u bσ2
v bσ2

v

Reference conditions 0 0 0 89 91 0 128 129

0.04 38 54 91 31 98 129

0.4 0 30 60 90 24 105 129

0.04 69 23 90 62 68 130

Varying number of outcomes 0 0 1 85 90 0 128 130

0.04 34 53 90 26 102 130

0.4 0 27 58 86 22 106 131

0.04 68 21 87 59 70 131

Varying between-study variance 0 0 0 140 144 0 178 180

0.04 44 97 140 40 144 181

0.4 0 31 111 143 24 157 183

0.04 76 65 142 70 111 179

Varying intercorrelations 0 0 0 89 91 0 128 129

0.04 38 54 91 31 98 129

0.46 0 34 57 92 28 101 129

0.04 71 19 89 66 63 127

Varying study sizes 0 0 0 89 91 0 128 129

0.04 37 54 92 31 98 129

0.4 0 34 61 90 28 104 129

0.04 71 26 87 66 67 126

Randomly sampled outcomes 0 0 0 89 91 2 124 129

0.04 38 54 91 41 89 129

0.4 0 30 60 90 32 97 128

0.04 69 23 90 72 59 128

Combination 0 0 0 149 155 0 186 196

0.04 48 108 154 48 142 193

0.46 0 38 118 155 39 156 195

0.04 88 70 152 90 107 191

Note: σe je j
0 = level 1 (within-study) covariance between outcomes’ raw data; σw jw j

0 = level 2 (between-study) covariance between outcomes’ treatment

effects (as defined in the multivariate model, Equations 12-13), bσ2
u = between-study variance estimate of the three-level model (Eq. 6) and bσ2

v the
between-outcome variance estimate of the three-level model (Eq. 6) and two-level model (Eq. 9)
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especially clear when there is no correlation between
outcomes, because in this case each effect size gives
information that does not overlap with information giv-
en by the other effect sizes of the study. Table 7 shows
similar CPs as those for the reference conditions.
Although the two-level model still yields unacceptable
CPs, it performs better than in the reference condition.
This can again be explained by the decreased expected
number of outcomes per study: the more effect sizes are
reported per study, the more problematic is the ignorance of
the overlap in information.

Varying between-study variances

Tables 3 and 4 reveal that if the effect is common to all seven
outcome variables, the total variance is larger than in the
reference conditions, more specifically between 0.140 and
1.50. This is not unexpected because now the values for the
between-study variance that were used to generate the data are
on average equal to 0.175 rather than 0.100. This also means
we observe again a negative bias in the total variance estimate.
This variance is again split into two parts when using a three-
level model. The part that is going to the study level is zero if

Table 4 Variance estimates multiplied by 1,000 for the three- and two-level meta-analytic models (K =60)

Common effect Outcome-specific effect

Three-level Two-level Three-level Two-level

σe je j
0 σw jw j

0 bσ2
u bσ2

v bσ2
v bσ2

u bσ2
v bσ2

v

Reference conditions 0 0 0 91 93 0 130 131

0.04 37 54 91 31 100 132

0.4 0 30 61 91 24 106 130

0.04 68 23 90 61 68 129

Varying number of outcomes 0 0 0 89 93 0 129 130

0.04 37 53 90 30 101 132

0.4 0 30 60 91 23 109 133

0.04 68 22 90 59 70 131

Varying between-study variance 0 0 0 149 152 0 191 192

0.04 48 103 149 41 149 189

0.4 0 30 122 153 23 168 192

0.04 77 71 149 71 118 189

Varying intercorrelations 0 0 0 91 93 0 130 131

0.04 37 54 91 31 100 132

0.46 0 35 57 91 29 101 129

0.04 74 18 91 68 63 130

Varying study sizes 0 0 0 89 91 0 129 129

0.04 38 54 91 31 97 128

0.4 0 34 62 90 27 105 128

0.04 73 27 90 65 68 127

Randomly sampled outcomes 0 0 0 91 93 0 129 131

0.04 37 54 91 38 92 130

0.4 0 30 61 91 30 99 130

0.04 68 23 90 68 61 128

Combination 0 0 0 152 157 0 190 196

0.04 49 105 154 49 145 196

0.46 0 37 121 157 38 159 196

0.04 87 71 153 89 109 195

Note: σe je j
0 = level 1 (within-study) covariance between outcomes’ raw data; σw jw j

0 = level 2 (between-study) covariance between outcomes’ treatment

effects (as defined in the multivariate model, Equations 12-13), bσ2
u = between-study variance estimate of the three-level model (Eq. 6) and bσ2

v the
between-outcome variance estimate of the three-level model (Eq. 6) and two-level model (Eq. 9)
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there is no correlation between outcomes at either level, and is
augmented with almost 0.032 if the within-study covariance is
equal to 0.40. Although we would expect an increase of this
variance with 0.04 if σw jw j

0 = 0.04, we found on average a

slightly larger increase (about 0.045). For the outcome-
specific case, the pattern is as expected, with the total variance
being about 0.04 points higher than for the common-effect
case.

The pattern for the standard errors (Tables 5 and 6) is very
similar to the one for the reference conditions, with the ex-
ception that the standard errors are slightly larger, referring to

the increased uncertainty due to the larger (mean) between-
study variance. CPs are very similar to those of the reference
conditions (Table 7).

Varying intercorrelations

In the sampling covariance matrix given in Equation 14,
the covariance between nine pairs of outcomes is 0.80,
for twelve pairs the covariance is 0.20. On average, the
covariance therefore is equal to 0.46. Extrapolating the
effect of the sampling covariance that we found in the

Table 5 Mean standard error estimate (SE) multiplied by 1,000 for the mean effect estimate and standard deviation (STDEV) of the mean effect
estimates (K =30)

Common effect Outcome-specific effect

Three-level Two-level Three-level Two-level

σe je j
0 σw jw j

0 SE STDEV SE STDEV SE STDEV SE STDEV

Reference conditions 0 0 30 28 29 28 32 28 32 28

0.04 44 43 29 43 44 43 32 43

0.4 0 41 43 29 43 41 42 32 42

0.04 53 54 29 54 53 52 32 52

Varying number of outcomes 0 0 41 37 40 37 45 38 44 38

0.04 50 51 40 52 51 52 44 52

0.4 0 47 46 39 46 50 46 44 47

0.04 57 55 39 57 60 55 44 57

Varying between-study variance 0 0 34 33 33 33 36 34 35 34

0.04 48 51 33 51 49 50 36 50

0.4 0 44 44 33 44 44 45 36 45

0.04 57 57 33 57 57 56 35 56

Varying intercorrelations 0 0 30 28 29 28 32 28 32 28

0.04 44 43 29 43 44 43 32 43

0.46 0 43 44 29 44 43 43 32 43

0.04 54 53 29 53 54 54 32 54

Varying study sizes 0 0 31 30 30 30 33 29 33 29

0.04 45 44 30 44 44 43 33 43

0.4 0 44 42 30 41 43 43 33 42

0.04 55 57 30 56 55 55 33 55

Randomly sampled outcomes 0 0 30 28 29 28 33 33 32 33

0.04 44 43 29 43 46 48 32 48

0.4 0 41 43 29 43 44 44 32 44

0.04 53 54 29 54 55 55 32 55

Combination 0 0 50 48 48 48 54 51 52 50

0.04 60 60 48 60 63 62 52 63

0.46 0 58 60 48 60 62 61 52 61

0.04 68 67 48 68 71 70 51 71

Note: σe je j
0 = level 1 (within-study) covariance between outcomes’ raw data; σw jw j

0 = level 2 (between-study) covariance between outcomes’ treatment

effects (as defined in the multivariate model, Eqs. 12 and 13)
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reference conditions to a value of 0.46 would give
almost identical results as those found for the conditions
with these varying intercorrelations (Tables 3 and 4).
We conclude that the between-study variance estimate
of the three-level model refers to the mean covariance
between outcomes. The same is true for the standard errors.
Tables 5 and 6 reveal that the standard errors for the three-
level model are equally appropriate for the conditions with a
varying within-study covariance as compared to the condi-
tions with a common covariance.

As a result, also the CPs are very similar (Table 7).
We conclude that the three-level model is still appropri-
ate when the correlations between outcomes are not
constant.

Varying study sizes

Variance estimates are very similar if the size of the study
varies over studies as compared to the reference conditions
with a common study size (Tables 3 and 4). Standard errors
are in general only slightly higher, but still closely match the
standard deviation of the estimates for the three-level model
(Tables 5 and 6). Also the CPs are hardly affected when study
sizes are variable rather than constant over studies (Table 7).

Randomly sampling outcomes

The total variance for the heterogeneous case is underestimated
to the same degree as in the reference conditions. The

Table 6 Mean standard error estimate (SE) multiplied by 1,000 for the mean effect estimate and standard deviation (STDEV) of the mean effect
estimates (K =60)

Common effect Outcome-specific effect

Three-level Two-level Three-level Two-level

σe je j
0 σw jw j

0 SE STDEV SE STDEV SE STDEV SE STDEV

Reference conditions 0 0 21 20 20 20 23 20 23 20

0.04 31 31 20 31 31 31 23 31

0.4 0 29 28 20 28 29 29 23 29

0.04 37 37 20 37 37 36 22 36

Varying number of outcomes 0 0 30 29 29 29 32 29 32 29

0.04 36 36 29 36 38 37 32 37

0.4 0 35 35 29 35 37 35 32 35

0.04 41 42 29 43 42 41 32 42

Varying between-study variance 0 0 24 24 24 24 26 24 26 24

0.04 35 35 24 35 35 36 26 36

0.4 0 32 32 24 32 31 31 26 31

0.04 41 43 24 43 41 43 26 43

Varying intercorrelations 0 0 21 20 20 20 23 20 23 20

0.04 31 31 20 31 31 31 23 31

0.46 0 30 30 20 30 30 30 23 30

0.04 38 39 20 39 38 38 23 38

Varying study sizes 0 0 22 21 21 21 23 20 23 20

0.04 32 31 21 32 31 31 23 31

0.4 0 31 32 21 31 31 31 23 31

0.04 39 40 21 40 38 39 23 39

Randomly sampled outcomes 0 0 21 20 20 20 23 23 23 23

0.04 31 31 20 31 32 32 23 32

0.4 0 29 28 20 28 31 30 23 30

0.04 37 37 20 37 38 39 22 39

Combination 0 0 36 34 35 34 38 38 37 37

0.04 43 41 35 42 46 46 37 46

0.46 0 42 43 35 43 44 44 37 45

0.04 49 48 35 49 51 51 37 52

Note: σe je j
0 = level 1 (within-study) covariance between outcomes’ raw data; σw jw j

0 = level 2 (between-study) covariance between outcomes’ treatment

effects (as defined in the multivariate model, Eqs. 12 and 13)
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between-study variance is, however, slightly larger,
and the between-outcome variance therefore is slight-
ly smaller (Tables 3 and 4). This means that accord-
ing to the results, the outcomes are slightly more
correlated.

Compared to the reference conditions, the standard
errors are very slightly higher. The major finding, how-
ever, is that the standard deviation of the estimates is
now somewhat larger, especially if outcomes are not
related. Mean standard errors now are almost identical
to the standard deviations for all conditions. Hence, CPs
for the three-level model are very close to the nominal
levels (Table 7).

Combination

In this last set of conditions, we relax all the assumptions at the
same time. Differences with the reference conditions in the
variance estimates (Tables 3 and 4) can be explained by
combining the effects of each of the extensions separately.
For instance, because the mean between-study variance is
larger, the total variance for both the two-level and the three-
level model is larger. Also the results for the standard errors
(Tables 5 and 6) are as expected, with larger standard errors
because of the larger mean between-study variance and the
smaller number of observed effect sizes. Especially important
is the finding that, as in the random sampling extension, the

Table 7 Coverage percentages of the 90 % and 95 % confidence intervals for the three- and two-level meta-analytic models (K =30)

Common effect Outcome-specific effect

Three-level Two-level Three-level Two-level

σe je j
0 σw jw j

0 90% 95% 90% 95% 90% 95% 90% 95%

Reference conditions 0 0 91 96 89 95 95 97 93 96

0.04 91 95 75 83 90 95 80 85

0.4 0 89 93 72 80 90 94 78 84

0.04 90 96 62 71 90 96 69 77

Varying number of outcomes 0 0 94 98 93 97 96 99 96 98

0.04 90 95 79 88 90 95 84 90

0.4 0 91 95 83 90 93 96 88 93

0.04 90 94 74 82 91 96 79 88

Varying between-study variance 0 0 92 96 91 94 92 96 91 95

0.04 88 94 70 79 90 94 78 85

0.4 0 90 94 78 87 89 94 81 88

0.04 91 96 65 74 92 96 70 79

Varying intercorrelations 0 0 91 96 89 95 95 97 93 96

0.04 91 95 75 83 90 95 80 85

0.46 0 89 95 71 80 89 95 76 84

0.04 90 95 61 69 90 95 66 74

Varying study sizes 0 0 91 96 88 94 95 98 93 98

0.04 90 95 72 81 91 95 79 87

0.4 0 91 96 77 85 90 95 80 86

0.04 87 94 60 68 88 95 66 75

Randomly sampled outcomes 0 0 91 96 89 95 89 95 86 92

0.04 91 95 75 83 90 95 70 78

0.4 0 89 93 72 80 91 96 78 86

0.04 90 96 62 71 89 95 64 71

Combination 0 0 92 97 89 95 92 97 90 95

0.04 90 95 82 88 90 95 82 88

0.46 0 89 94 81 87 89 95 84 89

0.04 90 95 75 83 90 96 75 84

Note: σe je j
0 = level 1 (within-study) covariance between outcomes’ raw data; σw jw j

0 = level 2 (between-study) covariance between outcomes’ treatment

effects (as defined in the multivariate model, Equations 12-13). The standard error of the percentages in the cells is about 0.7 % for the 95% CIs, and 0.9
% for the 90 % CIs
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standard errors of the three-level model are very accurate in all
conditions. As a result, CPs are accurate for the three-level
model for all conditions (Table 7). For the traditional two-level
model, standard errors and CPs are again only accurate if there
is no covariance at either level.

Conclusions

In this paper, we evaluated the performance of a three-level
approach to account for the dependence between multiple
effect sizes within studies. The use of a three-level model to
account for the sampling covariance between multiple
outcomes per study is an appealing approach, as illus-
trated by Geeraert et al. (2004) in a real data meta-
analysis. Probably the most important advantage of the
multilevel approach for dealing with dependent effect
sizes is that it does not require ‘known’ (or previously
estimated) sampling covariances before performing the
meta-analysis, as is required in a multivariate analysis.
This is a major help to meta-analysts because informa-
tion about the covariance between outcomes is only rarely
reported in the primary studies or in other literature, especially
if outcome variables are not measured using very common
and well known scales.

Another advantage of the use of a three-level model is that
it is a very flexible model that can be extended for instance by
including characteristics of outcomes and studies as predic-
tors, possibly explaining (part) of the variance at the outcome
and study level. For instance, if a meta-analyst is not satisfied
bymerely estimating the overall effect and the variation in and
over studies, but also wants an estimate of the mean effect for
each separate outcome variable, the outcome level equation
(Equation 4) of the three-level model can be adapted by
dropping the intercept and regressing the observed effect sizes
on a set of dummy variables, one for each type of outcome.
The coefficients of these dummy variables then refer to the
population effects for the separate outcomes. In our simula-
tions, we found accurate standard errors and confidence pro-
portions for models including dummy outcome indicators (not
discussed or shown in this paper) for all extensions with the
fixed set of seven outcomes. Although including a dummy
variable for each outcome does not make sense if each study
uses its own (random set of) outcomes, it might be possible to
divide outcomes in broad categories, and including outcome
category dummy variables in the model to obtain estimates of
the mean effect for each outcome type, as was done in the
example. Besides exploring differences between (types of)
outcomes in the overall effect, interaction terms of the dummy
variables and potential moderator variables can be included in
the model to investigate differential moderator effects. By
allowing the coefficients of dummy indicators for types of
outcomes vary randomly at the second or third level, it is

possible tomodel scenarios where the variance and covariance
of effect sizes depend on the type of outcome. The multilevel
approach can also be used to model other dependencies at the
same time, for example, by defining an additional upper level
of research team or countries that group the studies
(Konstantopoulos, 2011).

The use of a three-level model does not require that the
number of effect sizes is the same for all studies. It does not
even require that all studies report more than one effect size. In
this way, the multilevel meta-analysis makes efficient use of
all available effect sizes. If at least one study reports more than
one effect size, we can disentangle the between-study and
between-outcome variance, but the accuracy of the between-
outcome variance will depend on the average number of
observed effect sizes per study (Maas & Hox, 2005),
and a small total number of outcomes can result in
unstable and even negative variance estimates at level
2 and level 3. In our previous simulation study (Van
den Noortgate et al., 2013), we found that the three-level
approach works well with only two outcomes per study, but
more research is needed on the situation where most studies
only report one effect size.

Moreover, all analyses can straightforwardly be performed
using statistical software such as SAS or R (using the
metaSEM package of M.W.-L. Cheung, 2013), or using mul-
tilevel software such as MLwiN or HLM, without requiring
additional calculations. Excellent handbooks about multilevel
analysis, including a discussion of multilevel meta-analysis,
are available (e.g., Hox, 2002; Raudenbush & Bryk, 2002).

There are, however, limitations of the three-level approach,
that are due to considering outcomes within a study as a
random sample of possible outcomes, in the same way as in
an ordinary random effects meta-analysis studies are regarded
as a random sample of studies. A first limitation is that
because conclusions are drawn on the population of outcomes
rather than on the individual outcomes, the three-level model
is especially appropriate in the (common) case where the
meta-analyst is not primarily interested in the individual out-
come and study effects, but rather aims at generalizing the
results to a population of effects.

A second limitation of the three-level approach compared
to the multivariate approach, is that it will not allow us to
obtain joint confidence intervals for two outcomes, or to
estimate the (between-study) correlation between a pair of
outcomes, while this correlation might be of major interest
in some applications (such as for estimating the trade off of
specificity and sensitivity in a diagnostic test meta-analysis;
Jackson et al., 2011).

A third limitation of the use of a three-level approach to
estimate the average effect size, is that if a specific (type of)
outcome is reported more frequently, this outcome will also
have more weight in the estimation of the mean effect.
Moreover, if some studies will report the observed effects
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for outcomes for which the population effect is relatively
small, while other studies will rather report results for out-
comes with large effects, this will increase the between-study
variance rather than the between-outcome variance. The three-
level model indeed assumes that the outcomes reported in a
study form a random sample from a population of outcomes.

A fourth limitation is that although the three-level model is
intuitively appealing (more specifically the idea that there is
not only variation between studies, but also between multiple
effects within studies), the model is more complex than the
model we would use for separate univariate meta-analyses.
Moreover, the interpretation of the parameters is not straight-
forward. The variance at the study level does not refer to the
total between-study variance for a given outcome (as in a
univariate or multivariate meta-analysis). Rather, it refers to
the between-study variance in the mean effect over outcomes.
The less outcomes covary, the larger the between-study
variance for given outcomes will result in differences
between multiple effect sizes within studies, so the
larger the variance will be at the outcome level. We have
shown that the between-study variance in the study mean
effects is equal to the covariance between effects observed
within the same study.

Finally, the three-level model makes some assumptions
that might be difficult to assess. The model assumes that
outcome and study effects can be regarded as a random
sample from a population of effects, or from a Bayesian
perspective that effects are exchangeable, possibly conditional
on the effects of covariates (Higgins, Thompson, &
Spiegelhalter, 2009; Raudenbush, 2009). This assumption
might be violated for instance due to reporting or publication
bias. In our example, we found a negative correlation over
studies between the number of outcomes reported and the
mean effect, suggesting the existence of reporting bias.
Furthermore, a normal distribution is assumed for the
residuals at each of the levels. Raudenbush and Bryk (2002)
show how the normality assumptions about these population
distributions could be checked. If the normality assumption
cannot be made, nonparametric estimation procedures could
be used, such as the error bootstrap in which bootstrap sam-
ples are obtained by sampling from the estimated residuals at
each of the levels, or the cases bootstrap in which studies and
outcomes within studies are sampled together with the
corresponding values for the dependent and independent
variables (see Van den Noortgate & Onghena, 2005, for
a description of these and other bootstrap procedures for
meta-analysis). Another assumption is that the outcomes
have a common between-study variance and that the
between-outcome covariance is the same for each pair
of outcomes. These are strong assumptions, but our
simulation study suggests that the approach is relatively
robust for a violation of these assumptions. Moreover,
as mentioned above, it is possible to define different

variance parameters at the second and third level of the
three-level model for different kinds of outcomes, but
this approach has not been studied in this study.

An important conclusion of the simulation study is that the
traditional random effects meta-analytic model, which is
equivalent to a two-level model, performs poorly unless the
multiple effect sizes from the same study are truly indepen-
dent. By ignoring the dependence in effect sizes, the two-level
model can result in too small standard errors, and therefore in
(largely) deflated coverage proportions of the confidence in-
tervals. We conclude that if there are multiple outcomes per
study, it is important to account for a possible dependence in
the effect sizes.

Results of our simulation study further show that the three-
level model performs as hoped for: standard errors for the
mean effect estimate are relatively accurate, as well as the
coverage proportions of the 90 % and 95 % confidence
intervals. Regarding the variance estimates, we found that
the total variance in effect sizes is divided over the outcome
and the study level, according to the principle that the variance
at the study level reflects the covariation between multiple
outcomes from the same study. We see, however, that for the
analysis of standardized mean differences, the total variance is
somewhat underestimated. This negative bias can be ex-
plained by the dependence of the weights on the (observed)
effect size, resulting in a downweighting of large effect sizes.
This negative bias was also observed by Van den Noortgate
and Onghena (2005), who described parametric and nonpara-
metric bootstrap procedures that can be used to correct for this
and other biases in parameter estimates. This bias depends on
the effect size metric that is used. For instance, the negative
bias was not observed by Van den Noortgate and Onghena
(2003), who simulated theoretical effect size values directly
from a normal sampling distribution with a variance that does
not depend on the size of the effect.

These patterns are observed for each of the situations
discussed in the paper. More specifically, we found similar
results if the number of outcomes vary over studies, if the
between-study variance depends on the outcome, if correla-
tions vary over pairs of outcomes, if each study measures an
own set of outcomes randomly drawn from a population of
outcomes, or if all these five extensions are combined.
Standard errors are quite accurate in all conditions, as well
as the coverage proportions of the confidence intervals.
Interestingly, whereas we found in the reference conditions
that the standard errors for the mean effect are slightly
overestimated when the effect varies over outcomes and out-
comes are independent, this small positive bias disappears
when not a common set of outcomes is measured in each
study, but rather each study uses its own set of outcomes from
a population of outcomes. The meta-analysis of Geeraert et al.
(2004) about early prevention programs for child abuse and
neglect resembles this situation: the authors found that there
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was no consistency in the outcome variables used in the
primary studies because child abuse and neglect is very diffi-
cult to observe directly. In other domains, there might be more
consistency in the outcomes used. For instance, Rosa-Alcázar,
Sánchez-Meca, Gómez-Conesa, and Marín-Martínez (2008),
investigating the effect of psychological treatment of
obsessive compulsive disorder, found that primary stud-
ies often looked at the same four types of outcome:
obsessions and compulsions, general anxiety, depression
and social adjustment, although they found that some
studies also reported results for one or more other
outcome variables. Whereas our simulation results suggest
that standard errors might be slightly conservative if we have a
common set of outcomes, and highly accurate if each study
uses its own set of outcomes, real meta-analyses are typically
situated in between.

Several limitations of the simulation study have to be
mentioned. A first limitation is that results in principle
are restricted to the conditions of the simulation design.
For instance, the performance of the three-level might
be different for smaller or larger data sets than the ones
we simulated, or for other parameter values. Although
we found similar results if we consider two groups of
outcomes with high covariation within groups and small
covariance between groups instead of a common covari-
ance between each pair of outcomes, this does not
imply that the results would be similar for other kinds
of covariance structures as well. Our simulation study
further focused on standardized mean differences.
Findings for other kinds of effect sizes might be some-
what different; we expect for instance that the negative-
ly biased total variance estimates is to a large extent
due to using a standardized mean difference, as ex-
plained before. Still, we tried to simulate data for a
variety of situations, and found that the patterns were
similar in each of these situations, suggesting that re-
sults might be generalized to a certain extent. Moreover,
results are in line with the results of another simulation
study of Van den Noortgate et al. (2013), who investi-
gated many more conditions. Another limitation of the
simulation study is that data were simulated from nor-
mal distributions, therefore not violating the normality
assumption that is made when using maximum likeli-
hood estimation procedures. Finally, in our simulation
study, we focused on an empty model, this is a model
without predictor variables.

We conclude that if there are multiple outcomes per
study, it is important to account for a possible depen-
dence in the effect sizes. The three-level approach has
been proven to be an appealing and reliable approach in
a variety of situations, although further research is
needed to assess the robustness of the approach in other
situations, for instance in situations where in some

studies multiple outcomes are measured in a single
sample whereas in other studies outcomes are measured
in independent samples, where the correlations between
outcomes vary over studies, or where data are highly
unbalanced, for instance when the large majority of
studies report only one effect size whereas a few studies
report many effect sizes. We are currently executing addi-
tional simulation studies to compare the performance of the
three-level approach and the RVE approach, also for testing
the effect of moderator variables.
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Appendix A: Proof that the variance at the study level
is the covariance

Suppose that two observed effect sizes, djk and dj’k, stem from
the same study, study k. According to Equation 6, djk=g00+
u0k+vjk+rjk and dj 'k=g00+u0k+vj 'k+rj 'k

Therefore,
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0
k
¼ σ
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Because g00 is a constant, and adding a constant to one or

both random variables does not affect their covariance, this
covariance equals:
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The covariance between two linear combinations is de-

scribed by Mood, Graybill and Boes (1974, p. 179):
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Hence:
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0
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0
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þ σu0ku0k

Because in a multilevel model two residuals at the same
level are assumed to be independent, as are residuals at two
different levels,

σd jkd j
0
k
¼ σu0ku0k ¼ σ2

u
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Appendix B: SAS Codes for the Example

Data set format

For the multilevel analyses, the data set should contain one row
for each observed effect size. For our example, we prepared
such a data set, called ABUSE, with the following variables (the
dataset is available upon request from the first author):

STUDY: a study indicator with values from 1 to 39,

OUTCOME: an outcome indicator with values from 1 to
587,
ES: the effect size expressed as bias corrected standard-
ized mean differences,
W: the inverse of the estimated sampling variance for each
observed effect size, and
X: an indicator variable for the two groups of out-
comes (1 refers to the outcomes directly related to
child abuse and neglect, 2 to outcomes related to
risk factors).

The first ten rows are given below:

Two-level meta-analysis

For the random effects two-level analysis, the following code
is run:

The Proc Mixed-command calls the mixed procedure for
multilevel or linear mixed models. The data set is defined, and
we ask for using the restricted maximum likelihood (REML)
estimation procedure.

The Class-statement is used to define the categorical
variables of our model, in our case the study and
outcome indicators. In the Model-statement we define
the model: the dependent variable (ES) on the left side
of the equality sign, the predictor or moderator variables
on the right. An intercept is included by default. In this
random effects model, there are no moderator variables.
The Solution-option requests the parameter regression
coefficient estimates and tests in the output. The

ddfm=Satterthwaite-option performs a general Satterthwaite
approximation for the denominator degrees of freedom for the
tests of the regression coefficients.

We use W, the inverse of the sampling variance, to weight
the observed effect sizes in the analysis. However, weights
that are used in the multilevel analysis will not only be based
on the sampling variance, but also will automatically account
for the estimated population variance(s) defined further. More
specifically, the weights are equal to the inverse of the sum of
the different sources of variance. The Random-statement spec-
ifies that the intercept varies randomly over outcomes. In the
Parms-statement, we give starting values for the population
variance of this intercept as well as for the residual variance.
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We use the Hold-option to fix the second parameter to the
starting value of 1. In this way and by using the inverse of the
sampling variance as weights, the level-one variance is auto-
matically fixed at the sampling variances that we defined.

Using a more realistic starting value for the first parameter
(e.g., the estimate from a previous analysis) can speed up the
estimation. Finally, we close the code using the Run-state-
ment, and we submit the code.

For the mixed effects two-level analysis, the code is
adapted as follows:

First, the X-variable is defined as a categorical variable by
means of theClass-statement. Second, in theModel-statement
we include the X-variable as a predictor. To get an estimate of
the mean effect for each level of the X-variable, we drop the
intercept, by using noint as an option in the Model-statement.
Finally, to estimate and test the difference between both
groups of outcomes in the expected effect, we use the
Estimate-statement. The difference-parameter is labeled
‘group’, and is defined by a contrast with weights 1 and -1.1

Three-level meta-analysis

Because in the three-level random effects model we
assume that the intercept might not simply vary over
the 587 outcomes, but that there might be systematic
differences between studies due to covariation between
effect sizes from the same study, we include a second
Random-statement:

We now have three sources of variance: between studies,
between outcomes within studies, and sampling variance. In
the Parms-statement, we define starting values for the three
variances, and constrain the last one to 1.

The code for the random effects model is extended to the
code for a mixed effects model in much the same way as for
the two-level models.
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