
When a primary study includes several indicators of the same construct, the usual strategy
to meta-analytically integrate the multiple effect sizes is to average them within the study.
In this paper, the numerical and conceptual differences among three procedures for averaging
dependent effect sizes are shown. The procedures are the simple arithmetic mean, the Hedges
and Olkin (1985) procedure, and the Rosenthal and Rubin (1986) procedure. Whereas the
simple arithmetic mean ignores the dependence among effect sizes, both the procedures by
Hedges and Olkin and Rosenthal and Rubin take into account the correlational structure of
the effect sizes, although in a different way. Rosenthal and Rubin’s procedure provides the
effect size for a single composite variable made up of the multiple effect sizes, whereas
Hedges and Olkin’s procedure presents an effect size estimate of the standard variable. The
three procedures were applied to 54 conditions, where the magnitude and homogeneity of
both effect sizes and correlation matrix among effect sizes were manipulated. Rosenthal and
Rubin’s procedure showed the highest estimates, followed by the simple mean, and the
Hedges and Olkin procedure, this last having the lowest estimates. These differences are not
trivial in a meta-analysis, where the aims must guide the selection of one of the procedures.
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La estrategia usual para integrar meta-analíticamente los múltiples tamaños del efecto
cuando un estudio primario incluye varios indicadores del mismo constructo, es la de
promediarlos. En este trabajo se muestran las diferencias numéricas y conceptuales entre
tres procedimientos para promediar tamaños del efecto dependientes. Los procedimientos
son el de Hedges y Olkin (1985), el de Rosenthal y Rubin (1986) y el de la media aritmética.
Mientras que el de la media aritmética ignora la dependencia entre los tamaños del efecto,
tanto el de Hedges y Olkin como el de Rosenthal y Rubin tienen en cuenta, aunque de
diferente forma, la estructura correlacional de los tamaños del efecto. El procedimiento
de Rosenthal y Rubin proporciona el tamaño del efecto de una sola variable compuesta,
obtenida a partir de los diversos tamaños del efecto, mientras que el de Hedges y Olkin
aporta una estimación del efecto para la variable estándar. Los tres procedimientos se
aplicaron a 54 condiciones, manipulándose la magnitud y homogeneidad del vector de
los tamaños del efecto y de la matriz de correlaciones entre ellos. Con el procedimiento
de Rosenthal y Rubin se obtuvieron las estimaciones más elevadas, seguido del de la
media y del de Hedges y Olkin. Estas diferencias no son triviales en un meta-análisis,
cuyos objetivos son los que deben guiar la elección de uno u otro de los procedimientos.  
Palabras clave: meta-análisis, tamaño del efecto, diferencia media tipificada, dependencia
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Meta-analysis has recently become a widely used
methodology in the social and behavioral sciences. Its aim
is to quantitatively integrate the results of a set of studies
about a research problem (Glass, McGaw, & Smith, 1981;
Hedges & Olkin, 1985; Hunter & Schmidt, 1990; Marín-
Martínez & Sánchez-Meca, 1998; Rosenthal, 1991; Sánchez-
Meca & Marín-Martínez, 1997, 1998a, 1998b). The stages
to carry out a meta-analysis are similar to those of an
empirical study (Cooper, 1989; Rosenthal, 1991; Sánchez-
Meca & Ato, 1989): (a) problem formulation, (b) literature
review, (c) coding of variables, (d) analysis and interpretation,
and (e) publication. The main difference between a primary
study and meta-analysis is the unit of analysis; whereas in
the former it is (usually) the subject, in the latter it is the
study itself. In order to accomplish a meta-analysis, the results
of each study have to be expressed in a common metric,
capable of representing the relationship between two
variables. With this aim, an index of the effect magnitude is
defined to represent the overall result of each study. For
experimental and correlational studies, the most usual indexes
of the effect size (ES) in meta-analysis are the standardized
mean difference and the Pearson correlation coefficient,
respectively (Rosenthal, 1994).

To guarantee the independence assumption among ESs
in a meta-analysis, each empirical study must contribute with
just one ES estimate. However, from a single study it is
possible to obtain several ES estimates. For example, in a
study about gender differences in aggressive behavior, two
groups of subjects (male vs. female) are compared on
measures such as administering shocks, hitting, and delivering
noxious noise; then an ES estimate can be calculated for
each measure. If all of the obtained ES estimates are included
in the meta-analysis, the independence assumption is not
met. Various strategies have been devised to solve this
problem: (a) obviate the problem (Glass et al., 1981);  (b)
select the conceptually most relevant measure (Matt, 1989);
(c) carry out separate meta-analyses, one for each measure
(Cooper, 1989); (d) include all of the ESs in the meta-
analysis, applying appropriate multivariate techniques, such
as generalized least  square models (Gleser & Olkin, 1994;
Kalaian & Raudenbush, 1996; Raudenbush, Becker, &
Kalaian, 1988); and (e) average the ESs in each single study
contributing with just one estimate in the meta-analysis
(Hedges & Olkin, 1985; Marascuillo, Busk, & Serlin, 1988;
Rosenthal & Rubin, 1986).

When the outcome measures of a single study are different
indicators of the same construct, the usual strategy for
overcoming the dependence problem is to average the ES
estimates obtained from those measures. Although it is very
usual for meta-analysts to calculate a simple mean or median
ES to summarize a set of non-independent ESs, these
procedures do not take into account the intercorrelations
among the outcome measures. However, Marascuillo et al.
(1988) uphold calculating a simple average when the set of
individual ESs are similar. Two more accurate procedures
have been proposed by Rosenthal and Rubin (1986) and
Hedges and Olkin (1985; see also Gleser & Olkin, 1994).
But the meta-analytic literature has overlooked the conceptual
differences between both procedures. In fact, there is not any
work dealing with these differences and the existing works
referring to both procedures present them as similar (e.g.,
Abrami, Cohen, & d’Apollonia, 1988; Johnson & Eagly, in
press; Kalaian & Raudenbush, 1996; Matt & Cook, 1994;
Rosenthal, 1995). After reading these studies, a meta-analyst
would erroneously interpret the procedures as interchangeable.
The consequences of this confusion are not trivial, because
the selection of the procedure for averaging dependent ESs
can affect the meta-analysis results. The purpose of this work
was to clarify the conceptual and quantitative differences
among Rosenthal and Rubin’s procedure (RR), Hedges and
Olkin’s procedure (HO), and the simple mean procedure.
Firstly, the procedures for averaging dependent ESs are
presented; then, the estimates obtained by each procedure in
several conditions are shown, and, finally, criteria for choosing
among the procedures are discussed.

Procedures for averaging dependent ESs

This work focuses on the standardized mean difference,
d, as the effect size index. It is defined as the difference
between two group means (usually experimental vs. control)
divided by the within-group standard deviation:1

yÐE –  yÐC
d = ––––––––––––––––,                   

S
(1)

where yÐE and yÐC are the experimental and control group
means, respectively, and S is the within-group standard
deviation, calculated by:

1 The d index proposed in equation (1) is a positively biased estimator of population standardized mean difference, d (Hedges &
Olkin, 1985). The bias can be corrected by the factor c(m): 

3
c(m) = 1 – –––––––––––––––––––––––––,                                                                                                                                   (10)

4m – 9

where m = nE + nC. Thus, an unbiased estimator of d is du index, given by:

du = c(m)d.                                                                                                                                                  (11)
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(nE – 1)(sE)2 + (nC – 1)(sC)2
S =   –––––––––––––––––––––––––––––––––––––––––––––––––,

nE + nC – 2
(2)

nE and nC being the sample sizes, and (sE)2 and  (sC)2 being
the unbiased variances of the two groups.

In a study with p dependent variables measuring the
same construct, a vector, d, of d values with p x 1 dimension
can be computed, where each d estimate stems from one
dependent variable:

d’ = (d1, d2, ..., dp) (3)  

The associated p x p covariance matrix, S, is given by:

s1
2 s12 … s1p

s21 s2
2

… s2p
. . . .        (4)  
. . . .
. . . .

sp1 sp2 … sp
2

where s2
i is the variance of the ith d value and is obtained by: 

nE + nC di
2

si
2 = –––––––––––––––– + ––––––––––––,

nE nC 2(nE + nC)
(5)

and sii’ (i ≠ i’ ) is the covariance between two d estimates,
given by: 

sii’ = r si si’ ,                         (6)

r being the Pearson correlation coefficient between each
pair of dependent variables.

The simplest procedure to combine p dependent ESs is
an arithmetic mean, ignoring the correlational structure of
the data. Thus, we compute the average d value, dM,
according to:

∑didM = –––––––––,
p

(7)

The inappropriateness of this overall index is obvious
because of the dependence of the ESs, but Marascuillo et al.
(1988) defend its application if the dependent ESs are
homogeneous: “If one is able to pool within-group effect sizes,

it is because the estimates are not statistically different from
one another. Hence, their standard errors will not be statistically
different from one  another. Therefore, [...] the treatment effects
can be pooled by a simple average” (p. 80). Hedges and Olkin
(1985) and Rosenthal and Rubin (1986) have proposed two
procedures that consider the correlational nature of data. The
Rosenthal and Rubin procedure requires the assumption of
homogeneous correlations among the p d estimates and is
obtained by (Rosenthal & Rubin, 1986, p.  402):2

∑ li didRR = –––––––—–––––––––—–––––––––––––––,
r (∑li)

2 + (1 – r)∑li
2

(8)

where li is the weight we wish to assign, according to its
importance, to the ith dependent variable (or effect size), and
r is the average intercorrelation among the dependent variables.
On the other hand, Hedges and Olkin’s proposal (Hedges &
Olkin, 1985, p. 212; see also Gleser & Olkin, 1994, p. 352)
implies computing an  average d value, dHO, taking into
account the correlation matrix of the d estimates, via: 

e’ S–1
dHO =   ––––––––––––––  d,

e’ S–1e
(9)

where e is a p x 1 unitary vector, d is given by (3), and S
is given by  (4). The HO procedure requires the homogeneous
effect sizes assumption and they propose testing it by a Chi-
square test (Hedges & Olkin, 1985, Eq. 7, p. 211). 

The RRand HO procedures have different purposes and
estimate different quantities. The RRprocedure provides the
effect size for a single composite variable made up of the
multiple effect sizes. It is analogous, for example, to
computing the effect size on the total score obtained on a 25-
item test. In terms of correlation coefficient, the RRproposal
is equivalent to computing the squared multiple correlation
coefficient resulting from regressing the 25 items onto the
group membership. Instead, the HO proposal would imply
computing 25 individual effect size estimates, one for each
item, and estimating their typical value. The HO procedure
is a generalization of averaging a set of independent ESs
weighted by its inverse-covariance matrix, where the
covariances are not null. If the ESs were independent, then
the covariance matrix would become a diagonal-variance
matrix with zeros as diagonal-off elements. Thus, the HO

2 The equation (1) in Rosenthal and Rubin (1986, p. 402) is a function of the statistical t  test for comparing two independent groups: 

∑liti /   (n – 1)/2
dRR =  –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– ,                                                                                                               (12)

r(∑li)
2 + (1 – r)∑li

2

where n = nE = nC. Our equation (9) is the same, but rearranged as a function of standardized mean difference, d. To apply this
procedure, we give equal weight to the p variables so that l1 = l2 = … = lp = 1.

√

S =

√

√
√
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procedure is conceptually similar to obtaining a simple mean,
however taking into account the correlational structure of the
data. In sum, the RRprocedure estimates a composite ES
resulting from pooling all of the dependent variables, achieving
more reliability than each individual variable. On the other
hand, the HO procedure estimates the ES representative of
each variable, achieving more efficiency than if only one
variable were used. 

A comparative study

As mentioned above, the arithmetic mean is an incorrect
procedure for averaging dependent ESs, because it ignores the
correlational structure of the data, although it is advisable in

some conditions. The RRand HO procedures take into account
the intercorrelations  among variables, but estimating different
parameters; thus, they lead to different quantities; furthermore,
factors such as the magnitude and homogeneity of both the
effect size vector and the correlation matrix of dependent
variables will affect the procedures to a different extent.

In order to show the divergences among the three
procedures, a single study with two groups (experimental
and control), the same sample size per group (nE = nC =
15), and three dependent variables (p = 3) was defined, and
a series of conditions that could affect the results was
manipulated (see Tables 1 and 2):

(a) Magnitude of the ESs: vectors of three ESs averaging
0.2, 0.5, and 0.8 were defined, following the criteria in
Cohen (1988).  

(b) Homogeneity of ESs: three homogeneity levels for
d estimates were defined, maximum (s2 = 0.0), medium (s2

= 0.03), and low (s2 = 0.24).
(c) Magnitude of the correlation matrix among dependent

variables: three conditions were defined in order to obtain
mean correlations of .4, .6, and .8.

(d) Homogeneity of the correlation matrix for the
dependent variables: two conditions were defined, one with
identical correlations, and the other with medium homogeneity. 

Thus, a total of 3 (magnitude of ESs) x 3 (homogeneity
of ESs) x 3 (magnitude of correlation matrix) x 2
(homogeneity of correlation matrix) = 54 conditions were
defined. In each of these conditions, the three procedures for
averaging were applied, using the GAUSS (1992) program. 

Tables 3 and 4 show the estimates for each procedure as
a function of the manipulated conditions.3 As expected, when

Table 2
Manipulated Conditions in Correlation Matrix

Correlation Magnitude of the Correlation Matrix

Matrix Homogeneity Low                                         Medium                                     Maximum

1 1 1
Maximum 0.4 1 0.6 1 0.8 1

0.4 0.4 1 0.6 0.6 1 0.8 0.8 1

1 1 1
Medium 0.35 1 0.55 1 0.75 1

0.4 0.45 1 0.6 0.65 1 0.8 0.85 1

Table 1
Manipulated Conditions in ES Vectors

Effect size magnitude
ES homogeneity Low      Medium        High

0.2 0.5 0.8
Maximum 0.2 0.5 0.8

0.2 0.5 0.8

0.0 0.3 0.6
Medium 0.2 0.5 0.8

0.4 0.7 1.0

–0.4 –0.1 0.2
Low 0.2 0.5 0.8

0.8 1.2 1.4

3 The statistically adequate application of the averaging procedures requires the homogeneity assumption of the dependent ESs. After
applying the Chi-square test for the homogeneity of dependent ESs (Hedges & Olkin, 1985, p. 211), we found a significant heterogeneity
in the conditions labeled as being of low homogeneity ESs (p < .05), and a nonsignificant heterogeneity in the other conditions. Although
it is inappropriate to apply the procedures in the heterogeneous case, we have included it as a guideline, referring briefly to its trend.
On the other hand, it is not usual for meta-analytic studies to test the homogeneity assumption in order to average dependent ESs.
Consequently, meta-analyses averaging heterogeneous dependent ESs in their primary studies are very common, and our findings can
contribute to assessing the influence of this practice.
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the ES vector was homogeneous (e.g., d’ = [0.5, 0.5, 0.5]),
the HO average was equivalent to the individual ES estimates;
that is, it estimated the ES of the typical dependent variable
of the study, and coincided with a simple average.
Nevertheless, the RR procedure presented a systematically
higher estimate than the constant magnitude, because it
estimated a composite ES, adding the nonredundant
information in the individual ESs. For example, d’ = [0.5,
0.5, 0.5] being the ES vector (maximum ES homogeneity
and medium ES magnitude), andr Ð = 0.6 being the common
correlation between the ESs in the homogeneous correlation
case, Table 3 shows that  dHO =  dM = 0.5, whereas the RR
procedure yielded the higher  estimate dRR = 0.584. Only

with a perfect correlation among ESs, will the RRprocedure
coincide with the individual estimates, as well as with the
HO procedure and with a simple average. Following with the
analogy of the items and the test, the RRprocedure represented
the overall ES estimate of the test, whereas the HO procedure
gave an ES estimate of the standard item.

With heterogeneous ESs, the HO average was always
smaller than the simple mean because of the fact that it is
a sum of ESs, each corrected for its regression on the other
individual effect sizes. The RRprocedure, as a composite
estimate, presented the highest magnitude. For example,
Table 3 shows that dHO = 0.716 was lower than dM = 0.800,
and so, the RRprocedure yielded the highest estimate dRR

Table 3
Estimates in the Homogeneous Correlation Case

High   (r Ð = 0.8)                         Medium   (r Ð = 0.6)                          Low   (r Ð = 0.4)

ES H ES M dM dRR dHO dM dRR dHO dM dRR dHO

High 0.800 0.859 0.800 0.800 0.934 0.800 0.800 1.033 0.800

Max. Med. 0.500 0.537 0.500 0.500 0.584 0.500 0.500 0.645 0.500

Low 0.200 0.215 0.200 0.200 0.233 0.200 0.200 0.258 0.200

High 0.800 0.859 0.766 0.800 0.934 0.784 0.800 1.033 0.790

Med. Med. 0.500 0.537 0.477 0.500 0.584 0.490 0.500 0.645 0.494

Low 0.200 0.215 0.191 0.200 0.233 0.196 0.200 0.258 0.197

High 0.800 0.859 0.512 0.800 0.934 0.664 0.800 1.033 0.716

Low Med. 0.500 0.537 0.310 0.500 0.584 0.411 0.500 0.645 0.445

Low 0.200 0.215 0.122 0.200 0.233 0.164 0.200 0.258 0.178

Note.ES H = Effect size homogeneity; ES M = Effect size magnitude.

Table 4
Estimates in the Homogeneous Correlation Case

High   (r Ð = 0.8)                         Medium   (r Ð = 0.6)                          Low   (r Ð = 0.4)

ES H ES M dM dRR dHO dM dRR dHO dM dRR dHO

High 0.800 0.859 0.800 0.800 0.934 0.800 0.800 1.033 0.800

Max. Med. 0.500 0.537 0.500 0.500 0.584 0.500 0.500 0.645 0.500

Low 0.200 0.215 0.200 0.200 0.233 0.200 0.200 0.258 0.200

High 0.800 0.859 0.727 0.800 0.934 0.767 0.800 1.033 0.779

Med. Med. 0.500 0.537 0.439 0.500 0.584 0.472 0.500 0.645 0.482

Low 0.200 0.215 0.153 0.200 0.233 0.178 0.200 0.258 0.186

High 0.800 0.859 0.381 0.800 0.934 0.611 0.800 1.033 0.682

Low Med. 0.500 0.537 0.176 0.500 0.584 0.357 0.500 0.645 0.411

Low 0.200 0.215 –0.011 0.200 0.233 0.109 0.200 0.258 0.143

Note.ES H = Effect size homogeneity; ES M = Effect size magnitude.



= 1.033 for d’ = [0.2, 0.8, 1.4] (low ES homogeneity and
high ES magnitude), and r Ð = 0.4. In any case, the simple
mean is a mathematically incorrect procedure of estimation,
because of the dependence among ESs. It is only a good
approximation when the individual ESs are homogeneous.

Another interesting result was the effect of manipulating
the correlation matrix magnitude on the averaging
procedures. The lower the correlation among the dependent
ESs, the higher the nonredundant information. Thus, both
the RRand the HO estimates decreased their magnitude as
the correlation matrix magnitude increased. However, the
trend in RRwas more pronounced than in HO, and HO was
not affected when the ESs vector was homogeneous. For
example, Table 3 shows that, for d’ = [0.6, 0.8, 1], dRR =
1.033 and dHO = 0.790 when r Ð = 0.4, whereasdRR = 0.859
and dHO = 0.766 when r Ð = 0.8. 

Although we have reviewed the performance of the
procedures when applied in a single study, in practice, their
differences can be accumulated throughout the primary studies
in a meta-analysis, greatly affecting the overall results of
such a meta-analysis. Furthermore, for greater generalizability
of these results, one would require a more comprehensive
simulation study, where the meta-analytic conditions usually
found in practice (number of studies, sample size of the
studies, number of dependent ESs by study, and population
ES distribution) would be taken into account. In any case,
the numerical discrepancies among the procedures in the
example clearly show that it is necessary to clarify the criteria
supporting a particular choice among the procedures. 

Discussion

In this paper, we have shown the numerical and
conceptual differences among three procedures for averaging
dependent ESs. The application of the procedures to the same
data offers different results, because they estimate different
quantities. Thus, the meta-analyst must know the purpose of
each procedure, in order to select the one best fitted to his
or her aims. 

The key difference between the RR and the HO
procedures is in the management of the available
information. The HO procedure is equivalent to selecting
the information of a single ES, the standard one, using the
information of the other ESs in order to obtain more
efficiency in the estimation. The increase in efficiency
depends on the magnitude of the correlations among ESs.
With dependent variables estimating the same construct, a
relatively high correlation is expected. As Hedges and Olkin
(1985, p. 222) pointed out, when the correlations are high,
little is gained in efficiency; then, little information is lost
by selecting any of the individual ESs or calculating the
simple arithmetic mean of the ESs. Assuming the ESs are
homogeneous, Marascuillo et al. (1988) also proposed
computing the simple arithmetic mean of the ESs. 

The RRprocedure takes into account all of the information
contained in the dependent variables, calculating a composite
outcome measure. The pooled ES is derived from this
composite, taking advantage of the nonredundant information
in the individual ESs. The higher reliability of the composite
ES justifies the higher magnitude of the RRestimate with
regard to both the HO estimate and the simple mean. 

From the point of view of a meta-analyst who intends to
take advantage of the higher reliability of a composite ES, the
RRprocedure will be chosen. Other factors being equal, the
larger the number of dependent ESs, the larger the composite
ES. On the other hand, if the meta-analyst wants to control the
different number of dependent variables in a set of primary
studies, representing each study by its typical ES, he or she
would apply the HO procedure. Finally, the simple average
among ESs, although technically incorrect, produces suitable
estimates when the homogeneity of the dependent ESs is
assumed, with very similar results to those of the HO procedure. 
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