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The random‐effects model, applied in most meta‐analyses nowadays, typically

assumes normality of the distribution of the effect parameters. The purpose of

this study was to examine the performance of various random‐effects methods

(standard method, Hartung's method, profile likelihood method, and

bootstrapping) for computing an average effect size estimate and a confidence

interval (CI) around it, when the normality assumption is not met. For com-

parison purposes, we also included the fixed‐effect model. We manipulated a

wide range of conditions, including conditions with some degree of departure

from the normality assumption, using Monte Carlo simulation. To simulate

realistic scenarios, we chose the manipulated conditions from a systematic

review of meta‐analyses on the effectiveness of psychological treatments. We

compared the performance of the different methods in terms of bias and mean

squared error of the average effect estimators, empirical coverage probability

and width of the CIs, and variability of the standard errors. Our results suggest

that random‐effects methods are largely robust to departures from normality,

with Hartung's profile likelihood methods yielding the best performance under

suboptimal conditions.
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1 | INTRODUCTION

Meta‐analysis is a form of systematic review that allows
the integration of the results of a set of primary studies
on a given topic by applying statistical methods. When
the dependent variable is continuous and the aim of the
meta‐analysis is to compare the performance between
two groups (eg, interventions) across studies, standard-
ized mean differences are the effect size indices most
commonly used.1,2 This paper focuses on various
methods for computing an estimate of the average stan-
dardized mean difference together with its confidence
wileyonlinelibrary.com/jou
interval (CI) when some assumptions of the underlying
statistical model are not met.

Two general statistical models are available for meta‐
analysis, namely, fixed‐effect (FE) and random‐effects
models. Model choice is crucial, as it determines the
statistical procedures used to estimate the mean effect
and its CI as well as the generalizability of the meta‐
analysis results.1,3,4

The FE model assumes that all studies included in the
meta‐analysis share a common effect parameter such that
the only source of variability is sampling error in the
selection of participants.5 This assumption might apply
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if all included studies were similarly designed and con-
ducted and used highly similar samples. In contrast, the
random‐effects model assumes that each study estimates
a different effect parameter. Therefore, the estimation of
the overall effect in a random‐effects model is affected
by sampling error both in the random selection of partic-
ipants for each study and in the selection of studies.6

In this paper, we focused on the performance of the
random‐effects model, which allows for a broader
generalization of results and conclusions and is currently
assumed in most meta‐analyses.3,6
1.1 | The random‐effects model

Let k denote the number of studies included in a meta‐

analysis and bθi indicate the effect size estimate from the
ith study. The underlying statistical model can be written
as follows:

bθi ¼ θi þ ei; (1)

where θi is the effect parameter for the ith study and ei is

the sampling error of bθi. Usually, ei is assumed to be nor-
mally distributed, ie, ei ~ N(0, σ2i ), with σ2i as the within‐
study variance for the ith study.

The random‐effects model assumes that the effect
parameters θi are randomly selected from a population
of parameters. Thus, θi can be defined as follows:

θi ¼ μθ þ εi; (2)

where μθ is a parameter representing the overall mean of
the effect parameters and εi denotes the difference
between the effect parameter of the ith study θi and the
overall mean μθ. It is assumed that εi ~ N(0, τ2), with τ2

as the between‐studies variance. Therefore, combining
Equations (1) and (2) enables us to formulate the ran-
dom‐effects model as follows:

bθi ¼ μθ þ ei þ εi; (3)

where εi and ei are assumed independent and, as a result,

the effect size estimatesbθi are assumed to be normally dis-
tributed with mean μθ and variance σ2i þ τ2, ie, bθi ~ N(μθ,
σ2i þ τ2).6,7

Although the normality of the distribution of effect
parameters is a common assumption in the random‐

effects model, it might not be realistic or even approxi-
mate in a wide range of applied situations including
meta‐analyses including a small number of studies.7-13

Departures from normality might affect the estimation
of key model parameters such as μθ and τ2. This scenario
has important practical implications because a
substantial proportion of the meta‐analyses conducted
over the last two decades assumed a random‐effects
model to analyze databases with small‐to‐moderate
numbers of studies. Therefore, assessing the conse-
quences of a violation of the normality assumption
constitutes a relevant question in meta‐analysis.

To the best of our knowledge, the works of
Kontopantelis and Reeves11,12 are the only simulation
studies that compared the performance of several statisti-
cal methods for random‐effects meta‐analysis under
nonnormal scenarios. Eight statistical methods were
examined, and a wide range of scenarios was considered.
In particular, Kontopantelis and Reeves manipulated the
distribution of the effect parameters (normal, skew nor-
mal, and extremely nonnormal), the number of studies
in the meta‐analysis, and the heterogeneity. Most
methods were found to be highly robust against viola-
tions of the assumption of normality. These previous
studies focused on the field of epidemiology, and the set
of simulated scenarios and outcome measures and the
effect size index (odds ratios) were selected accordingly,
following the results of a survey of meta‐analyses pub-
lished in the medical field.14

Furthermore, Kontopantelis and Reeves11,12 gener-
ated the individual effect estimates using the method for
log odds ratios developed by Brockwell and Gordon.8 This
approach has two major limitations: It is not realistic
because it does not start from 2 × 2 tables,15 and it is also
not appropriate for other effect metrics.

In the current study, we aimed to assess the conse-
quences of violating the normality assumption in ran-
dom‐effects meta‐analyses conducted in the psychological
field and particularly in meta‐analyses on the effectiveness
of psychological treatments for various psychological or
psychiatric disorders.

In summary, the purpose of our study was to compare
the performance of various random‐effects meta‐analysis
methods for the computation of an average effect size
and its CI when the normality assumption is not met.
For this purpose, a wide range of scenarios was consid-
ered, including conditions with some degree of departure
from normality. A Monte Carlo simulation was con-
ducted using the standardized mean differences as
the effect size index. To avoid the problems in the
Kontopantelis and Reeves11,12 studies, the standardized
mean differences were individually generated in our
simulations by assuming a noncentral t distribution.16

Although our study focused on the random‐effects model,
the FE model was also included for comparison purposes.

In the following section, we outline the statistical
methods considered in this study and describe the resid-
ual heterogeneity variance estimators. A simulation study
comparing the performance of the methods is detailed.
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Finally, a description of the results is presented, and con-
siderations arising from the results are discussed.
1.2 | Methods for estimation of an overall
effect size

1.2.1 | FE model

The uniformly minimum variance unbiased estimator of
the mean effect size under a FE model is given by the
expression.16

bμFEUMVU ¼
∑
i
wFE
i
bθi

∑
i
wFE
i

; (4)

with

wFE
i ¼ 1=σ2i ; (5)

and σ2i as the within‐study variance of bθi. Since the σ2i are
unknown, wFE

i are usually replaced by bwFE
i based on the

estimated within‐study variances bσ2i , as follows:
bwFE
i ¼ 1=bσ2i : (6)

Thus, in practice, the overall effect size is estimated by
the following

bμFE ¼
∑
i
bwFE
i
bθi

∑
i
bwFE
i

: (7)

The sampling variance of bμFE is usually estimated as
shown:

bVFE ¼ 1

∑
i
bwFE
i

: (8)

Additionally, a 100(1 − α)% CI for bμFE can be calcu-
lated as follows:

bμFE±z1−α=2 ffiffiffiffiffiffiffiffibVFE

q
; (9)

where z1 − α/2 is the 100(1 − α/2) percentile of the stan-
dard normal distribution.
1.2.2 | Random‐effects model

In a random‐effects model, the uniformly minimum
variance unbiased estimator of μθ is given by the
following.17,18
bμREUMVU ¼
∑
i
wRE
i
bθi

∑
i
wRE
i

; (10)

with wRE
i as the optimal weights, defined as

wRE
i ¼ 1= σ2i þ τ2

� �
. The variance for bμREUMVU is given by

the formula VUMVU ¼ 1=∑
i
wRE
i .

However, σ2i and τ2 are unknown in practice, and
hence, they must be estimated from the studies. The
overall mean μθ can be estimated using the following
equation (11),

bμRE ¼
∑
i
bwRE
i
bθi

∑
i
bwRE
i

(11)

where

bwRE
i ¼ 1= bσ2i þ bτ2� �

; (12)

where bσ2i is the estimated within‐study variance of bθi andbτ2 is an estimate of the between‐studies variance. Several
estimators of the between‐studies variance are described
in the further section.

In the current study, we compare four alternative ran-
dom‐effects methods to construct a CI around the mean
effect size estimate: the standard method (SM), Hartung's
method (HM), the profile likelihood (PL) method, and
the bootstrapping method.

Standard method
The method most frequently used to obtain a CI around
the mean effect size estimate bμRE in a random‐effects
meta‐analysis assumes a normal sampling distribution
for bμRE . Its sampling variance is usually estimated by
the following:

bVRE ¼ 1

∑
i
bwRE
i

: (13)

Therefore, a 100(1 − α)% CI around bμRE can be com-
puted as shown:

bμRE ± z1−α=2

ffiffiffiffiffiffiffiffibVRE

q
: (14)

Hartung's method
Although the SM is the usual procedure for calculating a
CI around the mean effect size, this method assumes a
normal distribution and does not consider the uncer-
tainty derived from the estimation process of the variance
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parameters. As a consequence, the CI based on the z
distribution has been shown to yield CIs that are too
narrow, resulting in empirical coverage below the
nominal level in some scenarios, especially as the
between‐studies variance increases and the number of
studies decreases.8 To solve this limitation, Hartung19

proposed assumption of a t distribution instead of the
standard normal distribution and use of an improved
variance estimator.20,21 A 100(1 − α)% CI for this method
is supplied by the expression

bμRE ± tk−1;1−α=2

ffiffiffiffiffiffiffiffiffibVHA

q
; (15)

where tk − 1; 1 − α/2 is the 100(1 − α/2) percentile of the t
distribution with k − 1 degrees of freedom, bμRE is com-
puted by Equation (11), and bVHA is an estimate of the
sampling variance of bμRE with a weighted extension of
the usual formula given by

bVHA ¼
∑
i
bwRE
i

bθi−bμRE� �2

k−1ð Þ∑
i
bwRE
i

: (16)

Compared with the standard random‐effects method,
HM has been found to yield wider CIs with better
coverage probabilities, especially under suboptimal
scenarios,17,22 including scenarios with violation of the
normality assumption.12

PL method
The PL is an iterative and computationally intensive
method that can be used to obtain a likelihood‐based CI
around an overall estimate obtained with the random‐

effects model, considering the fact that μθ and τ2 must
be estimated simultaneously.10 The PL method provides
two alternatives to calculate a CI around bμRE, namely,
the first‐order likelihood method and the higher‐order
Skovgaard's method. In a simulation study, Guolo23

showed that the Skovgaard's method produces far more
accurate results than the first‐order method, especially
with small sample sizes. The R code for this method is
provided in Data S1.

It is expected that likelihood approaches might
improve the performance of standard random‐effects
methods under nonnormal scenarios.10,23,24 Although
SMs unrealistically assume that the between‐studies
variance is known, the likelihood approach allows deriva-
tion of the likelihood‐based CIs for the between‐studies
variance and for the overall effect. The iterative and
joint estimation of both parameters considers the fact
that the other parameters are also unknown and must
be estimated.
Bootstrapping
Bootstrapping methods are increasingly applied in the
meta‐analytic arena if the assumptions of the random‐

effects model are not met. These methods are free from
theoretical distribution assumptions and therefore are
expected to be more robust to violations of the normality
assumption than standard meta‐analytic techniques.25,26

In particular, a bootstrapping approach consists of
generating a distribution of mean effect size estimates
by resampling a large number of samples, eg, 1000
samples.27-29 Thus, a 95% CI is given by the 2.5th and
97.5th percentiles of the distribution of mean effect
estimates. We examined two methods for the interval
estimation of the mean effect size: the percentile method
and the bias‐corrected and accelerated (BCa) method.
The percentile method yields confidence limits that are
directly extracted from the percentiles of the distribution.
However, the BCa method is preferred in practice
because it adjusts for both bias and skewness in the
bootstrap distribution.27 See Data S1 for additional
computational details.
1.3 | Heterogeneity variance estimators

An estimate of τ2 is required to obtain the mean effect
size estimate and its CI under a random‐effects model,
at least for the standard and Hartung's approaches.
Several methods have been proposed to estimate the
between‐studies variance τ2 in random‐effects meta‐anal-
ysis.17,18,30 In this section, we present formulas for the
three estimators considered in this study.

DerSimonian and Laird estimator
The most commonly used estimator was proposed by
DerSimonian and Laird31 and is derived from the
moments method and computed with the following
expression:

bτ2DL ¼ Q− k−1ð Þ
c

; (17)

where

Q ¼ ∑
i
bwFE
i

bθi−bμFE� �2
; (18)

with bμFE and bwFE
i defined in Equations (7) and (6),

respectively, and c given by the following:

c ¼ ∑
i
bwFE
i −

∑
i

bwFE
i

� �2

∑
i
bwFE
i

: (19)

When Q < (k − 1), bτ2DL is usually set to zero. When
the estimated weights bwFE

i are used instead of the optimal
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values, the Q statistic no longer follows the chi‐squared
distribution usually assumed and this may negatively
affect the performance of the bτ2DL estimator.32,33

Restricted maximum likelihood estimator
Another alternative for estimating the between‐studies
variance component is based on restricted maximum
likelihood (REML) estimation. The REML estimator is
obtained iteratively from the following.17,18

bτ2REML ¼
∑
i

bwRE
i

� �2 bθi−bμRE� �2
− bσ2i� �

∑
i

bwRE
i

� �2 þ 1

∑
i
bwRE
i

; (20)

with bμRE and bwRE
i defined in Equations (11) and (12),

respectively, and bτ2 initially estimated with any of the
noniterative estimators of the heterogeneity variance.

When bτ2REMIL < 0, it is truncated to zero.

Empirical Bayes estimator
The final estimator of τ2 that we include is the empirical
Bayes (EB) method, which is also an iterative method

obtained by replacing bwRE
i

� �2
with bwRE

i in Equation (20)

for bτ2REMIL.
34,35 The EB estimator is obtained as shown:

bτ2EB ¼
∑
i
bwRE
i

bθi − bμRE� �2
− bσ2i� �

∑
i
bwRE
i

þ 1

∑
i
bwRE
i

: (21)

Again, negative values of bτ2EB are truncated to zero.
The EB estimator is equivalent to the Paule‐Mandel
estimator.30,36
2 | METHOD OF THE SIMULATION
STUDY

In the previous section, we presented two methods for
estimating the mean effect size, μθ (ie, FE model and
standard random‐effects model), six methods for comput-
ing the CI around an estimate of μθ (ie, FE model,
standard random‐effects model, HM, PL method with
higher‐order Skovgaard's approach, and bootstrapping
with the BCa and percentile methods), and three
estimators of τ2 (ie, the DerSimonian and Laird [DL],
REML, and EB estimators) in the context of random‐

effects meta‐analysis. We compared the performance of
combinations of these methods using Monte Carlo simu-
lation. However, not all of the methods were combined
with each other; in particular, we only combined the PL
method with REML estimation and the bootstrapping
method with the DL estimator, whereas the SM and HM
were combined with the three τ2 estimators, and no τ2

estimators were needed for the FE model. This approach
yielded four methods used to estimate the mean effect size
and 10 ways to calculate a CI around that estimate.

The simulation was programmed in R using the
metafor,37 metaLik,38 and boot39 packages. Data S1
contains the full R code of our simulation study. The
standardized mean difference was used as the effect size
measure. We simulated designs comparing two groups
(experimental and control) with respect to a continuous
dependent variable, which is a scenario often found in
psychology. Both populations were assumed to be nor-
mally distributed with common variance [N(μE, σ2),
N(μC, σ

2)]. For each study, the population standardized
mean difference θ was defined as follows.16

θ ¼ μE − μC
σ

: (22)

In a random‐effects model, a distribution of effect
parameters θi is assumed, with a specific mean μθ, hetero-
geneity variance τ2, and shape (details on how the distri-
butions shapes were defined are supplied below). To
simulate a meta‐analysis, k effect parameters θi were ran-
domly selected from the distribution of effect parameters,
and an individual parameter θi was used in each study.

The effect parameter for the ith study θi was estimated
using the nearly unbiased estimator proposed by Hedges
and Olkin.16

bθ ¼ c mð Þg; (23)

where g is a positively biased estimator computed from
the following:

g ¼ yE − yC
S

; (24)

and c(m) is a correction factor for small sample sizes,
given by the following:

c mð Þ ¼ 1−
3

4m−1
; (25)

where m = nE + nC − 2 and nE and nC are the experimen-
tal and control group sizes, respectively.

In Equation (24), yE and yC are the sample means of
the experimental and control groups, respectively, and S
is a pooled standard deviation computed as shown:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nE−1ð ÞS2E þ nC−1ð ÞS2C

nE þ nC−2

s
; (26)
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found in a systematic review of 50 meta‐analyses of on efficacy of

psychological interventions40
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where S2E and S2C are the unbiased variances of the exper-
imental and control groups, respectively.

Equation (23) applies to each study such that bθi is an
estimate of the effect parameter θi. The estimates of the
sampling variance of bθ in each study were obtained by
the following:

bσ2bθ ¼ nE þ nC
nEnC

þ
bθ2

2 nE þ nCð Þ: (27)

Hedges and Olkin16(p79) showed that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nEnC= nE þ nCð Þgp

follows a noncentral t distribution with noncentrality
parameter

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nEnC= nE þ nCð Þθp

and nE + nC − 2 degrees
of freedom. The bθi value for the ith study was simulated
from Z=

ffiffiffiffiffiffiffiffiffiffi
X=m

p
; where Z is a random normal variable with

distribution N(θ, 1/nE + 1/nC), and X is a random chi‐
square variable with m = nE + nC − 2 degrees of freedom.

When calculating bμFE (Equation (7)) and bμRE
(Equation (11)), a potential source of bias is the
correlation between the standardized mean difference
(Equation (23)) and its sampling variance (Equation (27)),
particularly with small sample sizes.

To identify a range of realistic scenarios in this field,
the manipulated conditions in the current study were
set according to the results of a systematic review of 50
meta‐analyses on the efficacy of psychological interven-
tions using three types of standardized mean differences
(posttest standardized mean difference, standardized
mean change, and standardized mean change difference)
as effect size indices.40 For the number of studies k,
four values were considered, ie, 10, 20, 40, and 60, corre-
sponding to a small‐to‐large number of studies for the
meta‐analysis. The overall mean of the distribution of
effect parameters μθ was set to 0, 0.2, 0.5, and 0.8, which
reflect conditions of no effect and effects of low, medium,
and large magnitude, respectively. Furthermore, a wide
range of values for the population between‐studies vari-
ance τ2 was considered, namely, 0, 0.03, 0.06, 0.11, 0.18,
and 0.39. The simulated conditions for k, μθ, and τ2 were
within the range of values found in the systematic review
of 50 meta‐analyses previously mentioned.40

The shape of the distribution of the effect parameters
θi was manipulated through six combinations of the
skewness and kurtosis values. First, a normal scenario
(ie, zero skewness and kurtosis) was set. Second, five
nonnormal conditions were considered based on the
results from a previous systematic review.40 In that
review, the skewness distribution of the 50 meta‐analyses
presented a median value of 0.52, with 25th and 75th per-
centiles of 0.18 and 1.1 and minimum and maximum
values of −2 and 3.67, respectively. Although the small
number of studies in many of those meta‐analyses did
not allow accurate estimation of the population skewness
and kurtosis, some of the values we found suggest chal-
lenging scenarios for random‐effects meta‐analyses
assuming normality. Based on these results, a wide range
of skewness values of −2, −1, 0, 1, and 2 were selected to
simulate the effect parameter distribution. The nonlinear
relationship exhibited by the 50 pairs of skewness and
kurtosis values found in the systematic review was used
to predict the kurtosis values. Figure 1 presents the
scatter plot relating the skewness and kurtosis values of
the 50 meta‐analyses. A nonlinear predictive model
was fit to this dataset, leading to the predictive equation,
Kurtosis =−0.581+ 0.023 * Skewness + 1.069 * Skewness2,
and the resulting five nonnormal combinations between
skewness and kurtosis values were (−2, 3.65), (−1,
0.47), (0, −0.58), (1, 0.51), and (2, 3.74). Figure 2 presents
histograms of the effect parameter distributions for the
six simulated combinations of skewness and kurtosis.
Data S2 presents five examples of real meta‐analyses
selected from the previous study40 with similar skewness
and kurtosis values as each of the five nonnormal scenar-
ios defined in our simulation study. Data S3 presents the
individual standardized mean differences and sampling
variances of each of the five real meta‐analyses.

We applied Fleishman's algorithm41 to generate
distributions of effect parameters with a given mean (μθ),
variance (τ2), skewness, and kurtosis. In particular,
Fleishman's power transformation X= a+ bZ+ cZ2 + dZ3

applied on a standard normal distribution Z ~ N(0, 1)
allows generation of a nonnormal random variable X with
mean 0, variance 1, skewness γ1, and kurtosis γ2. For a spe-
cific combination of γ1 and γ2 values, the equations used to
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find the a, b, c, and d constants were calculated by solving
the equation system presented in Fleishman.41(pp522‐526)

Table 1 presents the values of a, b, c, and d for the six
combinations of γ1 and γ2 values in the simulated distribu-
tions of the effect parameters. The linear transformation
Y = m + nX was subsequently applied to generate distribu-
tions with the manipulated values of the mean of the effect
parameters (μθ = 0, 0.2, 0.5, and 0.8) and the population
between‐studies variance (τ2 = 0, 0.03, 0.06, 0.11, 0.18, and

0.39), where m = μθ and n ¼
ffiffiffiffiffi
τ2

p
.

Fleishman's algorithm does not yield an exact solu-
tion under extreme conditions of skewness and
kurtosis.41(p526) Consequently, under the two most
extreme conditions in Table 1, ie, γ1 = −2, γ2 = 3.65
and γ1 = 2, γ2 = 3.74, the constants a, b, c, and d yielded

bγ1 values deviating from the expected values, namely,

−1.67 and 1.70, respectively. Nonetheless, the resulting
simulated distributions strongly departed from normality,
as intended in our simulation study.
TABLE 1 Values of the a, b, c, and d constants in Fleishman's

algorithm for the six combinations of skewness and kurtosis

Skewness
(γ1)

Kurtosis
(γ2) a b c d

0 0 0 1 0 0

−2 3.65 0.349 0.862 −0.349 −0.018

−1 0.47 0.267 1.124 −0.267 −0.071

0 −0.58 0 1.093 0 −0.032

1 0.51 −0.256 1.112 0.256 −0.064

2 3.74 −0.360 0.862 0.360 −0.021
The average total sample sizes of the individual stud-

ies N were 20, 30, 50, and 100. The primary studies were
simulated within a two‐group design with nE = nC. The
distribution of the individual sample sizes was based on
the systematic review reported in a previous study40 in
which the sample size distributions of the 50 meta‐analy-
ses exhibited a clear positive skewness with average
skewness = +1.423. To emulate such distribution, a chi‐
square distribution with 4 degrees of freedom was used
to simulate the sample sizes (as the expected skewness
for the distribution is

ffiffiffiffiffiffiffiffiffiffi
8=df

p ¼ 1:414, similar to that
obtained empirically). Additionally, values of 16, 26, 46,
and 96 were added to achieve the desired average values.

When τ2 = 0, the number of conditions was 64 [4 (k

values) × 4 (μθ values) × 4 ( N values)]. For the
other values of τ2, the number of conditions was 1920 [4
(k) × 4 (μθ) × 4 (N) × 6 (shape of the distribution of θi
values) × 5 (τ2 values)]. The total number of conditions
was 1984, and for each one, 10 000 meta‐analyses were
generated. Thus, 19 840 000 meta‐analyses were simu-
lated. Furthermore, 1000 samples per iteration were used
in the bootstrapping method.

Several criteria were considered. First, the bias of
each of the four methods to estimate the mean effect
size was assessed as the difference between the mean
of the 10 000 empirical values for each method and con-
dition and the parametric mean effect size for that sce-
nario μθ. Second, the accuracy in the estimates
produced by these four methods was assessed by calcu-
lating the mean squared error (MSE) with respect to
the true value μθ across the 10 000 replications of one
single condition. Third, the CI width of the 10 methods
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used to calculate the CI was estimated by averaging the
CI widths across 10 000 replications for each condition.
Fourth, the empirical coverage probability for the 95%
nominal confidence level of each method was calculated
as the percentage of CIs that included the true mean
effect size μθ using the 10 000 replications for each
condition. Finally, we examined the variability in the
estimation of the standard errors in the standard
random‐effects, HM, bootstrapping, and FE methods.
This effort was accomplished using the following
formula:

Md SE bμð Þð Þ− SD bμð Þ
SD bμð Þ * 100; (28)

with SD(bμ) as the standard deviation of the mean effect
estimates obtained in 10 000 replications of a given con-
dition and Md(SE(bμ)) representing the median of the
estimated standard errors for the mean effect estimates
through the 10 000 replications of the same condition.
The reason for using the median instead of the mean
was to avoid the potential influence of extreme values.
Negative values for Equation (28) indicate underestima-
tion of the standard errors.
3 | RESULTS

For brevity, we include only the results for μθ = 0.5 and

N = 30 as the patterns were similar for the remaining
levels of both factors. Additionally, we discuss only the
results for τ2 = 0.39 since the differences in the perfor-
mance of the methods were more pronounced for that
value, although the trends observed in scenarios with
lower between‐studies variation were analogous. The full
set of results can be found in Data S4.

This section is divided into five subsections corre-
sponding to the comparative criteria: the bias and MSE
of the average effect estimators, the empirical coverage
probability and width of the CIs, and the variability of
the estimated standard errors.
3.1 | Bias of the average effect estimators

Figure 3 shows the bias of the SM with the DL, REML,
and EB estimators of τ2 and the FE method as a function
of the number of studies k and the shape of the distribu-
tion of θi.

All methods showed a small negative bias across all
simulated scenarios for the shape of the distribution of
effect parameters, regardless of the number of studies.
The FE yielded the most negatively biased estimates
across all conditions because this model assumes a null
between‐studies variance (τ2 = 0).

Under normal scenarios (skewness = 0 and kurto-
sis = 0), the biases of DL, REML, and EB were quite sim-
ilar across conditions with the same number of studies.
These methods produced the most negatively biased
values with k = 20. For skewness = 0 and kurto-
sis = −0.58, the performance of the four methods was
quite similar to the normal condition. When the shape
of the distribution of effect parameters was manipulated
with skewness = −2 and kurtosis = 3.65, the mean effects
calculated under an RE model with the DL, REML, and
EB methods were practically unbiased. Similar results
were found with skewness = −1 and kurtosis = 0.47,
although under this condition, the four methods were
more negatively biased. Under conditions with skew-
ness = 1 and kurtosis = 0.51 and with skewness = 2
and kurtosis = 3.74, the differences in bias among the
DL, REML, and EB methods were practically negligible,
with values of bias close to −0.025 for all conditions of
k. The FE model yielded more negatively biased estimates
than the random‐effects methods.
3.2 | MSE of the average effect estimators

Figure 4 shows a comparison of the MSE of the standard
random‐effects methods. As expected, an increase in the
number of studies led to a decrease in the MSE values
of the four estimators of μθ, regardless of the shape of
the distribution of effect parameters. In addition, the
results across different conditions of skewness and kurto-
sis and number of studies were generally similar across
all four methods, without notable differences in their per-
formance. The FE method showed slightly lower MSE
values than the methods based on the RE model with a
small number of studies (k = 10), and the RE methods
had higher MSE values for skewness = 0 and kurto-
sis = −0.58 than in the normal conditions.
3.3 | Coverage probability of the CIs

Figure 5 shows the empirical coverage probability of the
six CIs compared. The SM and HM were not influenced
by the applied heterogeneity estimator (DL, REML, or
EB). Therefore, only results for the REML estimator are
presented. Furthermore, the empirical coverages yielded
by the FE method were far below the nominal level and
outside of the range considered in Figure 5. The full set
of results is presented in Data S4.

Most CIs calculated with the SM, HM, BOOT_P,
BOOT_Bca, and PL methods offered better coverage as
the number of studies increased, and this improvement
was especially evident as k increased from 10 to 20. Under



FIGURE 3 Bias of the four methods to

estimate μθ. ○ DL, standard method with

DerSimonian and Laird estimator of τ2; Δ
REML, standard method with restricted

maximum likelihood estimator of τ2; +
EB, standard method with empirical Bayes

estimator of τ2; × FE, fixed‐effect model.

These results are for τ2 = 0.39, μθ = 0.5,

and N = 30. The average standard error of

the simulations was 0.0035
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normality, some differences in coverage probabilities
were found among the CIs obtained by SM, HM,
BOOT_P, BOOT_Bca, and PL methods for small numbers
of studies (k = 10 and 20), with the HM and PL method
showing the best coverage. For k = 10 and k = 20, the
HM exhibited observed probabilities of 0.956 and 0.945,
respectively, and the PL method obtained values of
0.944 and 0.943. The same trend was found when the
effect parameters were nonnormally distributed.

The worst coverage values were found for skew-
ness = 1 and kurtosis = 0.51 and for skewness = 2 and
kurtosis = 3.74. Under these two conditions, the CIs
obtained by all methods generally showed empirical cov-
erage probabilities slightly below the nominal confidence
level, even for a large number of studies.
3.4 | Width of the CIs

Figure 6 shows the width of the five 95% CIs for the com-
pared μθ. For the standard and Hartung's random‐effects
methods, only the results for the REML estimator are
presented (see Data S4 for the full set of results). Compar-
isons of the CI widths are only meaningful between
methods with similar coverage probabilities.

The interval width of the five CI procedures uniformly
decreased as the number of studies increased. For k = 10
and 20, the CIs obtained with the HM (especially) and PL
method were wider than those yielded by the other
methods. Although this pattern was consistent across all
scenarios, the CIs were narrower in conditions with some
degree of departure from normality. This was probably
due to a coverage slightly below nominal under
nonnormal scenarios. For instance, with k = 10 and
under the normal scenario, the CI widths for HM and
PL were 1.004 and 0.992 with empirical coverage proba-
bilities of 0.956 and 0.944, respectively. Conversely, under
the highly nonnormal scenario with skewness = −2 and
kurtosis = 3.65, the CI widths for HM and PL were
0.9456 and 0.9306 with empirical coverage probabilities
0.948 and 0.941. The FE method consistently yielded the
narrowest CIs at the expense of exhibiting empirical cov-
erages well below nominal.



FIGURE 4 Mean squared error of the

four methods to estimate μθ. ○ DL,

standard method with DerSimonian and

Laird estimator of τ2; Δ REML, standard

method with restricted maximum

likelihood estimator of τ2; + EB, standard

method with empirical Bayes estimator of

τ2; × FE, fixed‐effect model. These results

are for τ2 = 0.39, μθ = 0.5, andN = 30. The

average standard error of the simulations

was 0.0022
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3.5 | Variability of the standard errors

Figure 7 shows the variability (in %) of the standard error
estimates produced using the REML estimator (see Data
S4 for the full set of results). On average, all methods
yielded standard error estimates smaller than the standard
deviation of the distribution of overall effect estimates
empirically constructed through 10 000 replications in a
given condition (see Equation (28)). The SM, HM, and
BOOT method exhibited standard error estimates very
close to the standard deviation of the effect size distribu-
tion in all manipulated conditions. In particular, for
k ≥ 20, the percentage underestimation was lower than
5%, with the exception of the condition with skewness = 1
and kurtosis = 0.51. In general, the good performance of
the standard error estimates of these methods improved
with larger number of studies regardless of shape of the
distribution of θi, with the exception of conditions with
skewness = 1 and kurtosis = 0.51 and skewness = 2 and
kurtosis = 3.74, where a slight increase of the percentage
underestimation was observed for k = 60.
The HM systematically showed the best performance
of the standard error estimates in contrast to the BOOT
method, which exhibited poor performance (excluding
the FE method, not shown in Figure 7). This same trend
was found across all conditions of skewness and kurtosis
regardless of the number of studies. On average, the per-
centage departures of the standard errors for SM, HM,
and BOOT were −3.52%, −1.89%, and −5.16%, respec-
tively. These differences were larger for small k values.
For instance, for k = 10, the percentage departures of
the standard errors of SM, HM, and BOOT with the con-
ditions of skewness and kurtosis were −5.90%, −4.79%,
and −10.18%, respectively.
4 | DISCUSSION

In this study, we examined the performance of various
methods for random‐effects meta‐analysis in terms of bias
and MSE of the average effect size estimates, empirical
coverage and width of CIs around the average effect size,



FIGURE 5 Empirical coverage

probability for the five confidence interval

(CI) methods. ○ SM, standard method; Δ
HM, Hartung's method; × BOOT_P,

bootstrapping with the percentile method;

◊ BOOT_Bca, bootstrapping with the BCa

method; □ PL, profile likelihood method.

The CI methods used REML estimate of τ2.
These results are for τ2 = 0.39, μθ = 0.5, and

N = 30. The average standard error of the

simulations was 0.0031
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and variability of the standard error estimates, when the
normality assumption is not met. We simulated a wide
range of scenarios considered to be common in clinical
psychology research, using the standardized mean differ-
ence as the effect size measure.

Random‐effects model typically assumes normality of
the effect parameter distribution, and several authors
have raised concerns related to the potential impact of
nonnormality on the performance of meta‐analysis tech-
niques.7-9,11,12,21,42 We performed an empirical compari-
son of several meta‐analysis methods using Monte Carlo
simulation, and our results suggest that most estimates
were not substantially affected by the underlying distribu-
tion of effect parameters, even under severe departures
from normality. A slightly negative bias of the mean
effect size estimates was found across all conditions, even
in normal scenarios. This finding has also been reported
in previous studies using standardized mean differences
(cf, eg, Hedges and Olkin16(p125, Ch 6, table 7) and Marín‐
Martínez and Sánchez‐Meca43(p68, fig 1)), and it is due to
a negative relationship between the d estimates and their
weights both for both FE and RE models (Equations (6)
and (12), respectively). Such a negative relationship is

induced by the inclusion of the effect size estimate, bθ, in
the calculation of the individual sampling variances in
Equation (27). As a consequence, the larger the effect size
estimate, the lower the weight. An unexpected result was
that under normality, the negative bias was slightly larger
than for conditions with negatively skewed distributions
(skewness = −2 and kurtosis = 3.55, and skewness = −1
and kurtosis = 0.47). For RE methods, the negative bias
found in conditions with positive skewness was similar
to that observed in normal scenarios. Thus, violation of
the normality assumption does not appear to be critical
in the estimation of an overall effect in random‐effects
meta‐analysis.

Our findings are largely in agreement with those
reported by Kontopantelis and Reeves11,12 in the epidemi-
ological field. The conditions manipulated in our study
were related to the psychological field, where it is more
common to find meta‐analyses with a large number of
studies and standardized mean differences are often used.



FIGURE 6 Width of the 95%

confidence interval (CI) for μθ of the five

CI methods. ○ SM, standard method; Δ
HM, Hartung's method; × BOOT_P,

bootstrapping with the percentile method;

◊ BOOT_Bca, bootstrapping with the BCa

method; □ PL, profile likelihood method.

The CI methods used REML estimate of τ2.
These results are for τ2 = 0.39, μθ = 0.5, and

N = 30. The average standard error of the

simulations was 0.0062
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We also manipulated the average total sample size of the
individual studies and the overall mean of the distribu-
tion of effect parameters. Furthermore, we considered
several heterogeneity variance estimators and examined
the bootstrapping method. A limitation of Kontopantelis
and Reeves11,12 was that they used an inappropriate
method to generate the individual log odds ratios, which
cannot be applied to other effect metrics.

As expected, the FE method—which assumes no
between‐studies variability—provided a poor perfor-
mance in the estimation of an average effect size in sce-
narios where τ2 > 0. For random‐effects methods,
results were found to be unaffected by the heterogeneity
estimator used.

Several authors have criticized the standard random‐

effects method for not considering the uncertainty due
to the variance estimation process, which increases the
risk of false positive results.44 Our results showed that
HM outperformed the SM, with better coverage of the
nominal confidence level. This was also reported in
previous simulation studies restricted to normal scenar-
ios.17,22,36 Compared with HM, the PL method produced
slightly narrower CIs. Both methods yielded coverage
probabilities close to the nominal confidence level, with
slightly lower values for the PL method.

The final method that we examined was
bootstrapping. Despite its theoretical advantage under
nonnormal scenarios, this method did not perform better
than the SM, HM, or PL method across the set of manip-
ulated conditions and the comparative criteria considered
in our study. This method requires substantially more
computational resources, and our empirical results (based
on the DL estimator) do not encourage its use in this
context.

Out of the factors manipulated in this simulation, our
results suggest that the number of studies exerts an
important influence on the performance of the methods
compared. With a small number of studies (less than
20), the performance of the methods was poorer and
more notable differences were observed among them



FIGURE 7 Variability of the standard

error (SE) of the three methods. ○ SM,

standard method; Δ HM, Hartung's

method; × BOOT, bootstrapping. These

results are for τ2 = 0.39, μθ = 0.5, and

N = 30. The average standard error of the

simulations was 0.0009%
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compared with a moderate‐to‐large number of studies.
Similar results were observed in previous studies that
simulated normal scenarios.45,46 Many meta‐analyses in
clinical psychology include fewer than 20 studies, and
the situation is even more extreme in other health sci-
ences.47 Moreover, our results suggest that large
between‐studies heterogeneity led to less accurate results
and more pronounced differences among methods.

In conclusion, the results of our simulation study sug-
gest that the most commonly used meta‐analytic tech-
niques are largely robust to violations of the normality
assumption of the effect parameter distribution. All ran-
dom‐effects methods examined, including bootstrapping,
yielded similar results under optimal conditions (eg, mod-
erate‐to‐large number of studies and small between‐stud-
ies heterogeneity). However, we recommend use of the
HM and PL method to construct a CI for the average
effect due to their suitability in a wide range of scenarios
and their computational simplicity. Nevertheless, the
results of our study pertain to the standardized mean
difference and are limited to the manipulated conditions,
such that future studies are warranted to improve the
generalizability of these findings, extend the manipulated
conditions, and consider other effect size indices. Finally,
our conclusions apply not only to the estimation of an
overall effect size together with its CI under random‐

effects models but also to the analysis of the influence
of moderator variables under mixed‐effects models.
Indeed, when the influence of a categorical moderator
variable on the effect sizes is investigated, the average
effect sizes and CIs for each subgroup are calculated.
Thus, our recommendation of using HM or PL method
for that purpose can also be extended to the estimation
of the mean effect parameter of each category of
the moderator.
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