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Subgroup analyses allow us to examine the influence of a categorical moderator on the

effect size in meta-analysis. We conducted a simulation study using a dichotomous

moderator, and compared the impact of pooled versus separate estimates of the residual

between-studies variance on the statistical performance of the QB(P) and QB(S) tests for

subgroup analyses assuming a mixed-effects model. Our results suggested that similar

performance can be expected as long as there are at least 20 studies and these are

approximately balanced across categories. Conversely, when subgroups were unbal-

anced, the practical consequences of having heterogeneous residual between-studies

variances were more evident, with both tests leading to the wrong statistical conclusion

more often than in the conditions with balanced subgroups. A pooled estimate should be

preferred for most scenarios, unless the residual between-studies variances are clearly

different and there are enough studies in each category to obtain precise separate

estimates.

1. Introduction

Meta-analysis is a form of systematic review that allows the results of a set of primary

studies focused on a common topic to be integrated by the application of statistical
methods (Borenstein, Hedges, Higgins, & Rothstein, 2009). While primary studies

typically use participants as the unit of analysis, inmostmeta-analyses the unit of analysis is

the study. One of the steps in a meta-analysis consists of synthesizing the results of the

primary studies using effect sizes, which can then be statistically combined using meta-

analytic techniques. One of themain purposes of meta-analysis is to examinewhether the

individual effect sizes are homogeneous around the average effect size. When there is

more heterogeneity than expected from sampling error, the meta-analyst must search for

study characteristics that can explain at least part of that variability. The moderators are
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considered as potential predictor variables and the effect sizes constitute the dependent

variable (Borenstein et al., 2009). If the moderator variable is categorical, an analysis of

variance, or subgroup analysis, can be formulated, while the continuous moderators are

analysed using meta-analytic analogues to regression analysis.
There are two general statistical models for meta-analysis, the fixed-effect and the

random-effects models. The fixed-effect model assumes that all included studies in the

meta-analysis share a common population effect size, so the only source of variability is

due to sampling error in the selection of the participants of each study (Konstantopoulos

& Hedges, 2009). By contrast, the random-effects model assumes that the population

effect size could vary from study to study due to differential characteristics of the studies.

Consequently, this model assumes a distribution of the population effect sizes and adds a

second source of variability, the sampling error in the selection of the studies in the meta-
analysis (Raudenbush, 2009). Note that the random-effects model assumes the more

realistic scenario of heterogeneity among the population effect sizes, due to the

differential characteristics of the studies in a meta-analysis.

1.1. Subgroup analysis

In meta-analysis, the analysis of categorical moderators is usually referred to as ‘subgroup

analysis’, and is the process of comparing the mean effect sizes in different study
subgroups (Borenstein & Higgins, 2013).

Several statistical models are available to examine the relationship between a

categorical moderator and the effect sizes through a subgroup analysis. On the one hand,

applying the logic of the general fixed-effect model to subgroup analyses, a fixed-effects

model can be assumed in which all studies within the same category of the moderator

share a common effect size. In other words, if a fixed-effect model is assumedwithin each

subgroup, such model is called a fixed-effects model.

On the other hand, the mixed-effects model consists of assuming a random-effects
model for each subgroup of studies. As a consequence, the mixed-effects model assumes

that all studieswithin the samecategory of themoderator estimate a normal distribution of

population effect sizeswith a commonmean effect size. The label ‘mixed-effectsmodel’ is

usedbecause: (1) themoderator is considered afixed-effects component, as the categories

of the moderator are not a random sample of a larger number of categories, and (2) the

effect sizes (i.e., the studies) include a random-effects component because they are

considered a random sample of study effects pertaining to a population of studies in the

same category (Borenstein et al., 2009; Viechtbauer, 2010).
In this paper, we focus on the performance of the mixed-effects model, which is

nowadays routinely applied in most meta-analytic studies.

1.2. Mixed-effects model

Suppose that the k studies in a meta-analysis are grouped into m mutually exclusive

categories of themoderator variable. Denote byk1,k2, . . . ,km the number of effect sizes of

categories 1, 2, . . ., m, respectively, such that k1 + k2 + . . . + km = k.
In a mixed-effects model the individual effect sizes, Tij, within the same category j are

assumed to estimate a distribution of true effect sizes with mean lhj and variance r2ij þ s2j ,
with r2ij being the within-study variance for the ith study in the jth category of the

moderator, and s2j the residual between-studies variance in that category.
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We must assume a random-effects model within each category of the moderator

variable, thus the statistical model applied in the jth category will be Tij = lhj + eij + eij,

where eij and eij are the within-study and between-studies errors, respectively. It is very

common to assume that these two errors are independent of each other and, therefore,
the estimated effect sizes are normally distributed: Tij ~ N(lhj, r2ij + s2j ), where s2j is the
common between-studies variance in jth category of the moderator. In addition, the

parametric effect sizes of the jth category, hij, follow a normal distribution with mean lhj
and between-studies variance s2j : hij ~ N(lhj, s2j ).

Under a mixed-effects model, the main goal in a subgroup analysis is to compare the

parametric mean effect sizes from each category of themoderator variable, lhj, in order to
test if the moderator is statistically related to the effect sizes. Consequently, first we need

to estimate the mean parametric effect size of the jth category of the moderator, lhj, by
means of

�Tj ¼
P

i ŵijTijP
i ŵij

; ð1Þ

where ŵij are the estimated weights computed through ŵij ¼ 1
.
ðr̂2ij þ ŝ2j Þ, with r̂2ij

being the estimated within-study variance of the ith effect size and ŝ2j the estimated

residual between-studies variance of the jth category.

The sampling variance of the mean effect size in the jth category is estimated as

V ðT jÞ ¼
1P

i

ŵij

: ð2Þ

1.3. Omnibus test of between-groups differences

It is possible to test the statistical significance of a categorical moderator by means of the

between-groups heterogeneity statistic, given by (Borenstein et al., 2009)

QB ¼
Xm
j¼1

ŵþj T j � T
� �2

; ð3Þ

where ŵþj is the inverse of equation (2) applied to the jth category of themoderator, �Tj is
the mean effect size of the jth category calculated by equation (1) and T represents the

weighted grand mean of all effect sizes and is given by

T ¼

P
i

P
j

ŵijTijP
i

P
j

ŵij

; ð4Þ

where the total between-studies variance estimate, ŝ2, is used to compute ŵij.

Under the null hypothesis of no difference between the mean effect sizes for each of

the m categories (H0: lh1 = lh2 = . . . = lhm), the QB statistic follows a chi-square

distributionwithm – 1 degrees of freedom. Therefore, the null hypothesiswill be rejected

when QB exceeds the 100(1 – a) percentile point of the chi-square distribution. A

statistically significant result for QB provides evidence that the moderator is statistically

related to the effect sizes.
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1.4. Estimating the residual between-studies variance

Several methods have been proposed to estimate the total heterogeneity variance in the

random-effects model. The most commonly used is that proposed by DerSimonian and

Laird (1986), a heterogeneity variance estimator derived from the moment method.
At this point, it may be useful to make a distinction between the total between-studies

variance and the residual between-studies variance. On the one hand, when we apply the

random-effects model to estimate the mean effect in a meta-analysis (i.e., without

moderators being added to the model) there is an amount of heterogeneity due to

sampling error in the selection of the studies in the meta-analysis. This heterogeneity is

estimated through the total between-studies variance, which represents the excess

variation among the effects over that expected from within-study sampling error alone.

On the other hand, in the mixed-effects model we include moderator variables aiming to
explain at least part of the total heterogeneity in the effect sizes. Thus, after adding

moderator variables the amount of heterogeneity that remains to be explained is the

residual heterogeneity or the heterogeneity that cannot be explained by the moderators

included in the model.

In the mixed-effects model, two approaches can be adopted to estimate the residual

between-studies variance. One is to estimate the residual between-studies variance

separately within each category of the moderator, and the other one is to calculate a

pooled estimate across categories (Borenstein et al., 2009).

1.4.1. Separate estimates of the residual between-studies variance

This procedure consists of estimating the residual between-studies variance within each

category of the moderator. Thus, in a moderator variable with m categories, we need to

calculate the residual between-studies variance estimates ŝ21, ŝ
2
2, . . . , ŝ

2
m. The residual

between-studies variance for the jth category of the moderator, ŝ2j , can be computed

applying the DerSimonian and Laird estimator with the expression

ŝ2j ¼
QWj � ðkj � 1Þ

cj
; ð5Þ

where kj is the number of studies of the jth category,QWj is thewithin-grouphomogeneity

statistic of the jth category computed as

QWj ¼
Xkj
i¼1

ŵ�
ij Tij � �T �

j

� �
; ð6Þ

with ŵ�
ij being the estimated weights assuming a fixed-effect model, ŵ�

ij ¼ 1
.
r̂2ij, and �T �

j

the mean effect size of the jth category of the moderator also assuming a fixed-effect

model, that is, applying equation (1) but using ŵ�
ij as weighting factor; and cj is given by

cj ¼
X
i

ŵ�
ij �

P
i ŵ�

ij

� �2

P
i ŵ

�
ij

: ð7Þ

Therefore, equation (5) allows a separate estimate of the between-studies variance of

each category, ŝ2j , to be obtained, and these are used to calculate theweights, ŵij, for each
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category of the moderator. This implies that in each category a different between-studies

variance is used to calculate theweights: ŝ21 for category 1, ŝ
2
2 for category 2, and so on, that

is, ŵij ¼ 1
.

r̂2ij þ ŝ2j

� �
. Here we will denote the QB statistic calculated with separate

between-studies variances by QB(S).

1.4.2. Pooled estimate of the residual between-studies variance

An alternative method to estimate the residual heterogeneity variance consists of

averaging the residual between-studies variances of the m categories of the moderator

variable, through the equation (Borenstein et al., 2009)

ŝ2þ ¼
Pm

j QWj �
Pm

j ðkj � 1ÞPm
j cj

: ð8Þ

Equation (8) provides a pooled estimate of the residual between-studies variance, so
that the weights, ŵij, are obtained using a common between-studies variance through the

different categories of the moderator, that is, ŵij ¼ 1
.

r̂2ij þ ŝ2þ
� �

. Here we will use the

term QB(P) to refer to the QB statistic calculated with a pooled estimate of the residual

between-studies variance, ŝ2þ.

1.5. An example

To illustrate how the QB statistic is calculated with the two different methods to estimate
the residual between-studies variance (pooled vs. separate estimates), an example

extracted from a realmeta-analysis is presented here. The datawere obtained from ameta-

analysis of the efficacy of psychological treatments for panic disorder with or without

agoraphobia (S�anchez-Meca, Rosa-Alc�azar, Mar�ın-Mart�ınez, & G�omez-Conesa, 2010). The

effect size index in this meta-analysis was the standardized mean difference (d) between

two groups (treated vs. control groups) defined in equation (10) below. From all the

moderator variables analysed in this meta-analysis, a dichotomous characteristic was

selected to illustrate a subgroup meta-analysis: whether or not the assignment of the
participants to the treated and control groups was at random. The database composed of

50 studies is presented in Appendix.

Tables 1 and2present the results yieldedby theQB statisticwith the twomethodshere

compared, as well as the mean effects for each category of the moderator, the sampling

variances, the residual between-studies variances and the 95% confidence intervals for

each mean effect. Separate estimates of the residual between-studies variances for each

category (ŝ2j ) were calculated using equation (5). As shown in Table 1, their values were

0.053 and 0.303 for non-randomand randomassignment, respectively.On the other hand,
the pooled estimate of the residual between-studies variances calculated using

equation (8) was ŝ2þ = 0.270 (Table 2). When the QB statistic was calculated taking

separate estimates of the residual between-studies variances, the estimated weights for

each study were obtained by means of ŵij ¼ 1
.
ðr̂2ij þ ŝ2j Þ. Conversely, when the QB

statistic was calculated taking a pooled estimate of the residual between-studies variances

(ŝ2þ) the estimated study weights were ŵij ¼ 1
.
ðr̂2ij þ ŝ2þÞ. This distinction affects the QB

statistic, here denoted byQB(S) andQB(P), respectively, aswell as themean effect fromeach

category of the moderator, their sampling variances (V ðdjÞ), and their confidence limits.
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The mean effects for non-random and random assignment were 0.545 and 0.966,

respectively (Table 1), when separate estimates of the residual between-studies

variances were used (ŝ2j ), and 0.559 and 0.961 when a pooled estimate (ŝ2þ) was

used (Table 2). The sampling variances and the confidence limits also varied
depending on the residual between-studies variances used in the calculations.

However, the most dramatic discrepancy among methods involved the two versions

of the QB statistic: QB(S) and QB(P). The null hypothesis of equal mean effect sizes

was rejected when separate estimates of the between-studies variances were used

(Table 1: QB(S) = 5.165, p = .023), but not when a pooled estimate was considered

(Table 2: QB(P) = 2.588, p = .108).

This example illustrates how results and their interpretation can be affected by the

meta-analytic methods selected to undertake the statistical analyses. The choice of the
meta-analyst will often be conditioned by the software used for the calculations and he/

she will not be aware of which method was implemented. In fact, the most commonly

used statistical programs for meta-analysis do not enable users to choose among the two

methods to calculate the individual weights in a mixed-effects model. For instance, if the

meta-analyst used metafor (Viechtbauer, 2010), Comprehensive Meta-Analysis 2.0

(Borenstein, Hedges, Higgins, & Rothstein, 2005) or the SPSS macros written by David

B.Wilson to replicate this example, he/shewould obtain the results presented in Table 2,

whereas if using RevMan 5.3 (Review Manager, 2014), the results would be those
presented in Table 1. On the other hand, Comprehensive Meta-Analysis 3.0 (Borenstein,

Hedges, Higgins, & Rothstein, 2014) incorporates both methods so that the meta-analyst

can use either to estimate theweights (in fact, the results in Tables 1 and 2were obtained

with this program).

1.6. Purpose of the study

It is not clear which of these two procedures (separate or pooled estimates) should be
preferred in order to estimate the residual between-studies variance, which is involved in

the subgroup analysis in a mixed-effects meta-analysis. At this point, it is useful to revise

the analogy between the subgroup analysis in meta-analysis and the analysis of variance

(ANOVA) for comparing means in a primary study. On the one hand, in the simplest case

Table 1. Results of the subgroup analysis for the moderator variable ‘random assignment’ in the

S�anchez-Meca et al. (2010) meta-analysis by using separate estimates of the residual between-

studies variance, ŝ2j

Random assignment kj dj VðdjÞ
95% CI

ŝ2jdl d2

No 8 0.545 0.024 0.242 0.847 0.053

Yes 42 0.966 0.011 0.765 1.167 0.303

Separate estimates of ŝ2j : QB(S)(1) = 5.165, p = .023

Notes. kj = number of studies in each category of the moderator. dj = mean effect size for each

category, obtainedwith equation (1). VðdjÞ= estimated sampling variance of themean effect size for

each category, obtained with equation (2). dL and dU = lower and upper confidence limits (for a

95% confidence level) for each mean effect size, obtained from dj � 1:96�
ffiffiffiffiffiffiffiffiffiffi
VðdjÞ

q
(1.96 being the

97.5percentile of the standardnormal distribution). ŝ2j = residual between-studies variance for each

category, estimated with equation (5).
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of a primary study with a two-independent-group design (e.g. experimental vs. control

groups), the means of two samples of subjects are compared performing a t-test or an

ordinary least squares ANOVA. On the other hand, in a meta-analysis with two subgroups

of studies, themean effect sizes in each subgroup are compared by performing aweighted
least squares ANOVA, the weights being the inverse variance of each effect size.

Both the t-test and ANOVA for comparing the means of two or more independent

groups of subjects assume homogeneity between variances in the two populations. The

pooled variance is estimated through the mean squared error in the ANOVA. When the

two population variances are heterogeneous, the so-called Behrens–Fisher problem

arises, which requires an alternative procedure to the classical t-test or ANOVA. In

practice, the usual solution to the Behrens–Fisher problem is to apply the Welch–
Satterthwaite approach to correct the classical t-test (Welch, 1947).

In themeta-analytic arena, the picture is a little more complex, as we areworkingwith

aggregate scores (e.g. effect sizes summarizing individual scores) instead of individual

participants. While in a primary study each subject provides a score, in a meta-analysis

each study provides an effect size. The effect sizes of the studies in a meta-analysis will

exhibit different precision depending of the sample size of the study. Effect sizes obtained

from large samples will be more accurate (less variable) than those obtained from small

ones. As a consequence, the appropriatemean of a set of effect sizes is aweighted average,

the weights being the inverse variance of each effect size. This weighting scheme affects
all statistical calculations in a meta-analysis.

The pooled estimation of the residual between-studies variance from two or more

subgroups of studies in a meta-analysis is akin to the estimation of the mean squared error

in theANOVA in aprimary study, as bothprocedures assume the variance between groups

to be homogeneous. When this assumption is not tenable, a similar problem to that of

Behrens–Fisher emerges, which may lead to inaccurate estimation of the residual

between-studies variance. To circumvent this problem, an alternative is the separate

estimation of the residual between-studies variance for each subgroup of studies.
However, this approach can also yield inaccurate estimates if the number of studies in the

subgroups is small (which will often be the case).

In a mixed-effects meta-analysis, the residual between-studies variance is included in

the weighting scheme. Thus, the estimation procedure for the residual between-studies

Table 2. Results of the subgroup analysis for the moderator variable ‘random assignment’ in the

S�anchez-Meca et al. (2010)meta-analysis by using a pooled estimate of the residual between-studies

variance, ŝ2þ

Random assignment kj dj VðdjÞ
95% CI

ŝ2þdL dU

No 8 0.559 0.053 0.109 1.009 0.270

Yes 42 0.961 0.010 0.768 1.155 0.270

Pooled estimate of ŝ2j : QB(P) (1) = 2.588, p = .108

Notes. kj = number of studies in each category of the moderator. dj = mean effect size for each

category, obtained with equation (1). VðdjÞ = estimated sampling variance of the mean effect size

for each category, obtainedwith equation (2). dL and dU = lower and upper confidence limits (for a

95% confidence level) for each mean effect size, obtained by means of dj � 1:96�
ffiffiffiffiffiffiffiffiffiffi
VðdjÞ

q
(1.96

being the 97.5 percentile of the standard normal distribution). ŝ2þ = pooled estimate of the residual

between-studies variances of the two categories, calculated with equation (8).
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variance may have an impact on a wide range of meta-analytic outputs, such as: (1) the

estimate of the average effect size for each category of themoderator (see equation (1)); (2)

their sampling variances; (3) the confidence intervals; and, relevant to the presentwork, (4)

the computation of the between-groups heterogeneity statistic, QB (see equation (3)).
The large number of factors that can affect the performance of the QB(P) and QB(S)

statistics lead to the need for simulation studies to determine which of them is a

better option under different meta-analytic conditions. Previous simulation studies

have examined the statistical performance of the t-test and ANOVA F test in a primary

study, assuming homogeneous and heterogeneous population variances. However,

those studies do not address the more complex picture of subgroup analyses in meta-

analysis, and therefore their findings might not be generalizable to the meta-analytic

arena.
The purpose of this work was to directly compare, by means of Monte Carlo

simulation, the statistical performance of the QB statistic applied in meta-analysis, when

two alternative procedures for estimating the residual between-studies variance (separate

estimates and pooled estimate) are used. With that aim, the present work is the first

simulation study to compare the QB(S) and QB(P) tests, assessing their Type I error and

statistical power in different meta-analytic scenarios.

The existence of previous simulation studies addressing the heteroscedasticity

problem in primary studies enables us to formulate some expectations (Glass & Hopkins,
1996; Glass, Peckham,& Sanders, 1972; Hinkle,Wiersma, & Jurs, 2003; Senn, 2008). First,

in scenarios with balanced sample sizes, we expect QB(P) to provide an adequate

adjustment of the Type I error, even with heterogeneous variances between subgroups.

Second, in unbalanced scenarios with heterogeneous variances where the larger variance

is associated with the bigger subgroup, the QB(P) test will be too conservative, and too

liberal if the smaller variance is associated with the bigger subgroup instead.

2. Method of the simulation study

Asimulation studywas carried out inRusing themetafor package (Viechtbauer, 2010) and

the two procedures (pooled and separate) for estimating the residual between-studies

variance were programmed. Meta-analyses of k studies were simulated with the

standardized mean difference as the effect size index. Each individual study included in

a meta-analysis compared two groups (experimental and control) with respect to some
continuous outcome. Both populations were normally distributed with homogeneous

variances (N(lE, r
2), N(lC, r

2)). The population standardized mean difference, d, was

defined as (Hedges & Olkin, 1985)

d ¼ lE � lC
r

: ð9Þ

The parametric effect size, d, can be estimated by means of

d ¼ cðmÞ �yE � �yC
S

; ð10Þ

where yE and yC are the sample means of experimental and control groups, S is a

pooled standard deviation computed as
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S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnE � 1ÞS2E þ ðnC � 1ÞS2C

nE þ nC � 2

s
ð11Þ

nE and nC being the experimental and control sample sizes, respectively, S2E and S2C
being the unbiased variances of the two groups, and c(m) is a correction factor for small

sample sizes, given by

cðmÞ ¼ 1� 3

4N � 9
; ð12Þ

withN = nE + nC. The estimatedwithin-study variance of d, assuming equal variances and

normality within each study, is given by

r̂2d ¼ nE þ nC

nEnC
þ d2

2 nE þ nCð Þ : ð13Þ

We simulated a mixed-effects model involving a moderator variable with two

categories. In each category of the moderator variable a population of parametric effect

sizes was assumed, in addition to the within-group variability.

The number of studies of each simulatedmeta-analysiswas defined ask = k1+ k2,with

k1 and k2 being the number of studies falling into the first and second categories of the

moderator, respectively.

The manipulated conditions in the present study were intended to represent the most

realistic scenarios found inmeta-analysis. For the number of studies,k, we considered four
values, 12, 20, 40, and 60. Furthermore, wemanipulated the distribution of kwithin each

category of the moderator, so that in some conditions there was a balanced distribution

(e.g. k1 = k2), while in the remaining conditions there was an unbalanced distribution

between the two categories with the second category containing three times as many

studies as the first category.

We also manipulated the residual between-studies variance of each category of the

moderator intwodifferentways.First,weconsideredtwovaluesfor thisparameter,namely

0.08 and 0.16. Second, we simulated a set of scenarios with homogeneous residual
between-studies variances for both categories (s21 ¼ s22), and also another set of hetero-

geneous conditions, with values s21 ¼ 0:08 and s22 ¼ 0:16 or s21 ¼ 0:16 and s22 ¼ 0:08.
The average sample size of the k studies in a meta-analysis was set to 60. Note that, for

each study, N = nE + nC, with nE = nC. The selection of the sample sizes for the

individual studies in each meta-analysis was performed from the generation of skewed

distributions, applying the Fleishman’s (1978) algorithm with an average value of 60, a

skewness index of 1.386, a kurtosis index of 1.427 and a standard deviation of 5.62. The

parameters of this distribution are similar to the distribution of sample sizes found in a
recent review of 50 real meta-analyses on the effectiveness of psychological treatments

(L�opez-L�opez, Rubio-Aparicio, S�anchez-Meca, & Mar�ın-Mart�ınez, 2013).
The parametric mean effect size of each category of the moderator was also

manipulated. In some conditions the two parametric mean effects were equal to 0.5

(ld1 = ld2 = 0.5), whereas for other conditions they were set to different values:

ld1 = 0.5 and ld2 = 0.3 or ld1 = 0.5 and ld2 = 0.1. Moreover, when the parametric mean

effect sizes were different for each category, their position was also manipulated, and

hence we also generated scenarios with ld1 = 0.3 and ld2 = 0.5 or ld1 = 0.1 and
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ld2 = 0.5. The conditions with equal parametric mean effect sizes across categories

allowed us to study the Type I error rate of the QB(S) and QB(P) statistics, whereas the

conditions with different parametricmean effect sizes enabled us to assess their statistical

power.
To assess the Type I error rate, the total number of conditions was: 4 (number of

studies)9 2 (balanced–unbalanced number of studies in the two categories)9 4 (residual

between-studies variance) = 32. With respect to the statistical power, the conditions

were quadrupled regarding those of the Type I error by including twodifferent parametric

mean effect sizes and manipulating their position across categories, so that there were

32 9 4 = 128 conditions defined. To sum up, the total number of conditions was 160,

and for each one 10,000 replicationswere generated. Thus, 1,600,000meta-analyseswere

simulated.
The QB(S) test (equation (3)) using separate estimates of s2 for each subgroup

(equation (5)) and theQB(P) test using a pooled estimate of s2 (equation (8)) were applied

to each one of these replications. In eachof the 160 conditions of our simulation study, the

proportion of rejections of the null hypothesis of equality of the parametric mean effect

sizes of the moderator enabled us to estimate the Type I error rate and the statistical

power.

3. Results

3.1. Type I error rate

Table 3 presents Type I error rates for the QB(S) and QB(P) statistics when using the two

estimation procedures of the residual between-studies variance in the manipulated

conditions. Table 4 summarizes the average Type I error rates as a function of the number

of studies, balanced and unbalanced distribution of number of studies within each
category of the moderator, and residual between-studies variance of each category of the

moderator. Note that the nominal significance level was set to a = .05.

First, inmost conditions results showed theempirical rejection rates of both estimation

procedures above the nominal significance level (Tables 3 and 4). As expected, as the

number of studies increased, theproportionof rejections of the null hypothesis of equality

for QB(S) and QB(P) converged to the nominal significance level (Table 4).

In general, when the number of studies was balanced across categories, both

estimation procedures showed a good adjustment to the nominal level, with negligible
differences among the empirical error rates. By contrast, under the conditions with an

unbalanced distribution of studies between the two categories, the differences in error

rates for both estimation procedures were most notable (Table 3).

As can be seen in Table 3, and focusing on unbalanced distribution of the number of

studies within each category of the moderator, when the residual between-studies

variances of each category were homogeneous (s21 ¼ s22 ¼ 0:08 or s21 ¼ s22 ¼ 0:16), the
QB(P) test showed better control of the Type I error rate than the QB(S) test. In contrast,

when variances were heterogeneous, specifically under the condition where the value of
the smallest residual between-studies variance, s2 = 0.08, was associated with the

category with the smallest number of studies (s21 ¼ 0:08, s22 ¼ 0:16), the QB(P) test

showed Type I error rates below 0.05, whereas the QB(S) test yielded rates over nominal

except for a large number of studies, k = 60 (k1 = 15 and k2 = 45). Under the condition

where the value of the largest residual between-studies variance, s2 = 0.16, was

associated with the category with the smallest number of studies, (s21 ¼ 0:16, s22 ¼ 0:08),
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the QB(P) test showed empirical rejection rates above the nominal significance level,

while the QB(S) test only showed results close to the nominal level with k = 60 (k1 = 15

and k2 = 45).

Table 3. Type I error for the two estimation procedures of the residual between-studies variance

Balanced Unbalanced

s21 : s
2
2 k QB(S) QB(P) QB(S) QB(P)

0.08: 0.08 12 0.0611 0.0655 0.0801 0.0719

20 0.0595 0.0609 0.0743 0.0672

40 0.0584 0.0581 0.0639 0.0577

60 0.0543 0.0548 0.0564 0.0527

0.16: 0.16 12 0.0737 0.0761 0.0950 0.0976

20 0.0648 0.0650 0.0783 0.0652

40 0.0554 0.0548 0.0696 0.0612

60 0.0567 0.0566 0.0640 0.0579

0.08: 0.16 12 0.0705 0.0733 0.0758 0.0524

20 0.0602 0.0611 0.0709 0.0456

40 0.0584 0.0580 0.0623 0.0377

60 0.0510 0.0505 0.0552 0.0349

0.16: 0.08 12 0.0956 0.1013

20 0.0886 0.0949

40 0.0716 0.0890

60 0.0606 0.0801

Notes. s21 = residual between-studies variance of the first category of the moderator; s22 = residual

between-studies variance of the second category of the moderator; k = number of studies;

Balanced = balanced distribution of k within each category of the moderator; Unbalanced = un-

balanced distribution of k within each category of the moderator, with fewer studies in the first

category; QB(S) = QB test using separate estimates of s2 for each subgroup; QB(P) = QB test using a

pooled estimate of s2.

Table 4. Average Type I rates by number of studies (k), by balanced and unbalanced distribution of

k, and by the residual between-studies variance of each category of the moderator (s21 : s
2
2)

QB(S) QB(P)

K

12 0.0788 0.0738

20 0.0709 0.0657

40 0.0628 0.0595

60 0.0569 0.0553

Distribution of k

Balanced 0.0577 0.0577

Unbalanced 0.0679 0.0620

s21 : s
2
2

0.08: 0.08 0.0612 0.0585

0.16: 0.16 0.0648 0.0601

0.08: 0.16 0.0597 0.0479

0.16: 0.08 0.0736 0.0880

Note. QB(S) = QB test using separate estimates of s2 for each subgroup; QB(P) = QB test using a

pooled estimate of s2.
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3.2. Statistical power

Table 5 shows the empirical power rates for QB(S) and QB(P) tests in the manipulated

conditions. Table 6 summarizes the average power rates as a function of themagnitude of

the difference between the parametric mean effect sizes of each category of the
moderator, number of studies, balanced and unbalanced distribution of number of studies

within each category of themoderator, and the residual between-studies variance for each

category of the moderator. In general, the influence of the different conditions

manipulated was equivalent for the QB(S) and QB(P) tests and, in most conditions, both

tests yielded statistical power rates far below .80 (Tables 5 and 6).

Table 6 shows that, as expected,QB(S) and QB(P) tests increased their statistical power

as the number of studies and the magnitude of the difference between the parametric

effect size of each category increased. Furthermore, under the conditions with a balanced
distribution of the studies across categories, the QB(S) and QB(P) tests showed greater

power than under the condition with an unbalanced distribution of the studies (see also

Table 5). In relation to the conditions with homogeneous residual between-studies

variances, large amounts of residual s2 values correspond to smaller rejection rates for

both tests. Accordingly, the highest power rates, QB(S) = 0.9760 and QB(P) = 0.9759,

were obtained under optimal scenarios, that is, maximum difference between the

parametric mean effect size of each category (|ld1 – ld2| = 0.4), large number of studies

(k = 60), balanced distribution of studies within each category and small and homoge-
neous values of the residual between-studies variance of each category (s21 ¼ 0:08,
s22 ¼ 0:08) (Table 5).

As shown in Table 5, under a balanced distribution of the number of studies within

each category of the moderator, the QB(S) and QB(P) tests performed very similarly, even

when the assumption of homogeneity variances was not fulfilled. By contrast, when the

number of studies was distributed unequally within each category of the moderator and

the residual between-studies variances of each categorywere homogeneous, theQB(S) test

yielded a slightly higher power than the QB(P) test.

4. Discussion

This study compares the impact of two procedures for estimating the residual between-

studies variance, separate estimates and pooled estimate, on the statistical performance of

theQB test for subgroup analyses assuming a mixed-effects meta-analysis. Our work is the
first simulation study to address the question of which estimation procedure for the

residual between-studies variance yields the most accurate results for the QB test under a

set of realistic scenarios, and also allows us to explore the practical consequences of using

separate estimates or a pooled estimate.

Under a balanced distribution of the number of studies across categories, we expected

good performance from the QB(P) test even when the assumption of homogeneity of the

residual between-studies varianceswas not fulfilled. This is a similar situation to that of the

typical ANOVA F testwith equal sample sizes betweengroups of subjects,where the F test
is robust to violations of the homoscedasticity assumption (Glass & Hopkins, 1996; Senn,

2008). Our results showed similar Type I error rates for the QB(P) test in the conditions

with homogeneous and heterogeneous residual between-studies variances. However, the

empirical Type I error rates showed a good adjustment to the nominal level only in meta-

analyses with a large number of studies (40 or more studies), the adjustment becoming

slightly more liberal as the number of studies decreased.
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Comparing the performance of the QB(S) and QB(P) tests, their Type I error and

statistical power rates were similar through all the conditions of subgroups with equal

number of studies. This suggests that when the studies are distributed equally within each

category of the moderator the meta-analyst may apply any of the procedures in order to

estimate the residual between-studies variance. Nevertheless, if the number of studies and

the residual between-studies variances are roughly similar across categories, using a

pooled estimate would be expected to provide more accurate results for most scenarios,
as it takes into account a larger number of studies. This can be particularly important if the

total number of studies is small (e.g., <20), which has been found to be the case for most

Cochrane Reviews (Davey, Turner, Clarke, & Higgins, 2011).

When the number of studies was distributed unequally across categories, the practical

consequences of having heterogeneous residual between-studies variances were more

evident, with both tests leading to the wrong statistical conclusion more often than in the

conditions with balanced subgroups. Specifically, under the condition of heterogeneity

where the value of the smallest residual between-studies variance (s2 = 0.08) was
associated with the category with the smallest number of studies, the QB(S) test showed

adequate control of the Type I error ratewith at least 60 studies,whereas that theQB(P) test

yielded over-conservative Type I error rates and poor performance in terms of statistical

power regardless of the number of studies. Under conditions where the value of the

Table 5. Statistical power rates for the two estimation procedures of the residual between-studies

variance

|ld1 – ld2| = 0.2 |ld1 – ld2| = 0.4

Balanced Unbalanced Balanced Unbalanced

s21 : s
2
2 k QB(S) QB(P) QB(S) QB(P) QB(S) QB(P) QB(S) QB(P)

0.08: 0.08 12 0.161 0.1701 0.1599 0.151 0.4383 0.4479 0.3645 0.3638

20 0.2203 0.2235 0.1894 0.1827 0.6341 0.6385 0.5293 0.5298

40 0.3796 0.3783 0.3028 0.2953 0.8988 0.9000 0.8028 0.8068

60 0.5224 0.5220 0.4168 0.4116 0.9760 0.9759 0.9296 0.9323

0.16: 0.16 12 0.1446 0.1483 0.1505 0.1294 0.3298 0.3329 0.3012 0.2792

20 0.1752 0.1768 0.1642 0.1489 0.4803 0.4804 0.4004 0.3893

40 0.2756 0.2753 0.2269 0.2175 0.7501 0.7502 0.6305 0.6285

60 0.3710 0.3700 0.3139 0.3060 0.8979 0.8971 0.7972 0.7994

0.08: 0.16 12 0.1512 0.1567 0.1405 0.1046 0.3759 0.3831 0.3342 0.2635

20 0.1986 0.2025 0.1749 0.1261 0.5392 0.5443 0.4772 0.4022

40 0.3136 0.3198 0.2802 0.2130 0.8275 0.8299 0.7542 0.6905

60 0.4377 0.4432 0.3787 0.3024 0.9478 0.9493 0.9007 0.8615

0.16: 0.08 12 0.1466 0.1512 0.3808 0.1749 0.3677 0.3729 0.3204 0.3541

20 0.1918 0.1922 0.1778 0.2062 0.5441 0.5443 0.4271 0.4823

40 0.3146 0.3098 0.2489 0.2960 0.8241 0.8213 0.6763 0.7373

60 0.4355 0.4274 0.3249 0.3832 0.9432 0.9422 0.8268 0.8748

Notes. ld1 = parametric mean effect size of the first category of the moderator; ld2 = parametric

mean effect size of the second category of the moderator; s21 = residual between-studies variance of

the first category of themoderator; s22 = residual between-studies variance of the second category of

the moderator; k = number of studies; Balanced = balanced distribution of kwithin each category

of the moderator; Unbalanced = unbalanced distribution of k within each category of the

moderator, where the number of studies in the first category is the lowest; QB(S) = QB test using

separate estimates of s2 for each subgroup; QB(P) = QB test using a pooled estimate of s2.
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largest residual between-studies variance (s2 = 0.16) was associated with the category

with the smallest number of studies, both tests provided inflated Type I error rates, with

the QB(P) test showing a greater departure from the nominal significance level. Note that

the performance of the QB(P) test was similar to that expected for the F test in a typical

ANOVA with unbalanced sample sizes, when the homoscedasticity assumption was not

met (Glass et al., 1972; Hinkle et al., 2003).

Lastly, our results also reflect that the QB(P) test yielded more accurate control of error
rateswhen the residual between-studies variances homogeneity assumptionwas fulfilled.

In practice, the QB test is usually calculated using a pooled estimate (Borenstein et al.,

2009; Viechtbauer, 2010). Borenstein et al. (2009) and Viechtbauer (2010) suggested

using a pooled estimate of the residual between-studies variance except when the meta-

analyst suspects that the true value of the residual between-studies may vary from one

category to the next.

As pointed out in the introduction, the most popular statistical packages for meta-

analysis estimate the residual between-studies variance implementing only one of the two
procedures described and compared throughout this paper, so that choice of software

determines the method to be used. Our results showed some evidence that pooled or

separate estimates might lead to a different performance of the QB test under some

scenarios. Therefore, it would be helpful for the different meta-analysis software options

to allow users to implement either method based on the characteristics of the database, as

is already the case for Comprehensive Meta-Analysis 3.0 (Borenstein et al., 2014). That

would also allow undertaking sensitivity analyses if the meta-analyst suspects that the

choice of procedure may have an impact on the results.
Results from our simulation study also shed some light on the accuracy of hypothesis

testing for categorical moderators in meta-analysis, beyond the choice of pooled or

separate variance estimates. The overall picture suggests that statistical tests can be

expected to perform close to the nominal significance level in terms of Type I error,

Table 6. Average power rates by difference between the parametric mean effect size of each

category of the moderator (|ld1 – ld2|), by number of studies (k), by balanced and unbalanced

distribution of k, and by the residual between-studies variance of each category of the moderator

(s21 : s
2
2)

QB(S) QB(P)

|ld1 – ld2|
0.2 0.2843 0.2783

0.4 0.7102 0.7095

K

12 0.2674 0.2418

20 0.3359 0.3307

40 0.5179 0.5148

60 0.6378 0.6362

Distribution of k

Balanced 0.5458 0.5464

Unbalanced 0.4729 0.4676

s21 : s
2
2

0.08: 0.08 0.5540 0.5530

0.16: 0.16 0.4453 0.4405

0.08: 0.16 0.5109 0.4711

0.16: 0.08 0.4787 0.5109
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although greater between-studies variances and unbalanced category sizes may lead to

inflated rates. Conversely, statistical power rates can be lower than desirable unless the

difference among category effects and the number of studies are large enough. While the

former may vary widely, the number of studies is often below 40 when the influence of a
categorical moderator is statistically tested. Therefore, our results suggest that most of

those analyses might be underpowered.

In conclusion, the results of our simulation study suggest that similar performance can

be expected when using a pooled estimate or separate estimates of the residual between-

studies variance to test the statistical association of a dichotomous moderator with the

effect sizes, as long as there are at least 20 studies and these are roughly balanced across

categories. Our results stress the need for a relatively large number of studies for the

methods to have enoughpower to detect small tomoderate differences among effect sizes
from different subgroups. A pooled estimate will be preferable for most scenarios, unless

the residual between-studies variances are clearly different and there are enough studies in

each category to get precise separate estimates. Researchers are also encouraged to report

the between-studies variance estimate(s) alongside its (their) confidence limits.

4.1. Limitations and future research

There are some limitations to this study. The results found can be generalized to the
specific manipulated conditions. Although this study focused on standardized mean

differences as the effect size index, our findings may be generalized to other effect size

measures which follow an approximately normal distribution. In future simulation

studies, it would be advisable to extend the manipulated conditions, for example, using

other effect size indices, increasing the number of categories of themoderator and varying

the average sample size of each meta-analysis.

In future studies, other estimators of the residual between-studies variance could be

applied, such as the restricted maximum likelihood estimator (Viechtbauer, 2005), and
they might also consider alternatives to the normal distribution to generate parametric

effects, in order to mimic realistic scenarios more closely.

Finally, theType Ierror andstatisticalpower rates yieldedby themethodsconsidered in

this study were suboptimal for many of the conditions examined. Previous simulation

studies have demonstrated that the method proposed by Knapp and Hartung (2003)

outperforms the standard method for testing the statistical significance of a continuous

moderator (Viechtbauer, L�opez-L�opez, S�anchez-Meca, & Mar�ın-Mart�ınez, 2015). It would

beinterestingtoevaluatetheperformanceofthismethodtotest forcategoricalmoderators.
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Appendix: Database for the example

Study d Sd Random assignment

1 1.341 0.369 1

2 0.581 0.340 1

3 0.757 0.351 1

4 0.508 0.479 1

5 �0.023 0.558 1

6 0.044 0.277 1

7 0.428 0.270 1

8 0.819 0.521 1

9 �0.086 0.245 2

10 0.602 0.258 2

11 1.282 0.447 2

12 1.023 0.388 2

13 0.927 0.378 2

14 0.483 0.236 2

15 0.807 0.246 2

16 0.692 0.246 2

17 0.594 0.330 2

18 0.582 0.320 2

19 0.697 0.291 2

20 0.833 0.326 2

21 2.651 0.485 2

22 1.232 0.386 2

23 1.896 0.455 2

24 1.837 0.451 2

25 0.281 0.361 2

26 0.410 0.377 2

27 0.797 0.402 2

28 0.431 0.377 2

29 0.623 0.394 2

30 0.650 0.365 2

31 1.702 0.498 2

32 1.073 0.480 2

33 0.403 0.404 2

34 3.468 0.520 2

35 3.263 0.496 2

36 3.023 0.488 2

37 1.040 0.389 2

38 1.473 0.460 2

39 1.164 0.441 2

40 0.993 0.427 2

41 �0.344 0.381 2

42 �0.098 0.361 2

43 0.905 0.276 2

44 0.665 0.264 2

45 0.982 0.280 2

Continued
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Appendix. (Continued)

Study d Sd Random assignment

46 0.727 0.252 2

47 0.879 0.218 2

48 0.681 0.439 2

49 1.193 0.478 2

50 1.131 0.466 2

Notes. d = standardizedmean difference for each study; Sd = standard error for the d index in each

study. Random assignment = 1, no; 2, yes.

Source: S�anchez-Meca et al. (2010).
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