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Homogeneity tests in meta-analysis: a Monte Carlo comparison
of statistical power and Type I error
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Abstract. The statistical power and Type I error rate of several homogeneity tests, usually
applied in meta-analysis, are compared using Monte Carlo simulation: (1) The chi-square test
applied to standardized mean differences, correlation coefficients, and Fisher’s r-to-Z transfor-
mations, and (2) S&H-75 (and 90 percent) procedure applied to standardized mean differences
and correlation coefficients. Chi-square tests adjusted correctly Type I error rates to the nominal
significance level while the S&H procedures showed higher rates; consequently, the S&H
procedures presented greater statistical power. In all conditions, the statistical power was very
low, particularly when the sample had few studies, small sample sizes, and presented short
differences between the parametric effect sizes. Finally, the criteria for selecting homogeneity
tests are discussed.
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1. Introduction

Meta-analysis has become a very popular quantitative review technique in
social and behavioural research as numerous meta-analytic studies evidence.
It aims at integrating the results of a set of empirical studies on a common
topic in order to: (1) obtain a global index of the magnitude of the studied
relation, (2) test whether the study results are homogeneous, and (3) identify
possible variables or characteristics influencing the results obtained (Cooper,
1989; Cooper and Hedges, 1994; Glass et al., 1981; Hedges and Olkin, 1985;
Hunter and Schmidt, 1990; Johnson, 1993; Rosenthal, 1991; S4dnchez-Meca
and Ato, 1989). Statistical considerations on meta-analytic procedures consti-
tute an important issue. Several techniques have been devised to determine
the homogeneity. of study findings. Using Monte Carlo simulation, this article
focuses on comparing Type I and Type II error rates comparing several
homogeneity techniques commonly applied in meta-analysis. If different
homogeneity tests present different error rates, then the selection of one of
them can affect the conclusions of a meta-analysis.

To summarize the results of the studies, these are measured in effect size
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indexes. The commonest indexes of the effect size are classified into two
families (see Rosenthal, 1994): the d family and the r family. The most usual
index in the d family is the standardized mean difference of Hedges (1981),
g, defined as the difference between the two group means (usually experi-
mental vs. control) divided by the within-group standard deviation." This
index is particularly useful to integrate the results of studies with assignment
to groups or treatment levels such as the experimental or quasiexperimental
studies. On the other hand, the Pearson product moment correlation, 7, is
the typical effect size index in correlational research. There are formulas to
transform d into r and vice versa (Rosenthal, 1991, 1994) and, thus, meta-
analysts can select the suitable effect size estimator.

Meta-analysis usually begins applying a homogeneity test to the effect sizes
to test whether the average effect size is representative of all of the studies
or, on the contrary, there are discrepancies possibly attributed to moderator
variables: Each one of the three most frequently used meta-analytic ap-
proaches proposes different procedures to test the hypothesis of homogeneity
(Bangert-Drowns, 1986; Johnson et al., 1995): (1) The chi-square test of
homogeneity for 4 indexes, proposed by Hedges (1994; Hedges and Olkin,
1985), and particularly applied to the field of experimental research; (2) the
chi-square test of homogeneity on Fisher’s Z transformation of r indexes,
proposed by Rosenthal (1991) and usually applied to correlational research;
and stemming from the Schmidt—Hunter procedures, S&H, two basic proce-
dures are proposed (Hunter and Schmidt, 1990): (3) The S&H-75, particu-
larly applied to the context of the validity generalization of employment
tests, and (4) the chi-square test of homogeneity for r indexes, applied to
correlational research. Consequently, homogeneity tests differ depending on
two criteria: type of procedure (chi-square test vs. 75 percent rule) and effect
size index (d, r, or Fisher’s Z transformation).

The selection of the effect size family (d vs. r) is determined by the
research design (experimental vs. correlational). Nevertheless, Rosenthal
(1991, 1994) advocates for r family indexes, even in the context of the
experimental research, arguing the generality and simplicity of their interpre-
tation. With respect to r family, there is a diversity of opinions about the
convenience of transforming the correlation coefficient to Fisher’s Z. Some
authors (e.g., Hedges and Olkin, 1985; Rosenthal, 1991; Shadish and Had-
dock, 1994) recommend to transform the Pearson correlation coefficient
when the parametric correlation is extreme arguing the inadequate
adjustment of the r distribution to normality. Conversely, Hunter and
Schmidt (1990) suggest to apply the untransformed correlation coefficient
due to the positive bias of Fisher’s Z distribution.

The three aforementioned homogeneity chi-square tests present an ap-
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proximately chi-square distribution with & — 1 degrees of freedom, where &k
is the number of studies. The general formula is given by Shadish and
Haddock (1994 266) as Q = =* w(T; — T)?, where T; = ith effect size esti-
mate, T = weighted average effect size, and w; = ith effect size inverse-
variance.

In addition to chi-square tests, another homogeneity test for effect sizes
is that devised by Schmidt and Hunter, where the sampling error variance
and the observed variance of the effect sizes are compared to each other.?
With real data, Hunter and Schmidt (1990) propose that the homogeneity
hypothesis should be accepted when the sampling error variance is equal or
superior to 75 percent of the observed variance. But with computer-simulated
data, it is advisable to follow a less conservative criterion, because the
influence of other statistical artifacts beyond sampling error are minimized.
In agreement with Sackett et al. (1986), we have introduced the 90 percent
rule as a criterion for rejecting the homogeneity hypothesis.

Up to the present time, several Monte Carlo simulation studies have been
accomplished to know the control that some of these procedures have on
Type I and Type II error rates. Most of these studies have used the Pearson
product moment correlation, r, as the measure of the effect size focusing
particularly on the area of test validity generalization (Alexander et al. 1989;
Cornwell, 1993; Cornwell and Ladd, 1993; Osburn et al., 1983; Sackett et
al., 1986; Sagie and Koslowsky, 1993; Spector and Levine, 1987). Neverthe-
less, power and Type I error rate of these homogeneity tests when the effect
size index is the standardized mean difference have not been explored yet,
with the exception in Hedges (1982).

The purpose of the present study is to perform a Monte Carlo simulation
to test statistical power and Type I error rate of seven homogeneity tests:
(1) chi-square test applied to standardized mean difference, d (Hedges and
Olkin, 1985); (2) chi-square test applied to correlation coefficient, » (Hunter
and Schmidt, 1990); (3) chi-square test applied to the Fisher’s r-to-Z transfor-
mation (Hedges and Olkin, 1985; Rosenthal, 1991); (4) and (5) S&H-75 and
S&H-90-applied to d indexes; and (6) and (7) S&H-75 and S&H-90 applied
to r indexes. The current study extends the results of the previously men-
tioned Monte Carlo papers by combining homogeneity tests (chi-square test
and S&H procedures) together with effect size indexes (d and r families). In
this way, the present authors aimto shed light on the contradictory findings
of previous simulations. Furthermore, our research incorporates several
homogeneity tests not examined before (i.e., the S&H procedure with d
index, and the power of chi-square test with d index).

To determine Type I error rate we have generated data so that all the
studies estimate the same parametric effect size. For the examination of
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statistical power the simplest situation has been assumed: a moderator
variable with two levels of different parametric effect size for half of the
studies in each simulation. The parameters manipulated are the discrepancy
between the two parametric effect sizes (to examine Type II error), the value
of the parametric effect size, the number of studies, and the sample size
which was kept constant at each simulation.

According to the previous simulation studies, in the present study several
findings are expected. First, the S&H procedures will show higher power
than chi-square tests at the expense of higher Type I error rates. Second,
chi-square test with d and Fisher’s Z indexes will adequately adjust at nominal
significance level. Third, statistical power will increase as number of studies,
sample size, and parametric effect size differences increase.

2. Method

The simulation study was programmed in GAUSS (1992). Two normally
distributed populations with homogeneous variances were defined,
[N(u®, 0%), N(u, 0?)], where u* and u© are the experimental and control
population means, respectively; and o is the common population variance.
From these, pairs of independent random samples were generated with n®
and n as sample sizes. The simulated studies were accomplished with an
experimental and a control group. The parametric effect size, §, was defined
as (Hedges and Olkin, 1985: 76):

s=HF —F (1)

Each pair of generated samples simulated the data in a primary research.
For each simulated primary study, the following computations were carried
out:

1. Means, y* and <, and unbiased variances, (s
samples.

2. Standardized mean difference of Hedges, g, defined as (Hedges and
i Olkin, 1985: 78):

£)? and (5°)?, of the two

g=)’ —y | (2)

where s is calculated by:
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. \/(nE DG+ 0 - DED "

nE+nc-2

3.- The bias of the standardized mean difference, g, was corrected via
(Hedges and Olkin, 1985: 81):

d = c(m)g, ©
where c(m) is:

3

| C(m)=1—m. 5)

4, The d index was transformed into the point-biserial correlation
coefficient, r, via (Hedges and Olkin, 1985: 89):

r=—d‘. : (6)
7 +4(n -1
n

where n = n® = n°

5. Transformation of r into Fisher’s Z (Hedges & Olkin 1985: 120).

In this way, three indexes of the effect size were obtained for each simul-
‘ated study: standardized mean difference (4), correlation coefficient (6), and
its transformation into Fisher’s Z.

Then, a set of k studies simulating the data of a meta-analysis were
generated. The following parameters were manipulated: (1) the sample size
of each study, N = n® + n© (with n% = n), with values 30, 50, 80, 100, and
200; (2) the number of studies, k with values 6, 10, 20, 40, and 100; (3) to
study Type I error rate, the value of the parametric effect size was manipu-
lated followihg Cohen’s criterion of small, medium, and high effect sizes,
with values 6§ = 0.2, 0.5, and 0.8; (4) to study statistical power, half of the
k studies were generated so that the parametric effect size was 8, and the
second half shared the parametric effect size, 8. The discrepancy among
8,/8, was manipulated across the following conditions: 0.8/0.7, 0.8/0.6,
0.8/0.5, 0.8/0.4, 0.8/0.3, 0.5/0.4, 0.5/0.3, 0.5/0.2, 0.5/0.1, 0.5/0.0, 0.2/0.1, and
0.2/0.0.

For each one of the 5 (sample size) X 5 (number of studies) X 15 (para-
metric effect sizes) =375 conditions defined, 1,000 simulation runs were
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generated. Each replication simulated one meta-analysis. Thus, 375,000
meta-analyses were simulated. The seven homogeneity tests on effect sizes
presented in this paper were applied to each one of these replications (or
meta-analyses):

1. The Qg test, applied to d; values, has a chi-square distribution with
k — 1 degrees of freedom (Hedges and Olkin, 1985: 153):

Ou=2wi(d:—d) ~ x3_4, @)

where d; is given by (4) to each one of the k studies; d is the mean effect
size weighted by the reciprocal of the variances:

- Ek Wfid,
d="G o @®
and w¥ is the inverse-variance for the ith effect size:
E c 2 -1
d_ n; + n; di
W=\ tToow o ©
n; n; 2(77,[ + n; )

2. The Q, test, applied to r; values, has a chi-square distribution with
k — 1 degrees of freedom (Shadish & Haddock, 1994: 269):

Q=2 wWi(ri— PP ~ xao1, (10)

where r; results from applying (6) to each one of & studies; 7 is the mean
effect size weighted by the reciprocal of the variances:

SEwir
F=—r", an
P w;
and wj is the reciprocal of the estimated variance of each effect size:
E C
n; + n; — 1
ro i TR T2 (12)

(- r?y?

3. The Q. test, applied to Z; values, has a chi-square distribution with
k — 1 degrees of freedom (Rosenthal, 1991: 74):
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0z =2WiZ(Zi—Z-)2~Xi—1> (13)

where Z; results from transforming r; into Fisher’s Z; Z is the mean effect
size weighted by the reciprocal of the variances:

- Ek WlZZl

7= Sk, (14)
and w? is the reciprocal of the estimated variance of each effect size:

wZ=nF+nf-3. (15)

4. The S&H-75 percent rule, applied to d; values (SH75,), based in the
percentage of sampling error variance, given by (Hunter and Schmidt, 1990:
414):

SZ
Pd = ——%1007 (16)
Sa

where S7 is the total variance of the effect sizes and S2 the variance accounted
by the sampling error; S is given by (Hunter and Schmidt, 1990: 285):

¥ N(d; — d)?
§i=—""—" 17
¢ S* N; (7

where N; = ni" + nf in each study, and d; and d are given by (4) and (8),
respectively. The variance accounted by sampling error, S2, is given by
(Hunter and Schmidt, 1990: 286):

=[S0 Sl &

where N is the mean sample size of the k studies in the meta-analysis and d
was given in (8).

5. The S&H-75 percent rule, applied to r; values (SH75,), based in the
percentage of sampling error variance, reported by (Hunter and Schmidt,
1990: 414):
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2
=S
2
r

P, 100, (19)

where S2 is the total variance of the effect sizes and S2 the variance accounted
by the sampling error. S7 is given by (Hunter and Schmidt, 1990: 100):

_ SN = 7Y

S?
sEN,

; (20)

where N; =n¥E + nf{ in each study, and 7; and 7 are given by (6) and (11),
respectively. The variance accounted by sampling error, S2, is given by
(Hunter and Schmidt, 1990: 107):

_k(- 7%)?

S
3N,

(1)

To these five procedures, those of S&H with a less conservative criterion,
the 90 percent rule, were added following the recommendations of Sackett
et al, (1986) and Spector and Levine (1987) for the meta-analyses of computer
simulated data. So, these were applied to d (SH90,) and r (SH90,) indexes,
according to the equations (16) and (19), respectively.

The criterion for the acceptance vs. rejection of the homogeneity
hypothesis was a significance level of a = 0.05 for Q,, Q,, and Q tests. For
S&H procedures, the homogeneity hypothesis was rejected when P, (or
P,) <75 (S&H-75), and P, (or P,) <90 (S&H-90).

3. Results
3.1. Type I error rate

Table 1 presents Type I error rates for all the tests applied with § = 0.5, and
Table 2 summarizes the average Type 1 error rates as a function of number
of studies, sample size, and parametric effect size.> Q7 test systematically
presented the lowest Type I error rates across conditions (mean value: 0.031)
followed by the Q. test (mean value: 0.044); in both cases the actual Type
I error rate was lower than the nominal significance level. Q, showed a
slightly higher Type I error rate than the nominal level (mean value: 0.080).
A close review to Table 2 showed that Q, Type I error rates increased as
number of studies increased, and decreased as a function of sample size and
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Table 1. Type I error for chi-square homogeneity tests and Schmidt and Hunter procedures

&§=0.50
k N Qu (o 0z SH90, SH75, SH90, SH75,
6 30 0.050 0.085 0.037 0.217 0.142 0.276 0.180

50 0.065 0.076 0.052 0.237 0.153 0.265 0.177

80 0.045 0.051 0.041 0.231 0.152 0.243 0.161
100 0.051 0.063 0.043 0.243 0.152 0.246 0.156
200 0.043 0.042 0.037 0.229 0.150 0.220 0.147

10 30 0.035 0.091 0.028 0.215 0.108 0.294 0.164
50 0.038 0.062 0.030 0.232 0.125 0.264 0.147

80 0.050 0.077 0.042 0.249 0.152 0.264 0.155

100 0.041 0.050 0.037 0.273 0.149 0.275 0.153

200 0.044 0.046 0.039 0.277 0.144 0.255 0.137

20 30 0.040 0.130 0.026 0.231 0.103 0.331 0.156
50 0.040 0.073 0.024 0.245 0.098 0.287 0.105

80.  0.037 0.063 0.030 0.234 0.105 0.250 0.106

100 0.042 0.055 0.037 0.234 0.099 0.238 0.098

200 0.049 0.049 0.042 0.245 0.103 0.226 0.093

40 30 0.036 0.166 0.021 0.201 0.045 0.329 0.088
50 0.040 0.101 0.025 0.220 0.053 0.271 0.076

80 0.046 0.076 0.027 0.224 0.063 0.247 0.068

100 0.045 0.073 0.030 0.240 0.065 0.244 0.061

200 0.042 0.039 0.026 0.202 0.051 0.180 0.044

100 30 0.030 0.238 0.021 0.131 0.012 0.273 0.036
50 0.031 0.134 0.017 0.149 0.010 0.221 0.012

80 0.046 0.092 0.029 0.183 0.012 0.190 0.020

100 0.040 0.057 0.025 0.159 0.014 0.155 0.012

200 0.051 0.050 0.029 0.191 0.012 0.151 0.009

Note. k = number of studies; N = sample size; Q,, Q. and Qz = chi-square tests applied to d,
r, and Z indexes; SH90,, SH90,, SH75,, and SH75, = Schmidt—Hunter 90 or 75 percent rules
applied to d or r indexes; & = parametric effect size. :

parametric effect size. In fact, with small sample sizes and a high number of
studies, Q, presented inadmissibly higher Type I error rates. With Q test,
Type I error rate slowly decreased as the maghitude of the effect size in-
creased, but with Q, test Type I error rate was constant throughout the
various effect size values. Sample size and number of studies did not seem
to influence Type I error rates of Q, and Q tests; only Oz Type I error
rate slightly decreased as number of studies increased.

S&H-75 and S&H-90, applied to both d and r values, did not adequately
control Type I error rate with the following average values: SH75, = 0.103;
SH75; = 0.090; SH90, = 0.248, and SH90, = 0.222. However, there was an
exception with k = 100, where SH75, and SH75, procedures presented Type
I error rates below chi-square tests (see Tables 1 and 2). SH75, and SH75,
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Table 2. Average Type I Error rates by number of studies (k), by sample size (N), and by
parametric effect size (8)

K Qa o, 0z SH90, SH75, SHY0, SH75,
6 0.049 0.062 0.041 0.230 0.147 0.249 0.159
10 0.042 0.064 0.035 0.248 0.133 0.267 0.148
20 0.046 0.076 0.034 0.245 0.103 0.270 0.117
40 0.044 0.089 0.028 0.228 0.056 0.256 0.071
100 0.040 0.112 0.022 0.162 0.010 0.198 0.020
N Qq o, Oz SHY90, SH754 SH90, - SH75,
30 0.039 0.138 0.027 0.204 0.085 0.302 0.136
50 0.045 0.090 0.031 0.218 0.090 0.261 0.107
80 0.045 0.069 0.034 0.227 0.090 0.237 0.095
100 0.046 0.060 0.035 0.235 0.095 0.235 0.094
200 0.046 0.045 0.033 0.228 0.089 0.206 0.083
8 oy o Qz SH90, SH75, SH90, SH75,
02  0.045 0.104 0.040 0.221 0.087 0.241 0.093
- 05 0.043 0.082 0.032 0.220 0.091 0.248 0.102
0.8 0.044 0.056 0.024 0.227 0.091 0.255 0.113

Note. Qu4, Q- and Qz = chi-square tests applied to d, r, and Z indexes; SH90,, SH90,, SH75,,
and SH75, = Schmidt-Hunter 90 or 75 percent rules applied to d or r indexes.

procedures showed decreased Type 1 error rate as k increased, while SH90,
and SH90, did not show a clear trend. Sample size influenced the S&H
procedure when applied to 7 indexes (SH75, and SH90,). As can be seen,
Table 2 shows that the larger the sample size the smaller the Type I error
rate, Furthermore, the S&H procedure applied to r values increased Type I
error rates as the magnitude of the effect size increased (see Table 2).
However, when the procedure is applied to d values no interesting changes
were observed as a function of sample size and the parametric effect size.

3.2. Statistical power

Tables 3 and 4 show the power values for two of the manipulated subpopul-
ation differences; 8;/8;: 0.5/0.4 and 0.5/0.0, respcctively.3 Table 5 summar-
izes the average power values as a function of number of studies, sample
size, and subpopulation differences. S&H procedures showed greater power
than Chi-square tests. Mean power values for the four S&H procedures
were 0.586, 0.425, 0.613, and 0.446 for SH90,, SH754, SH90,, and SH75,,
respectively. For Qg4, Q,, and Q7 procedures, mean power values were 0.360,
0.423, and 0.333, respectively. Only for k = 100 chi-square tests presented
greater power than S&H-75 (SH75; and SH75,). Comparing the power of
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Table 3. Power values chi-square homogeneity tests and Schmidt and Hunter procedures
8, =0.50 5, =0.40
k N [oF 0, 0z SH90, SH75, SH90, SH75,

6 30 0.03%9 0.086 0.034 0.219 0.142 0.274 0.177
50 0.041 0.060 0.038 0.246 0.142 0.278 0.162

80 0.056 0.074 0.044 0.269 0.175 0.273 0.181

100 0.059 0.069 0.050 0.259 0.170 0.268 0.168

200 0.090 0.092 0.085 0.321 0.230 0.313 0.217

10 30 0.050 0.119 0.045 0.271 0.152 0.338 0.205
50 0.048 0.080 0.038 0.256 0.149 0.285 0.166

80 0.063 0.075 0.054 0.291 0.169 0.306 0.171

100 0.077 0.097 0.071 0.313 0.176 0.311 0.177

200 0.071 0.072 0.062 0.346 0.209 0.342 0.198

20 30 0.042 0.146 0.033 0.241 0.103 0.328 0.151
: 50 0.042 0.102 0.033 0.287 0.111 0.316 0.142
80 0.065 0.098 0.051 0.353 0.150 0.361 0.164

100 0.073 0.091 0.056 0.305 0.136 0.319 0.142

200 0.101 0.107 0.084 0.388 0.188 0.372 0.181

40 30 0.043 0203 . 0.027 0.228 0.056 0.342 0.104
50 0.057 0.130 0.037 0.254 0.066 0.305 0.083

80 0.075 0.117 0.053 0.311 0.089 0.336 0.099

100 0.092 0.119 0.073 0.340 0.108 0.339 0.107

200 0.125 0.135 0.105 0.424 0.150 0.405 0.138

100 30 0.036 0.281 0.017 0.147 0.090 0.287 0.033
50 0.052 0.199 0.027 0.212 0.013 0.281 0.023

80 0.079 0.136 0.049 0.260 0.023 0.290 0.025

100 0.108 0.164 0.077 0.324 0.036 0.323 0.033

200 0.219 0.234 0.158 0.490° 0.089 0.451 0.077

Note. k = number of studies; N = sample size; Q4, O, and Qz = chi-square tests applied to d,
r, and Z indexes; SH90,, SH90,, SH754, and SH75, = Schmidt—Hunter 90 or 75 percent rules
applied to d or r indexes; 8, and 8, = parametric effect sizes.

tests applied to d values with those to r values, the latter showed larger
power than the former. Thus, SH75, and SH90, showed larger power than
SH75,; and SH90,, and Q, larger power than Q,. Nevertheless, this mainly
occurred with low sample size and high discrepancy among the two para-
metric effect sizes.

As expected, the homogeneity tests increased their statistical power as
number of studies, &, sample size, N, and the magnitude of the difference
among the two parametric effect sizes, 8,/8,, increased (see Table 5). There
were, however, some exceptions; when the parametric difference was small
(i.e.,|8 — 8| =0.10r0.2), Q, test did not systematically show power values
increasing as N increased. Probably, it was due to the deviation from nor-
mality in the distribution of sample rs. Moreover, S&H-75, applied to d or



396 Julio Sdnchez-Meca and Fulgencio Marin-Martinez

Table 4. Power values for chi-square homogeneity tests and Schmidt and Hunter procedures
8, = 0.50 8, =0.00
k N Qu Q. 0z SH90, SH75, SHY0, SH75,

6 30 0.163 0.249 0.150 0.440 0.320 0.488 0.379
50 0.325 0.389 0.312 0.663 0.543 0.679 0.565

80 0.500 0.540 0.490 0.809 0.727 0.817 0.733

100 0.618 0.649 0.613 0.872 0.805 0.877 0.809

200 0.932 0.936 0.930 0.992 0.980 0.992 0.980

10 30 0.257 0.418 0.229 0.599 0.442 0.650 0.478
50 0.402 0.510 0.384 0.727 0.600 0.755 0.622

80 0.651 0.708 0.635 0.899 0.812 0.905 0.826

100 0.773 0.813 0.760 0.949 0.900 0.952 0.905

200 0.988 0.988 0.988 1.0 0.998 1.0 0.998

20 30 0.304 0.571 0.282 0.683 0.469 0.738 0.527
50 0.629 0.758 0.617 0.882 0.757 0.901 0.774
80 0.859 0.909 0.848 0.977 0.925 0.979 0.930
100 0.954 0.965 0.948 0.993 0.976 0.994 0.977
200 0.999 0.999 0.999 1.0 1.0 1.0 1.0

40 30 0.478 0.775 0426 0.776 0.509 0.840 0.567
50 0.819 0.921 0.805 0.956 0.837 0.967 0.868
80 0.992 0.995 0.989 0.999 0.994 0.999 0.995
100 0.997 1.0 0.997 1.0 0.998 1.0 0.999
200 1.0 1.0 1.0 1.0 1.0 1.0 1.0

100 30 0.770 0.982 0.710 0.929 0.567 0.973 0.639
50 0.991 0.998 0.988 0.998 0.967 0.998 0.976

80 1.0 1.0 1.0 1.0 1.0 1.0 1.0
100 1.0 1.0 1.0 1.0 1.0 1.0 1.0
200 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Note. k = number of studies; N = sample size; Q4, O, and Qz = chi-square tests applied to d,
r, and Z indexes; SH90,, SH90,, SH75,, and SH75,= Schmidt—Hunter 90 or 75 percent rules
applied to d or r indexes; 8, and &, = parametric effect sizes.

r values, and with small parametric difference (i.e., 0.1 or 0.2) did not show
a clear trend either between power and sample size or between power and
number of studies.

4. Discussion

From our findings we can conclude that, in general, the homogeneity tests
applied to meta-analysis present insufficient statistical power, that is, lower
than the 0.80 value Cohen (1988) recommended. Furthermore, the real
power of the analyzed tests is even inferior to that shown in the tables, since
the only statistical artifact introduced in our computations was the random
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Table 5. Average power values rates by number of studies (k), by sample size (N), and by
subpopulation differences (|8, ~ &)

k Qa o, 0z SH90,  SH75;  SH9.  SHTS,
6 0225 0250 0210  0.477 0.382 0.494  0.397
10 0270 0310 0252  0.536 0.414 0.558 0.433
20 0344 0404 0321 0.601 0.443 0.627 0.465
40 0428 0508 0396  0.642 0.450 0.675 0.475
100 0531 - 0642 0486  0.672 0.435 0.713 0.461
N Ou 0, 0z SH90,  SH75,  SH9,  SHTS,
30 0154 0318  0.123  0.395 0.213 0.491 0.285
50 0258 0343 0229  0.510 0.327 0.547 0.359
80 0369  0.409 0342  0.605 0.441 0.615 0.450
100 0427 0452 0401  0.650 0.498 0.653 0.500
200 0590 0591 0569  0.767 0.646 0.760 0.638

|8, ~ & Qu a 0z SH90,  SH75,  SH90,  SH75,
0.1 0073  0.122 0056  0.296 0.127 0.321 0.137
0.2 0208 0280 0178  0.478 0.263 0.509 0279
0.3 0410 0481 0372 0.667 0.488 0.703 0.519
0.4 0595  0.663  0.565  0.802 0.674 0.830 0.707
0.5 0732 0790 0711  0.884 0.802 0.902 0.828

Note. Q4, O, and Q = chi-square tests applied to d, r, and Z indexes; SHI0,, SH90,, SH75,,
and SH 75, = Schmidt-~Hunter 90 or 75 percent rules applied to d or r indexes.

sampling error. A meta-analysis with real data is affected by other statistical
artifacts reducing power, such as unreliability of measurements or range
restrictions. Consequently, caution is recommended to use a homogeneity
test’s nonsignificant result as a criterion to give up searching for moderator
variables because of its low statistical power (Hall and Rosenthal, 1991;
Johnson and Turco, 1992; Johnson et al., 1995).

The comparison of the various homogeneity tests leads us to several conclu-
sions. First, in a meta-analysis in unfavorable conditions;-that-is-to-say, with _
a small number of studies and small sample sizes, neither power nor Type I
error rate are adequately controlled by the S&H procedures. On the other
hand, chi-square tests, at least, guarantee the control of Type I error rates,
Second, choosing among d, ¢, or Z indexes affects Type I and Type II error
rates. Particularly, with r index the power is slightly greater than that of d
and Z indexes, but, consequently, the Type I error rate is also greater. If »
values are transformed into Fisher’s Z, Type I error rates will be below the
nominal significance level across conditions. Since the statistical power is low
for the chi-square test applied to both #’s and Z’s indexes, the transformation
into Fisher’s Z makes possible at least an adequate adjustment at the signifi-
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cance level. From this point of view, the findings of the present study support
the convenience of transforming r into Fisher’s Z.

Generally, there is not any superior homogeneity test. Nevertheless, choos-
ing the most adequate homogeneity test depends on the characteristics of
the meta-analysis, such as number of studies, average sample size of the
studies and the effect magnitude that is assumed for the moderator variables.
Thus, the homogeneity tests proposed by the approaches of Hedges and
Olkin (1985), Rosenthal (1991), and Hunter and Schmidt (1990) should be
considered on the light of the particular conditions of a meta-analysis. The
tables included in this report, as well as those from other Monte Carlo
studies, can be very useful to select the most adequate homogeneity test,
and to interpret already carried out meta-analyses results,
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Notes

1. The estimator of the standardized mean difference adopted in the present paper is that
proposed by Hedges (1981). Cohen (1988) and Glass et al. (1981) propose alternative
estimators differring in estimated standard deviation.

2. The Schmidt-Hunter procedure allows to control other statistical artifacts besides sampling
error, such as unreljability of measures, range restriction, dichotomization, etc. In our study,
these possibilities are excluded because other procedures (chi-square tests) only take into
account sampling error. On the other hand, sampling error is the main statistical artifact
(Koslowsky and Sagie, 1994).

3. The tables in this report show the general trend in the results. Moreover, Tables 2 and 5
summarize all the results. The remaining tables, excluded because of space reasons, may be
requested from the authors.
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