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Abstract

Using the Monte Carlo simulation, we estimated the statistical power and Type I error rates of five
procedures for testing the significance of a common risk difference in a set of independent 2 x 2 tables.
It was found that the unweighted procedure for testing the significance of a common risk difference
showed Type I error rates systematically larger than the nominal significance level, and that its power
was lower than that of the other procedures. The conditional weighted procedure showed the worst
performance, with remarkably anomalous results under many of the conditions. Cochran’s, Mantel—
Haenszel’s, and Yusuf’s unconditional weighted procedures showed very similar results, with the best
performance in both Type I error values and power values. (©) 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Meta-analysis has become a very common research methodology in behavioural
and health sciences. It can be defined as the quantitative analysis of the results of
a set of studies about a given research topic (Cooper and Hedges, 1994; Greenland,
1987; Kuss and Koch, 1996). To carry out a meta-analysis an effect size index that
represents the outcome of each study has to be selected and, based on this, analysis
techniques are applied to achieve three main objectives: (a) To estimate the average
effect of the studies; (b) to test whether the set of studies is homogeneous, and

* Corresponding author.
E-mail address: jsmeca@fcu.um.es (J. Sanchez-Meca).

0167-9473/00/$ - see front matter (© 2000 Elsevier Science B.V. All rights reserved.
PII: S0167-9473(99)00055-9



300 J. Sanchez-Meca, F. Marin-Martinez | Computational Statistics & Data Analysis 33 (2000) 299-313

(c) if the homogeneity hypothesis is not met, to test the influence of potential mod-
erator variables that explain such heterogeneity.

Depending on the type of design and the nature of the outcome, there are different
effect size indexes that can be used to summarise the results of an empirical study.
In health sciences, as well as in behavioural sciences, the results of the study are
frequently given as a contingency 2 x 2 table, in which a dichotomous variable
(usually called ‘success’ vs. ‘failure’) is registered for the two groups of subjects
(usually, treated vs. control). If the two groups of subjects have been randomly
assigned to each condition, then we have a randomised clinical trial.

When, in a meta-analysis, we have a set of randomised clinical trials and their
results are given as 2 x 2 tables, the most recommended effect size indexes are risk
difference, rate ratio, and odds ratio (Haddock et al., 1998; Laird and Mosteller,
1990). Given a set of £ independent studies each of them composed of two groups
of subjects (treated and control) with sample sizes n;; and n;, respectively, and with
success proportions py; and p,, the risk difference is defined as d; = py; — p;; the
rate ratio is given as the ratio between the two success proportions, 77; = pr;/Pcis
and the odds ratio represents the relative gain of one group in respect to the other,
or;= pr(1 = pe;)/ pei(1 — pr;) (Ahn, 1997). The advantages and limitations of these
indexes have been explored elsewhere (Fleiss, 1994; Hasselblad et al., 1995). Risk
difference has the advantage of ease of interpretability, because it is the natural
measure of the gain of one treatment over another, although its range depends on
success proportions, pr; and pc;.

In this paper we have focused our attention on the application of risk difference
as an effect size index to summarise independent 2 x 2 tables derived from a set
of & randomised clinical trials for testing the effectiveness of a treatment (medi-
cal, pharmacological, psychological) in comparison with a non-treated control group.
Consequently, we will assume that the control group proportions in the studies, p;,
are approximately homogeneous and not particularly extreme. We will also assume
a fixed-effects model in which the variability among d; values is simply caused by
within-study variance. Thus, the & independent studies come from the same popula-
tion with a common population risk difference d=n;—n., 0 being the population risk
difference and n; and 7. the population success proportions in treated and control
groups, respectively (Laird and Mosteller, 1990).

The global treatment effectiveness will be estimated calculating a common risk
difference, d, applying several weighting procedures to each single risk difference,
d;. Assuming a fixed-effects model, the weights are obtained as a function of the
within-study variance of each single risk difference.

In meta-analysis one of the main objectives is to examine the statistical signif-
icance of the common risk difference to determine whether or not the effect size
is null, thereby testing the hypothesis Hy:d = 0. Although some interest has been
shown in comparing the performance of different common risk differences under the
random-effects model (Emerson et al., 1993, 1996), this has not been the case with
fixed-effects models. Consequently, in this paper we will compare five statistical tests.

Under Hy:0 =0, and assuming large sample sizes, ny; and ng;, in the individual
studies and a high number of studies, k, the tests are distributed as y3. However, in
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multiple real situations meta-analyses are applied to a few studies with low samples
sizes. Moreover, the influence that such factors as the inbalance between sample
sizes, ny; and ng;, or the relationship between samples sizes and treated and control
groups have on Type I and Type II errors, has not yet been tested. The objective
of our study was to test by means of the Monte Carlo simulation: (a) if there were
similarities between empirical and asymptotical Type I and Type II error rates in
the five tests, and (b) if one test performs better than the others under the different
conditions and parameters manipulated.

2. Procedures for testing the significance of a common risk difference

_ From the k studies, a ¢ estimate can be obtained by calculating a weighted mean,
d, of the individual risk differences, d;:

k k
c?—ZW,-d,-/Zm. (1)

Assuming a fixed-effects model, the optimal weight of each d;, W, is obtained as
the inverse of within-group variance, af,i, that is, W; =1 /af,i. But the d; variance is
unknown, because it is a function of sample sizes, ny; and n.;, and unknown popula-
tion proportions, 7 and m.. Several significance tests implying certain modifications
in the weights were proposed in order to achieve a good adjustment of Type I and
Type II error rates. Table 1 shows the formulas for the statistical procedures.

In the conditional weighted test, xéw, d; and w; are both a function of p; and pg;,
and this departure of independence can affect in testing the null hypothesis Hy: =0

Table 1
Mathematical details of the five statistical procedures

Procedure Weighting factor
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Note. xéW:conditional weighted test; X(Z::Cochran’s test; xﬁ,[H:Mantelf
Haenszel’s test; Xf(:yusuf et al.’s test; Xé:Unweighted test.
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(Fleiss, 1981, p. 163; Shadish and Haddock, 1994, p. 270). Under Hy:0 = 0, Xéw
is approximately distributed as y7; thus, the null effect hypothesis is rejected when
Tew Z1-a X1, With o as the significance level.

A practical problem arises in calculating S; when pp, = p¢; =0, because in this
situation S = 0. To produce a non-zero value of S; we adapted an adjustment
proposed by Tukey (1977, Chapter 15), that replaces a proportion p =x/n by p* =
(x+1/6)/(n+1/3), where x is the number of successes and it is distributed binomially
(n,m). This adjustment was only applied in calculating S .

To avoid the dependence between d; and w;, Cochran (1954) proposed the x
test (see Table 1), where p, = (xy; + x¢;)/(ny; + ne;), *g; and x.; being the success
numbers in treated and control groups, respectively, in the iesim study. Under Hy,
e is approximately distributed as yf, provided that the number of studies, k, and
sample sizes, ny; and ng;, are large.

Mantel and Haenszel (1959) proposed two modifications to Cochran’s test which
consisted in adding the usual one-half continuity correction for y*> and in an adjust-
ment of the denominator to obtain an unbiased estimate of variance (see Table 1).
With a sufficiently large number of studies, £, ;{f\m is still asymptotically »2, even
when the sample sizes, ny, and n,, are small. When | Y- wrd;| < 0.5, Yy 18 taken
as 0. On the other hand, Yusuf et al. (1985) proposed the Mantel-Haenszel test with
the 0.5 continuity correction omitted. Under Hy, z3 is also approximately distributed
as 2.

The yZ, Jzy» and y3 tests are very much alike and they must yield similar results.
However, under certain conditions they may offer different power and Type 1 error
rates; in particular, when k£ and sample sizes ny, and n., are small. Moreover, their
performance with unbalanced sample sizes is unknown, as when the relationship
between sample sizes and the extremity of proportions is manipulated.

Finally, the procedure for testing the significance of an unweighted common risk
difference, y7, will be considered. Under Hy, the y;, test follows an approximately
1 Sy belng the estimated Varlance of the sarnphng distribution of the unweighted
common risk difference: S = S d, /k, and the unweighted common risk difference is
given by d, = " d,/k.

The ij test is an inappropriate procedure for testing the significance of a common
risk difference because it does not weigh the individual risk differences. We have
included it in our simulation study only for the purpose of comparison, and in order
to show its low statistical power in relation to the other procedures.

3. Design of the simulation study

The simulation study was carried out on an IBM-PC Pentium/133 MHz machine
using GAUSS (Aptech Systems, 1992). Two binomially distributed populations were
defined, B(ny, n) and B(nq, n-), where n; and 7. were the treated and control pro-
portions, respectively. From these populations, pairs of independent random samples
were generated with n; and n. as sample sizes. The simulated studies were carried
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out given a treated and a control group and a dichotomuos outcome variable. Thus,
a 2 x 2 table represented the data of each simulated study.

Each 2 x 2 table simulated the data in an empirical study, in which the sample
risk difference (d; = pr; — pc;) was computed. A set of & 2 x 2 independent tables
simulating the data of a meta-analysis was run, yielding & risk differences. All the
2 x 2 tables within the same meta-analysis estimated a common population risk
difference, 6 = n; — 7.

The average risk difference and its statistical significance were computed in accor-
dance with the five procedures mentioned above. To determine the Type I error rate,
the common population risk difference was fixed as 6 =0. To examine the statistical
power, ¢ values other than 0 were defined.

The following parameters were manipulated: (1) the average sample size of each
meta-analysis, N (N = Y. N;/k; being N; = ny, + n,), with values 60, 100, and 160;
(2) the ratio between sample sizes of the two groups in each study, with the three
conditions ny =nc, ny =2nq, and np =4nc; (3) the number of studies, £, with values
10, 20, and 40; (4) the population risk difference, with values 6 = n; — n. = 0,
0.05, and 0.10; (5) the position in the range of the two population proportions,
differentiating between a central condition (0.5 vs. 0.5, 0.525 vs. 0.475, and 0.55 vs.
0.45), and an extreme condition (0.1 vs. 0.1, 0.125 vs. 0.075, and 0.15 vs. 0.05),
and (6) the relationship between the two population proportions and sample sizes,
with the most extreme proportion assigned to the lowest sample size and vice versa
(direct vs. inverse relationships).

To simulate the sample sizes, N, of k 2 x 2 tables in a meta-analysis, some prop-
erties of the sample size distribution in 30 real meta-analyses in the field of be-
havioural and health sciences were assessed. In particular, the Pearson skewness
index of the distribution was computed throughout all the meta-analyses, obtaining a
value of +1.464. In accordance with this value, three vectors of ten N,s each were
selected: [24,24,32,32,36,36,40,40,168,168], [64,64,72,72,76,76, 80, 80,208,208],
and [124,124,132,132,136, 136,140, 140,268,268], all with the skewness= + 1.464,
and averaging 60, 100, and 160, respectively. These were the sample size distri-
butions for meta-analyses with 10 studies. To obtain meta-analyses of 20 and 40
studies, each N vector was repeated 2 and 4 times, respectively.

For each of the 198 conditions defined, 10000 replications were run using the
Monte Carlo simulation. With such a high number of replies, a conservative estimate
of the maximum sampling error was £0.0098, assuming 7. = 7. = 0.5 and a 95%
confidence level. The five procedures to test the significance of the average risk
difference were applied to the 10000 replications of each condition. The criterion
for the acceptance vs. rejection of the null hypothesis (Hy:d = 0) was adjusted to
a nominal two-sided significance level of « = 0.05. In conditions where § = 0, the
proportion of rejections of the null hypothesis in the 10000 replications was the
estimated Type I error rate. In conditions where § # 0, the number of rejections of
the null hypothesis was the estimated power.

In order to assess the adjustment of our empirical power values to the large sample
theory, the asymptotical power was also derived for each of the four procedures:
Yo Xes Yogp and y3 tests. If z, is the square root of any y; test (see Table 1),
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then the large sample distribution of the z, statistics applied in each of the individual
conditions is given by z, ~ N({,,1), where {, is the square root of the y? test as
computed from the n;, nc, ny, and n. values. Thus the asymptotical power of the
%2 test, P,, for each of the defined conditions is given by P, =1 — ¢ (|zo02s| — (o) +
¢ (20025 — {.), where ¢(x) is the standard normal cumulative distribution function,
and zg 5 is the 100 (0.025) per cent critical value of the standard normal distribution
(assuming the two-sided o = 0.05).

It was not possible with respect to the X% test to derive an asymptotic power
value for each condition, as had been the case with the other four procedures. In
fact, when applied to the population ¢ values, all with a common value in the same
meta-analysis, the equation for estimating the variance of the sampling distribution
of the unweighted common risk difference, Sfiu, gave always 0.

4. Results and discussion

Table 2 presents the empirical Type I error rates as a function of the position in
the range of population proportions, 7 and 7., the number of studies, &, the average
sample size, N, and the ratio between n; and nc;. On average, the 3 and y_ tests
showed an adequate adjustment to the nominal o level (o = 0.0500 and 0.0512,
respectively), very closely followed by Xlz\/lH’ with a more conservative empirical
level of 0.0422. However, X?:w presented an unacceptably high Type I error rate of
0.2050 and ij showed an empirical o = 0.0679 slightly higher than the nominal «.

The 2, 73, and x5 tests were scarcely affected by the manipulated factors: num-
ber of studies, average sample sizes, the ratio betwen n; and n.;, and the position
in the range of the population proportions. A good adjustment to the nominal o
level was held by the Xé and X12\4H tests throughout each of the conditions, while
XI%/IH showed a slightly lower Type I error rate than o = 0.05. The ij test was only
affected by the number of studies, decreasing its empirical rate as the number of
studies increased. In contrast, the y¢,, test was systematically affected by all the
manipulated factors. Thus, the Xf:w test dramatically increased its Type I error rate
as the discrepancy between n; and n.; grew, reaching an empirical o =0.4083 when
ny/ne; = 4. Moreover, when the population proportions were in an extreme position
(my = m. = 0.10), the average Type I error rate was 0.3304, larger than that in a
central position (7 =, =0.50), with an average value of o =0.0796. Furthermore,
in contrast to the large sample theory, yZ,, increased its Type I error rate as the
number of studies increased. The average sample size also affected the Type I error
rate in yZ,,, although in this case its empirical rate decreased.

As anticipated, the problems with the yZ,, test derived from the dependence be-
tween the individual risk differences, d;, and the estimated weights, w;, because the
sample proportions intervene in the computation of both d; and w;. In particular, the
poor adjustment of the empirical rates is dramatically increased with heavily unbal-
anced sample sizes and extreme population proportions. For example, with & = 10
studies, average sample size N = 50, ny,/ne; =4, and n; = n. = 0.10, the empirical
Type I error rate reached a value of 0.5152 (see Table 2). In these conditions, biased



Table 2
Type 1 error rates

nr =7c=0.50; 6 =0

k=10 k=20 k=40

N omne oz w0 Aw & K few K hw & W w0 Bm Iy

60 1 0.0761 0.0626 0.0541 0.0399 0.0488 0.0618 0.0622 0.0496 0.0422 0.0485 0.0560 0.0624 0.0504 0.0434 0.0477

60 2 0.0801 0.0754 0.0522 0.0400 0.0493 0.0621 0.0740 0.0513 0.0424 0.0494 0.0579 0.0742 0.0496 0.0431 0.0488

60 4 0.0802 0.1834 0.0528 0.0389 0.0501 0.0636 0.2003 0.0541 0.0450 0.0529 0.0554 0.2040 0.0500 0.0440 0.0486
100 1 0.0773  0.0572 0.0533 0.0432 0.0505 0.0674 0.0584 0.0534 0.0476 0.0534 0.0565 0.0595 0.0519 0.0469 0.0500
100 2 0.0843 0.0651 0.0553 0.0437 0.0549 0.0638 0.0601 0.0497 0.0427 0.0473 0.0583 0.0683 0.0548 0.0481 0.0548
100 4 0.0775 0.0779 0.0487 0.0386 0.0470 0.0659 0.0796 0.0511 0.0429 0.0509 0.0556 0.0835 0.0488 0.0438 0.0481
160 1 0.0846 0.0563 0.0496 0.0438 0.0489 0.0643 0.0523 0.0476 0.0438 0.0476 0.0564 0.0540 0.0483 0.0451 0.0483
160 2 0.0881 0.0622 0.0548 0.0496 0.0548 0.0647 0.0607 0.0546 0.0506 0.0540 0.0592 0.0569 0.0509 0.0456 0.0509
160 4 0.0822 0.0659 0.0501 0.0441 0.0501 0.0634 0.0662 0.0516 0.0444 0.0511 0.0576 0.0656 0.0519 0.0471 0.0519

nr =7 =0.10; 6 =0
k=10 k=20 k=40

N mne 1 w1 hwo 1 Lw 1 hmo & 1 Lw 1@ Lmo &

60 1 0.0788 0.0468 0.0511 0.0343 0.0485 0.0604 0.0472 0.0488 0.0366 0.0469 0.0528 0.0491 0.0487 0.0401 0.0470

60 2 0.0783 0.1656 0.0492 0.0335 0.0475 0.0640 0.2935 0.0498 0.0369 0.0478 0.0568 0.5089 0.0529 0.0433 0.0510

60 4 0.0872 0.6175 0.0521 0.0318 0.0486 0.0685 0.8815 0.0518 0.0384 0.0504 0.0599 0.9923 0.0540 0.0421 0.0520
100 1 0.0842 0.0559 0.0492 0.0384 0.0489 0.0657 0.0555 0.0513 0.0438 0.0503 0.0580 0.0572 0.0522 0.0458 0.0516
100 2 0.0829 0.1452 0.0478 0.0368 0.0471 0.0616 0.2132 0.0490 0.0395 0.0478 0.0585 0.3515 0.0547 0.0454 0.0532
100 4 0.0890 0.5152 0.0546 0.0401 0.0545 0.0645 0.7663 0.0523 0.0413 0.0514 0.0585 0.9430 0.0508 0.0435 0.0498
160 1 0.0859 0.0541 0.0509 0.0389 0.0502 0.0660 0.0552 0.0516 0.0443 0.0507 0.0580 0.0568 0.0518 0.0466 0.0510
160 2 0.0810 0.0981 0.0508 0.0390 0.0507 0.0611 0.1392 0.0480 0.0413 0.0471 0.0571 0.2048 0.0486 0.0429 0.0478
160 4 0.0863 03399 0.0531 0.0387 0.0517 0.0648 0.5151 0.0502 0.0411 0.0490 0.0565 0.7521 0.0507 0.0432 0.0497
Note. 7y and m-=population proportions; k=number of studies; N=average sample size; ny/n-.=ratio between sample sizes; d=population risk difference.
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estimates of 0 receive a disproportionate weight, leading to the erroneous rejection
of the null hypothesis.

Conversely the yZ,, test, applying unconditional weights allows an adequate ad-
justment to the nominal « level in all of the conditions. Therefore, the Xé, Ao and
/5 tests achieve an adequate adjustment. However, the ys., test exhibits a slightly
lower empirical rate than the nominal 0.05, implying that the one-half continuity
correction makes the test more conservative.

On the other hand, the y;, test does not adjust the Type I error rate under any of
the conditions, with empirical rates systematically higher than the nominal « = 0.05.
As anticipated from the large sample theory, the performance of the y;, test improves
as the number of studies and sample size increase.

Tables 3—6 present the empirical and asymptotical statistical power of the five
procedures as a function of the manipulated conditions. The Xé and 3 tests showed
the highest empirical power, averaging 0.8479 and 0.8461, respectively. Because of
its more conservative Type I error rates, XI%/IH presented a slightly lower average power
of 0.8337. On the other hand, the X?:w and ij tests achieved the lowest empirical
power, with average values of 0.8002 and 0.8004, respectively. Nevertheless, the
averages give a very simplistic picture of the results, because the factors manipulated
in our simulation study greatly affected the power rates.

As anticipated, the power of all of the tests increased as the number of studies
(k), average sample size (N), and the population risk difference () increased. Fur-
thermore, the more extreme the population proportions, the higher the power; and
as the ratio between sample sizes increased, from equal to unbalanced sample sizes,
the power decreased.

Although the Xf:w test achieved the lowest average empirical power, paradoxically
it achieved the largest power under many of the conditions. In particular, when the
population proportions were in a central position (n; and m. over 0.50), the 2,
test was systematically the most powerful of the procedures (see Tables 3 and 5).
In contrast, when the population proportions were in an extreme position (7 and
n. over 0.10) the power was not always the highest. In particular, when each of the
individual 2 x 2 tables presented the most extreme population proportion assigned to
the largest sample size, the 7, test suffered a drastical decrease in the power (see
Tables 4 and 6), becoming the least powerful of the procedures. However, when the
most extreme population proportion was linked to the lowest sample size, the power
of the x¢,, test surpassed that of the other procedures.

The dependence between the sample risk differences and the estimated weights
explains the irregular performance of the yZ,, test. The most problematic conditions
are those of a very low statistical power, which occur when the population propor-
tions are in an extreme position and the most extreme proportion is associated with
the largest sample size. In these conditions, sample risk differences of opposite value
to that of the population effect size received a disproportionate weight, leading to
the erroneous acceptance of the null hypothesis.

Unlike the Xéw test, the unweighted test, ;{6, showed a trend similar to that of
the y2, x> and z3 tests in all the manipulated conditions, although exhibiting a
systematically lower power.



Table 3

Empirical and asymptotical (in parentheses) power rates

np = 0.525, n. = 0.475; § =0.05

k=10 k=20 k = 40
N mfnc 1 few T T Ly o Tew T o Xy o Tew 1 Lo Iy
60 1 02169 02706 02497 02093 02347 03009 04531 04219 03910 04148 04969 07132 0.6845 0.6588 0.6748
(0.2323) (0.2318) (0.2052) (0.2287) (0.4108) (0.4100) (0.3823) (0.4043) (0.6889) (0.6878) (0.6658) (0.6804)
60 2 0.1941 02619 02216 0.1875 02154 02805 0.4246 03730 03457 03650 04603 0.6822 06419 06167 0.6402
(0.2117) (0.2113) (0.1851) (0.2085) (0.3728) (0.3721) (0.3443) (0.3669) (0.6377) (0.6367) (0.6131) (0.6294)
60 4 0.1645 02989 0.1718 0.1417 0.1656 02160 04219 02840 02559 02799 03524 0.6079 05013 04782 0.4963
(0.1654) (0.1652) (0.1403) (0.1633) (0.2839) (0.2835) (0.2561) (0.2796) (0.5009) (0.5002) (0.4735) (0.4936)
100 1 03410 03710 03602 03261 03489 0.5484 0.6366 0.6194 05995 0.6194 0.8180 0.8965 0.8871 0.8777 0.8840
(0.3533) (0.3526) (0.3267) (0.3497) (0.6099) (0.6088) (0.5872) (0.6045) (0.8861) (0.8854) (0.8759) (0.8823)
100 2 03177 03475 03248 02939 03243 04926 05831 05611 05377 05541 0.7721 0.8590 0.8459 0.8353 0.8459
(0.3209) (0.3203) (0.2944) (0.3177) (0.5608) (0.5599) (0.5370) (0.5557) (0.8481) (0.8473) (0.8356) (0.8437)
100 4 02529 02917 02456 02186 02409 03851 04815 04307 04065 04296 0.6414 07528 07206 07043 0.7192
(0.2446) (0.2443) (0.2187) (0.2423) (0.4330) (0.4325) (0.4072) (0.4289) (0.7167) (0.7160) (0.6981) (0.7117)
160 1 05119 05320 05134 04925 05119 0.7727 08161 0.8082 07963 0.8082 09682 09772 0.9758 09745 0.9758
(0.5170) (0.5160) (0.4936) (0.5135) (0.8084) (0.8074) (0.7951) (0.8050) (0.9796) (0.9793) (0.9774) (0.9787)
160 2 04712 04858 04643 04510 04641 07245 07743 07613 0.7527 0.7584 0.9484 09668 09638 09613 0.9638
(0.4704) (0.4696) (0.4463) (0.4672) (0.7601) (0.7592) (0.7447) (0.7566) (0.9649) (0.9646) (0.9615) (0.9637)
160 4 03770 03929 03635 03394 03621 05955 0.6461 0.6198 05991 0.6196 0.8581 0.8982 0.8900 0.8827  0.8900
(0.3604) (0.3599) (0.3351) (0.3580) (0.6201) (0.6194) (0.5997) (0.6167) (0.8933) (0.8928) (0.8850) (0.8909)

Note. ; and m.=population proportions; k=number of studies; N=average sample size; ny/nc=ratio between sample sizes; d=population risk difference.
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Table 4
Empirical and asymptotical (in parentheses) power rates

i = 0.125, me = 0.075; 5 = 0.05

k=10 k=20 k=40
N npfne g ew Ve pae b 1 Tew 1 Lo 5 I Lew Ve Tom pes
60 1 0.4131 0.4921 0.5412 0.4784 0.5367 0.6415 0.7740 0.8281 0.7972 0.8247 0.8968 0.9675 0.9837 0.9801 0.9835
(0.5353) (0.5324) (0.4718) (0.5256) (0.8256) (0.8230) (0.7902) (0.8166) (0.9837) (0.9831) (0.9783) (0.9816)
60 2d? 0.4151 0.7917 0.4667 0.4013 0.4631 0.6270 09763 0.7767 0.7380 0.7726  0.8757  0.9996 0.9731 0.9651 0.9716
(0.5190) (0.4593) (0.3990) (0.4531) (0.8103) (0.7476) (0.7079) (0.7405) (0.9801) (0.9604) (0.9510) (0.9576)
60 2i® 0.3423  0.1524 0.5210 0.4559 0.5151 0.5647 0.2126 0.7988 0.7628 0.7936  0.8563 0.3326 0.9758 0.9704 0.9747
(0.4614) (0.5163) (0.4504) (0.5096) (0.7501)  (0.8077) (0.7705) (0.8011) (0.9613) (0.9794) (0.9734) (0.9777)
60 4d 0.3809 0.9561 0.3338 0.2575 0.3241 0.5356  0.9997 0.6050 0.5469 0.5977 0.7771 1.0 0.9013 0.8823 0.8992
(0.4213) (0.3359) (0.2761) (0.3312) (0.7022)  (0.5839) (0.5324) (0.5767) (0.9409) (0.8668) (0.8428) (0.8611)
60 4i 0.2187 0.1493 0.4214 0.3473 04116 0.3936  0.2398 0.6778 0.6262 0.6727 0.6967 0.4311 0.9162 0.9006 0.9142
(0.3370)  (0.4195) (0.3449) (0.4138) (0.5855) (0.7000) (0.6462) (0.6926) (0.8681) (0.9398) (0.9241) (0.9362)
100 1 0.6807 0.7360 0.7550 0.7153 0.7519 0.9202 0.9542 0.9650 0.9577 0.9643 0.9976  0.9991 0.9993 0.9993 0.9993
(0.7532)  (0.7502) (0.7113) (0.7460) (0.9624) (0.9614) (0.9529) (0.9598) (0.9996)  (0.9995) (0.9994) (0.9995)
100 2d 0.6651 0.8864 0.6962 0.6529 0.6921 0.9039  0.9935 0.9427 0.9306 09417 0.9946  0.9999 0.9986 0.9982 0.9986
(0.7371)  (0.6703) (0.6260) (0.6659) (0.9563)  (0.9243) (0.9102) (0.9219) (0.9994)  (0.9978) (0.9971) (0.9976)
100 2i 0.6120 0.4290 0.7302 0.6871 0.7283 0.8811 0.6432 0.9497 0.9411 09486 0.9934 0.8779 0.9984 0.9983 0.9984
(0.6728) (0.7342) (0.6905) (0.7300) (0.9257) (0.9551) (0.9448) (0.9534) (0.9978) (0.9993) (0.9991) (0.9993)
100 4d 0.5734  0.9563 0.5207 0.4613 0.5187 0.8069  0.9991 0.8343 0.8055 0.8306 0.9758 1.0 0.9885 0.9860 0.9881
(0.6231) (0.5090) (0.4560) (0.5050) (0.8954)  (0.8006) (0.7711) (0.7966) (0.9952) (0.9775) (0.9728) (0.9764)
100 4 0.4539  0.2004 0.6022 0.5488 0.5985 0.7355 0.1741 0.8666 0.8451 0.8648 0.9649 0.1721 0.9901 0.9883 0.9899
(0.5106) (0.6209) (0.5618) (0.6166) (0.8021) (0.8938) (0.8711) (0.8909) (0.9779)  (0.9950) (0.9935) (0.9947)
160 1 0.8815 09146 0.9225 0.9075 0.9213 0.9933 0.9973 0.9982 0.9978 0.9981 1.0 1.0 1.0 1.0 1.0
(0.9170) (0.9152) (0.8997) (0.9135) (0.9972)  (0.9971) (0.9963) (0.9969) (1.0) (1.0) (1.0) (1.0)
160 2d 0.8573  0.9528 0.8785 0.8573 0.8763 0.9897  0.9995 0.9943 0.9930 0.9943 1.0 1.0 1.0 1.0 1.0
(0.9056) (0.8576) (0.8352) (0.8555) (0.9962) (0.9900) (0.9878) (0.9896) (1.0) (1.0) (1.0) (1.0)
160 2i 0.8279  0.7327 0.8870 0.8685 0.8858 0.9845 0.9425 0.9950 0.9931 0.9947  0.9999  0.9983 1.0 1.0 1.0
(0.8596) (0.9038) (0.8852) (0.9020) (0.9903)  (0.9960) (0.9950) (0.9959) (1.0) (1.0) (1.0) (1.0)
160 4d 0.7706  0.9575 0.7435 0.7026 0.7406 0.9576  0.9992 0.9664 0.9603 0.9659  0.9993 1.0 0.9998 0.9998 0.9998
(0.8202) (0.7081) (0.6708) (0.7053) (0.9825) (0.9437) (0.9340) (0.9424) (0.9999) (0.9989) (0.9986) (0.9988)
160 4i 0.6892 03777 0.7878 0.7561 0.7860 0.9408  0.5068 09716 0.9667 09711 0.9992  0.6608 0.9999 0.9999 0.9999
(0.7097) (0.8182) (0.7846) (0.8158) (0.9445) (0.9820) (0.9775) (0.9814) (0.9989) (0.9999) (0.9999) (0.9999)

Note. mp and me=population proportions; k=number of studies; N=average sample size; np/nc=ratio between sample sizes; d=population

2d denotes a direct relationship where the most extreme proportion is associated with the lowest sample size.

b; denotes an inverse relationship where the most extreme proportion is associated with the largest sample size.

risk difference.
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Table 5

Empirical and asymptotical (in parentheses) power rates

np = 0.550, 7. = 0.450; 6 =0.10

k=10 k=20 k = 40
N nmifnc 1 Jew e T Ly N Tew T o Ly o ew 1 o pee
60 1 05292 07241 07054 0.6566 0.6878 0.7877 0.9450 0.9366 09267 09354 09707 09980 09976 09971 0.9976
(0.6921) (0.6878) (0.6509) (0.6804) (0.9359) (0.9337) (0.9218) (0.9299) (0.9985) (0.9984) (0.9979) (0.9981)
60 2 04891 06932 06537 0.6069 0.6466 0.7407 0.9215 09108 0.8947 09071 09571 09965 09970 09964 0.9968
(0.6410) (0.6371) (0.5969) (0.6298) (0.9070) (0.9045) (0.8887) (0.8998) (0.9963) (0.9961) (0.9951) (0.9956)
60 4 03861 05918 05069 04594 05007 0.6118 0.8251 0.7979 0.7694 0.7947 0.8778 09654 09756 09716 0.9750
(0.5038) (0.5013) (0.4544) (0.4947) (0.7954) (0.7928) (0.7646) (0.7861) (0.9761) (0.9754) (0.9701) (0.9734)
100 1 08215 09014 08970 0.8799 0.8904 09802 0.9955 09950 09940 0.9950 0.9998 1.0 1.0 1.0 1.0
(0.8884) (0.8854) (0.8694) (0.8823) (0.9944) (0.9940) (0.9928) (0.9936) (1.0)  (1.0)  (1.0)  (1.0)
100 2 07757 0.8622 08512 08295 0.8505 09650 0.9903 0.9889 0.9868 0.9880 0.9997 1.0 1.0 1.0 1.0
(0.8507) (0.8476) (0.8275) (0.8440) (0.9888) (0.9882) (0.9859) (0.9875) (1.0)  (1.0)  (1.0)  (L0)
100 4 0.6491 07487 07182 06881 07162 0.8964 09547 09471 09400 0.9459 09947 0.9991 09989 09989  0.9989
(0.7199) (0.7172) (0.6854) (0.7128) (0.9491) (0.9478) (0.9395) (0.9459) (0.9991) (0.9991) (0.9988) (0.9990)
160 1 09582 09811 09787 09760 09785 0.9994 1.0 1.0 1.0 10 10 10 1.0 1.0 1.0
(0.9803) (0.9793) (0.9760) (0.9787) (0.9999) (0.9999) (0.9999) (0.9999) (1.0)  (1.0)  (1.0)  (1.0)
160 2 0.9356 09687 09658 09617 09657 09988 0.9994 0.9994 09994 09994 1.0 1.0 1.0 1.0 1.0
(0.9660) (0.9647) (0.9594) (0.9638) (0.9997) (0.9996) (0.9995) (0.9996) (1.0)  (1.0)  (1.0)  (1.0)
160 4 0.8524 09080 09006 0.8881 0.8988 09901 09954 09949 09945 09949 10 1.0 1.0 1.0 1.0
(0.8955) (0.8936) (0.8797) (0.8917) (0.9952) (0.9950) (0.9941) (0.9948) (1.0)  (1.0)  (1.0)  (1.0)

Note. ny and m.=population proportions; k=number of studies; N =average sample size; ny/nc=ratio between sample sizes; d=population risk difference.
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Table 6
Empirical and asymptotical (in parentheses) power rates

nr = 0.150, mc = 0.050; 6 =0.10

k=10 k=20 k=40
N npfne 15 Lew 1 o b 1 Lew 1 X % 1 w1 o %
60 1 0.9056 0.9728 0.9873 0.9821 0.9869 0.9960  0.9998 0.9999 0.9999 0.9999 1.0 1.0 1.0 1.0 1.0
(0.9854) (0.9831) (0.9746) (0.9816) (1.0) (0.9999)  (0.9999)  (0.9999) (1.0)  (1.0) (1.0) (1.0)
60 24? 0.8933 0.9974 0.9758 0.9649 0.9751 0.9931 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(0.9887) (0.9492) (0.9296) (0.9459) (1.0) (0.9991)  (0.9986)  (0.9990) (1.0)  (L.0) (1.0) (1.0)
60 2i® 0.8447 0.7100 0.9809 0.9729 0.9807 0.9897 0.9278 0.9999 0.9999 0.9999 1.0 0.9976 1.0 1.0 1.0
(0.9532) (0.9867) (0.9787) (0.9855) (0.9993) (1.0) (0.9999) (1.0) (1.0)  (1.0) (1.0) (1.0)
60 4d 0.8271 0.9998 0.9108 0.8701 0.9051 0.9703 1.0 0.9977 0.9964 0.9976 0.9999 1.0 1.0 1.0 1.0
(0.9731) (0.8298) (0.7818) (0.8235) (1.0) (0.9846)  (0.9783) (0.9832) (1.0)  (0.9999) (0.9999) (0.9999)
60 4i 0.6628 0.1406 0.9390 0.9123 0.9373 0.9393 0.1553 0.9982 0.9971 0.9980 0.9995 0.1973 1.0 1.0 1.0
(0.8350)  (0.9700) (0.9505) (0.9677) (0.9857) (0.9997) (0.9995) (0.9997) (1.0)  (L.0) (1.0) (1.0)
100 1 0.9959  0.9991 0.9996 0.9996 0.9996 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(0.9996)  (0.9995) (0.9993) (0.9995) (1.0) (1.0) (1.0) (1.0) (1.0)  (L.0) (1.0) (1.0)
100 2d 0.9946  0.9998 0.9994 0.9988 0.9994 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(0.9998)  (0.9964) (0.9948) (0.9962) (1.0) (1.0) (1.0) (1.0) (1.0)  (L.0) (1.0) (1.0)
100 2i 0.9891 0.9613 0.9994 0.9990 0.9993 1.0 0.9990 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(0.9969)  (0.9997) (0.9995) (0.9997) (1.0) (1.0) (1.0) (1.0) (1.0)  (L.0) (1.0) (1.0)
100 4d 0.9802 0.9997 0.9912 0.9874 0.9907 0.9998 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(0.9989) (0.9642) (0.9521) (0.9627) (1.0) (0.9996)  (0.9994)  (0.9996) (L.0)  (L0) (1.0) (1.0)
100 4i 0.9483 0.4860 0.9933 0.9901 0.9932 0.9993 0.6313 1.0 1.0 1.0 1.0 0.8332 1.0 1.0 1.0
(0.9662) (0.9986) (0.9976) (0.9985) (0.9997) (1.0) (1.0) (1.0) (1.0)  (L.0) (1.0) (1.0)
160 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)  (L.0) (1.0) (1.0)
160 2d 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)  (L0) (1.0) (1.0)
160 2 0.9999  0.9990 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)  (1.0) (1.0) (1.0)
160 4d 0.9992 1.0 0.9998 0.9997 0.9998 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(1.0) (0.9974)  (0.9964) (0.9973) (1.0) (1.0) (1.0) (1.0) (1.0)  (L0) (1.0) (1.0)
160 4 0.9977 0.8958 1.0 1.0 1.0 1.0 0.9836 1.0 1.0 1.0 1.0 0.9998 1.0 1.0 1.0
0.9977)  (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)  (1.0) (1.0) (1.0)

Note. np and m-=population proportions; k=number of studies; N=average sample size; ny/nc=ratio between sample sizes; d=population risk difference.
2d denotes a direct relationship where the most extreme proportion is associated with the lowest sample size.
b; denotes an inverse relationship where the most extreme proportion is associated with the largest sample size.
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Tables 3—6 also included the asymptotical statistical power of the yZ, x> %3
and yZ,, tests. In general, the asymptotical power of xZ,, which was computed
using the optimal weights, W, = 1/0'31,»’ achieved the largest values in comparison
with the asymptotical power of the remaining procedures. The exception occurred
when the most extreme population proportion was assigned to the largest sample
size, achieving the smallest asymptotical values.

Comparing the empirical power values of the yZ, xyy, and z3 procedures with
their corresponding asymptotical powers, the three procedures showed an adequate
adjustment. Conversely, the conditional yZ,, test showed the largest discrepancies
between the asymptotical and empirical values. The discrepancies were more pro-
nounced with unbalanced sample sizes and the most extreme population proportion
occurring in the largest sample size.

5. Conclusions

In this paper we compared the Type I error and statistical power rates of five
statistical procedures for testing the significance of a common risk difference in
conditions usually found in meta-analytic research in health and behavioural sciences.
We assumed a set of k£ 2x2 tables comparing treated vs control groups, homogeneous
control proportions through the studies, and a fixed-effects model. Therefore, the
results of our simulation study must be limited to the particular conditions where the
use of a risk difference as the effect size index is advisable.

As anticipated, the unweighted }gfj test showed the lowest empirical power values
under most of the conditions. In contrast with some meta-analytic approaches (e.g.,
Glass et al., 1981), this finding does not support the use of unweighted procedures
in meta-analysis.

Our results demonstrate an anomalous performance by the conditional weighted
Xéw test, and for this reason we advise against its application in meta-analyses with
unbalanced sample sizes, especially when the most extreme proportion occurs in
the largest sample size. This adverse effect increases when the number of studies
and the sample sizes are low, as is frequently the case in meta-analyses of health
sciences. Therefore, although recently recommended by Shadish and Haddock (1994),
we consider the Xéw test as being far from the most appropriate procedure for testing
the significance of a common risk difference.

The unconditional weighted procedures achieved the best performance, adequately
adjusting both the Type I error and empirical power rates. Throughout the manip-
ulated conditions, the yZ, xs, and x5 tests presented very similar power values,
confirming the commentary of Laird and Mosteller (1990) concerning the equiva-
lence of the three procedures. Nevertheless, 7, was slightly more conservative than
the other two procedures, due to the inclusion of the one-half continuity correction.
Consequently, although procedures of Mantel-Haenszel and Yusuf et al. were pro-
posed as an improvement on Cochran’s original test, our results do not confirm such
higher performances under the manipulated conditions. In practice, because the de-
tected differences among the 2, x7,,, and x; tests are negligible, we consider that the
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three tests are interchangeable. However, it must be noted that the statistical power of
these procedures was not always suitable, with empirical values even lower than 0.50
in some conditions. If the criterion of 0.80 proposed by Cohen (1988) in social and
behavioural sciences is taken into account as the minimum advisable power, caution
is necessary under many of the conditions, especially with small sample sizes, a low
number of studies, and small differences between the two population proportions.

Finally, it is important to note that the differences observed in our simulation study
are limited to manipulated conditions. Real meta-analyses include more heterogeneous
studies than simulated ones, for example with variable sample size ratios and different
relationships between sample sizes and population proportions of treated and control
groups. These, and other, factors can also affect the performance of the procedures.
As a consequence, we believe that new research efforts should be devoted to assessing
the performance of meta-analytic techniques in integrating 2 x 2 tables, such as
homogeneity tests, the search for moderator variables and comparing different effect
size indexes.

Consequently, new simulation studies are needed in order to probe deeper into the
performance of the procedures advocated from different meta-analytic approaches.
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