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Abstract

Using the Monte Carlo simulation, we estimated the statistical power and Type I error rates of �ve
procedures for testing the signi�cance of a common risk di�erence in a set of independent 2×2 tables.
It was found that the unweighted procedure for testing the signi�cance of a common risk di�erence
showed Type I error rates systematically larger than the nominal signi�cance level, and that its power
was lower than that of the other procedures. The conditional weighted procedure showed the worst
performance, with remarkably anomalous results under many of the conditions. Cochran’s, Mantel–
Haenszel’s, and Yusuf’s unconditional weighted procedures showed very similar results, with the best
performance in both Type I error values and power values. c© 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Meta-analysis has become a very common research methodology in behavioural
and health sciences. It can be de�ned as the quantitative analysis of the results of
a set of studies about a given research topic (Cooper and Hedges, 1994; Greenland,
1987; Kuss and Koch, 1996). To carry out a meta-analysis an e�ect size index that
represents the outcome of each study has to be selected and, based on this, analysis
techniques are applied to achieve three main objectives: (a) To estimate the average
e�ect of the studies; (b) to test whether the set of studies is homogeneous, and
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(c) if the homogeneity hypothesis is not met, to test the in
uence of potential mod-
erator variables that explain such heterogeneity.
Depending on the type of design and the nature of the outcome, there are di�erent

e�ect size indexes that can be used to summarise the results of an empirical study.
In health sciences, as well as in behavioural sciences, the results of the study are
frequently given as a contingency 2 × 2 table, in which a dichotomous variable
(usually called ‘success’ vs. ‘failure’) is registered for the two groups of subjects
(usually, treated vs. control). If the two groups of subjects have been randomly
assigned to each condition, then we have a randomised clinical trial.
When, in a meta-analysis, we have a set of randomised clinical trials and their

results are given as 2× 2 tables, the most recommended e�ect size indexes are risk
di�erence, rate ratio, and odds ratio (Haddock et al., 1998; Laird and Mosteller,
1990). Given a set of k independent studies each of them composed of two groups
of subjects (treated and control) with sample sizes nTi and nCi, respectively, and with
success proportions pTi and pCi, the risk di�erence is de�ned as di = pTi − pCi; the
rate ratio is given as the ratio between the two success proportions, rri = pTi=pCi;
and the odds ratio represents the relative gain of one group in respect to the other,
ori=pTi(1−pCi)=pCi(1−pTi) (Ahn, 1997). The advantages and limitations of these
indexes have been explored elsewhere (Fleiss, 1994; Hasselblad et al., 1995). Risk
di�erence has the advantage of ease of interpretability, because it is the natural
measure of the gain of one treatment over another, although its range depends on
success proportions, pTi and pCi.
In this paper we have focused our attention on the application of risk di�erence

as an e�ect size index to summarise independent 2 × 2 tables derived from a set
of k randomised clinical trials for testing the e�ectiveness of a treatment (medi-
cal, pharmacological, psychological) in comparison with a non-treated control group.
Consequently, we will assume that the control group proportions in the studies, pCi,
are approximately homogeneous and not particularly extreme. We will also assume
a �xed-e�ects model in which the variability among di values is simply caused by
within-study variance. Thus, the k independent studies come from the same popula-
tion with a common population risk di�erence �=�T−�C, � being the population risk
di�erence and �T and �C the population success proportions in treated and control
groups, respectively (Laird and Mosteller, 1990).
The global treatment e�ectiveness will be estimated calculating a common risk

di�erence, �d, applying several weighting procedures to each single risk di�erence,
di. Assuming a �xed-e�ects model, the weights are obtained as a function of the
within-study variance of each single risk di�erence.
In meta-analysis one of the main objectives is to examine the statistical signif-

icance of the common risk di�erence to determine whether or not the e�ect size
is null, thereby testing the hypothesis H0 : � = 0. Although some interest has been
shown in comparing the performance of di�erent common risk di�erences under the
random-e�ects model (Emerson et al., 1993, 1996), this has not been the case with
�xed-e�ects models. Consequently, in this paper we will compare �ve statistical tests.
Under H0 : � = 0, and assuming large sample sizes, nTi and nCi, in the individual

studies and a high number of studies, k, the tests are distributed as �21. However, in
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multiple real situations meta-analyses are applied to a few studies with low samples
sizes. Moreover, the in
uence that such factors as the inbalance between sample
sizes, nTi and nCi, or the relationship between samples sizes and treated and control
groups have on Type I and Type II errors, has not yet been tested. The objective
of our study was to test by means of the Monte Carlo simulation: (a) if there were
similarities between empirical and asymptotical Type I and Type II error rates in
the �ve tests, and (b) if one test performs better than the others under the di�erent
conditions and parameters manipulated.

2. Procedures for testing the signi�cance of a common risk di�erence

From the k studies, a � estimate can be obtained by calculating a weighted mean,
�d, of the individual risk di�erences, di:

�d=
k∑
Widi

/
k∑
Wi: (1)

Assuming a �xed-e�ects model, the optimal weight of each di, Wi, is obtained as
the inverse of within-group variance, �2di , that is, Wi = 1=�2di . But the di variance is
unknown, because it is a function of sample sizes, nTi and nCi, and unknown popula-
tion proportions, �T and �C. Several signi�cance tests implying certain modi�cations
in the weights were proposed in order to achieve a good adjustment of Type I and
Type II error rates. Table 1 shows the formulas for the statistical procedures.
In the conditional weighted test, �2CW, di and wi are both a function of pTi and pCi,

and this departure of independence can a�ect in testing the null hypothesis H0 : �=0

Table 1
Mathematical details of the �ve statistical procedures

Procedure Weighting factor

wi = (s2di )
−1

�2CW =

(∑k
widi

)2∑k
wi

=
[
pTi(1−pTi)

nTi
+ pCi(1−pCi)

nCi

]−1
�2C =

(∑k
w∗i di

)2∑k
w∗i �pi(1− �pi)

w∗
i =

nTinCi
nTi+nCi

�2MH =

(
|
∑k

w∗i di|−0:5
)2∑k

w̃i �pi(1− �pi)
w̃i =

nTinCi
nTi+nCi−1

�2Y =

(∑k
w∗i di

)2∑k
w̃i �pi(1− �pi)

w∗
i =

nTinCi
nTi+nCi

w̃i =
nTinCi

nTi+nCi−1

�2U =
�d2u
S2�du

—

Note. �2CW=conditional weighted test; �2C=Cochran’s test; �
2
MH=Mantel–

Haenszel’s test; �2Y=yusuf et al.’s test; �
2
U=Unweighted test.
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(Fleiss, 1981, p. 163; Shadish and Haddock, 1994, p. 270). Under H0 : � = 0, �2CW
is approximately distributed as �21; thus, the null e�ect hypothesis is rejected when
�2CW ≥1−� �21, with � as the signi�cance level.
A practical problem arises in calculating S2di when pTi = pCi = 0, because in this

situation S2di = 0. To produce a non-zero value of S
2
di we adapted an adjustment

proposed by Tukey (1977, Chapter 15), that replaces a proportion p= x=n by p∗ =
(x+1=6)=(n+1=3), where x is the number of successes and it is distributed binomially
(n; �). This adjustment was only applied in calculating S2di .
To avoid the dependence between di and wi, Cochran (1954) proposed the �2C

test (see Table 1), where �pi = (xTi + xCi)=(nTi + nCi), xTi and xCi being the success
numbers in treated and control groups, respectively, in the iesim study. Under H0,
�2C is approximately distributed as �

2
1, provided that the number of studies, k, and

sample sizes, nTi and nCi, are large.
Mantel and Haenszel (1959) proposed two modi�cations to Cochran’s test which

consisted in adding the usual one-half continuity correction for �2 and in an adjust-
ment of the denominator to obtain an unbiased estimate of variance (see Table 1).
With a su�ciently large number of studies, k, �2MH is still asymptotically �

2
1, even

when the sample sizes, nTi and nCi, are small. When |∑k w∗
i di|¡ 0:5, �2MH is taken

as 0. On the other hand, Yusuf et al. (1985) proposed the Mantel–Haenszel test with
the 0.5 continuity correction omitted. Under H0, �2Y is also approximately distributed
as �21.
The �2C, �

2
MH, and �

2
Y tests are very much alike and they must yield similar results.

However, under certain conditions they may o�er di�erent power and Type I error
rates; in particular, when k and sample sizes nTi and nCi are small. Moreover, their
performance with unbalanced sample sizes is unknown, as when the relationship
between sample sizes and the extremity of proportions is manipulated.
Finally, the procedure for testing the signi�cance of an unweighted common risk

di�erence, �2U, will be considered. Under H0, the �
2
U test follows an approximately

�21, S �d2u being the estimated variance of the sampling distribution of the unweighted
common risk di�erence: S2�du = Ŝ

2

di =k, and the unweighted common risk di�erence is

given by �du =
∑k di=k.

The �2U test is an inappropriate procedure for testing the signi�cance of a common
risk di�erence because it does not weigh the individual risk di�erences. We have
included it in our simulation study only for the purpose of comparison, and in order
to show its low statistical power in relation to the other procedures.

3. Design of the simulation study

The simulation study was carried out on an IBM-PC Pentium/133 MHz machine
using GAUSS (Aptech Systems, 1992). Two binomially distributed populations were
de�ned, B(nT; �T) and B(nC; �C), where �T and �C were the treated and control pro-
portions, respectively. From these populations, pairs of independent random samples
were generated with nT and nC as sample sizes. The simulated studies were carried
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out given a treated and a control group and a dichotomuos outcome variable. Thus,
a 2× 2 table represented the data of each simulated study.
Each 2 × 2 table simulated the data in an empirical study, in which the sample

risk di�erence (di = pTi − pCi) was computed. A set of k 2 × 2 independent tables
simulating the data of a meta-analysis was run, yielding k risk di�erences. All the
2 × 2 tables within the same meta-analysis estimated a common population risk
di�erence, �= �T − �C.
The average risk di�erence and its statistical signi�cance were computed in accor-

dance with the �ve procedures mentioned above. To determine the Type I error rate,
the common population risk di�erence was �xed as �=0. To examine the statistical
power, � values other than 0 were de�ned.
The following parameters were manipulated: (1) the average sample size of each

meta-analysis, N (N =
∑k Ni=k; being Ni = nTi + nCi), with values 60, 100, and 160;

(2) the ratio between sample sizes of the two groups in each study, with the three
conditions nT =nC, nT =2nC, and nT =4nC; (3) the number of studies, k, with values
10, 20, and 40; (4) the population risk di�erence, with values � = �T − �C = 0,
0.05, and 0.10; (5) the position in the range of the two population proportions,
di�erentiating between a central condition (0.5 vs. 0.5, 0.525 vs. 0.475, and 0.55 vs.
0.45), and an extreme condition (0.1 vs. 0.1, 0.125 vs. 0.075, and 0.15 vs. 0.05),
and (6) the relationship between the two population proportions and sample sizes,
with the most extreme proportion assigned to the lowest sample size and vice versa
(direct vs. inverse relationships).
To simulate the sample sizes, N , of k 2× 2 tables in a meta-analysis, some prop-

erties of the sample size distribution in 30 real meta-analyses in the �eld of be-
havioural and health sciences were assessed. In particular, the Pearson skewness
index of the distribution was computed throughout all the meta-analyses, obtaining a
value of +1:464. In accordance with this value, three vectors of ten N ,s each were
selected: [24; 24; 32; 32; 36; 36; 40; 40; 168; 168], [64; 64; 72; 72; 76; 76; 80; 80; 208; 208],
and [124; 124; 132; 132; 136; 136; 140; 140; 268; 268], all with the skewness= + 1:464,
and averaging 60, 100, and 160, respectively. These were the sample size distri-
butions for meta-analyses with 10 studies. To obtain meta-analyses of 20 and 40
studies, each N vector was repeated 2 and 4 times, respectively.
For each of the 198 conditions de�ned, 10 000 replications were run using the

Monte Carlo simulation. With such a high number of replies, a conservative estimate
of the maximum sampling error was ±0:0098, assuming �T = �C = 0:5 and a 95%
con�dence level. The �ve procedures to test the signi�cance of the average risk
di�erence were applied to the 10 000 replications of each condition. The criterion
for the acceptance vs. rejection of the null hypothesis (H0 : � = 0) was adjusted to
a nominal two-sided signi�cance level of � = 0:05. In conditions where � = 0, the
proportion of rejections of the null hypothesis in the 10 000 replications was the
estimated Type I error rate. In conditions where � 6= 0, the number of rejections of
the null hypothesis was the estimated power.
In order to assess the adjustment of our empirical power values to the large sample

theory, the asymptotical power was also derived for each of the four procedures:
�2CW, �

2
C, �

2
MH, and �

2
Y tests. If zx is the square root of any �

2
x test (see Table 1),
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then the large sample distribution of the zx statistics applied in each of the individual
conditions is given by zx ∼ N (�x; 1), where �x is the square root of the �2x test as
computed from the �T, �C, nT, and nC values. Thus the asymptotical power of the
�2x test, Px, for each of the de�ned conditions is given by Px =1−� (|z0:025| − �x) +
� (z0:025 − �x), where �(x) is the standard normal cumulative distribution function,
and z0:025 is the 100 (0.025) per cent critical value of the standard normal distribution
(assuming the two-sided �= 0:05).
It was not possible with respect to the �2U test to derive an asymptotic power

value for each condition, as had been the case with the other four procedures. In
fact, when applied to the population � values, all with a common value in the same
meta-analysis, the equation for estimating the variance of the sampling distribution
of the unweighted common risk di�erence, S2�du , gave always 0.

4. Results and discussion

Table 2 presents the empirical Type I error rates as a function of the position in
the range of population proportions, �T and �C, the number of studies, k, the average
sample size, N , and the ratio between nTi and nCi. On average, the �

2
Y and �

2
C tests

showed an adequate adjustment to the nominal � level (� = 0:0500 and 0.0512,
respectively), very closely followed by �2MH, with a more conservative empirical �
level of 0.0422. However, �2CW presented an unacceptably high Type I error rate of
0.2050 and �2U showed an empirical �= 0:0679 slightly higher than the nominal �.
The �2C, �

2
MH, and �

2
Y tests were scarcely a�ected by the manipulated factors: num-

ber of studies, average sample sizes, the ratio betwen nTi and nCi, and the position
in the range of the population proportions. A good adjustment to the nominal �
level was held by the �2C and �

2
MH tests throughout each of the conditions, while

�2MH showed a slightly lower Type I error rate than � = 0:05. The �
2
U test was only

a�ected by the number of studies, decreasing its empirical rate as the number of
studies increased. In contrast, the �2CW test was systematically a�ected by all the
manipulated factors. Thus, the �2CW test dramatically increased its Type I error rate
as the discrepancy between nTi and nCi grew, reaching an empirical �=0:4083 when
nTi=nCi = 4. Moreover, when the population proportions were in an extreme position
(�T = �C = 0:10), the average Type I error rate was 0.3304, larger than that in a
central position (�T = �C = 0:50), with an average value of �=0:0796. Furthermore,
in contrast to the large sample theory, �2CW increased its Type I error rate as the
number of studies increased. The average sample size also a�ected the Type I error
rate in �2CW, although in this case its empirical rate decreased.
As anticipated, the problems with the �2CW test derived from the dependence be-

tween the individual risk di�erences, di, and the estimated weights, wi, because the
sample proportions intervene in the computation of both di and wi. In particular, the
poor adjustment of the empirical rates is dramatically increased with heavily unbal-
anced sample sizes and extreme population proportions. For example, with k = 10
studies, average sample size N = 50, nTi=nCi = 4, and �T = �C = 0:10, the empirical
Type I error rate reached a value of 0.5152 (see Table 2). In these conditions, biased
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Table 2
Type I error rates

�T = �C = 0:50; �= 0

k = 10 k = 20 k = 40

N nT=nC �2U �2CW �2C �2MH �2Y �2U �2CW �2C �2MH �2Y �2U �2CW �2C �2MH �2Y

60 1 0.0761 0.0626 0.0541 0.0399 0.0488 0.0618 0.0622 0.0496 0.0422 0.0485 0.0560 0.0624 0.0504 0.0434 0.0477
60 2 0.0801 0.0754 0.0522 0.0400 0.0493 0.0621 0.0740 0.0513 0.0424 0.0494 0.0579 0.0742 0.0496 0.0431 0.0488
60 4 0.0802 0.1834 0.0528 0.0389 0.0501 0.0636 0.2003 0.0541 0.0450 0.0529 0.0554 0.2040 0.0500 0.0440 0.0486
100 1 0.0773 0.0572 0.0533 0.0432 0.0505 0.0674 0.0584 0.0534 0.0476 0.0534 0.0565 0.0595 0.0519 0.0469 0.0500
100 2 0.0843 0.0651 0.0553 0.0437 0.0549 0.0638 0.0601 0.0497 0.0427 0.0473 0.0583 0.0683 0.0548 0.0481 0.0548
100 4 0.0775 0.0779 0.0487 0.0386 0.0470 0.0659 0.0796 0.0511 0.0429 0.0509 0.0556 0.0835 0.0488 0.0438 0.0481
160 1 0.0846 0.0563 0.0496 0.0438 0.0489 0.0643 0.0523 0.0476 0.0438 0.0476 0.0564 0.0540 0.0483 0.0451 0.0483
160 2 0.0881 0.0622 0.0548 0.0496 0.0548 0.0647 0.0607 0.0546 0.0506 0.0540 0.0592 0.0569 0.0509 0.0456 0.0509
160 4 0.0822 0.0659 0.0501 0.0441 0.0501 0.0634 0.0662 0.0516 0.0444 0.0511 0.0576 0.0656 0.0519 0.0471 0.0519

�T = �C = 0:10; �= 0

k = 10 k = 20 k = 40

N nT=nC �2U �2CW �2C �2MH �2Y �2U �2CW �2C �2MH �2Y �2U �2CW �2C �2MH �2Y

60 1 0.0788 0.0468 0.0511 0.0343 0.0485 0.0604 0.0472 0.0488 0.0366 0.0469 0.0528 0.0491 0.0487 0.0401 0.0470
60 2 0.0783 0.1656 0.0492 0.0335 0.0475 0.0640 0.2935 0.0498 0.0369 0.0478 0.0568 0.5089 0.0529 0.0433 0.0510
60 4 0.0872 0.6175 0.0521 0.0318 0.0486 0.0685 0.8815 0.0518 0.0384 0.0504 0.0599 0.9923 0.0540 0.0421 0.0520
100 1 0.0842 0.0559 0.0492 0.0384 0.0489 0.0657 0.0555 0.0513 0.0438 0.0503 0.0580 0.0572 0.0522 0.0458 0.0516
100 2 0.0829 0.1452 0.0478 0.0368 0.0471 0.0616 0.2132 0.0490 0.0395 0.0478 0.0585 0.3515 0.0547 0.0454 0.0532
100 4 0.0890 0.5152 0.0546 0.0401 0.0545 0.0645 0.7663 0.0523 0.0413 0.0514 0.0585 0.9430 0.0508 0.0435 0.0498
160 1 0.0859 0.0541 0.0509 0.0389 0.0502 0.0660 0.0552 0.0516 0.0443 0.0507 0.0580 0.0568 0.0518 0.0466 0.0510
160 2 0.0810 0.0981 0.0508 0.0390 0.0507 0.0611 0.1392 0.0480 0.0413 0.0471 0.0571 0.2048 0.0486 0.0429 0.0478
160 4 0.0863 0.3399 0.0531 0.0387 0.0517 0.0648 0.5151 0.0502 0.0411 0.0490 0.0565 0.7521 0.0507 0.0432 0.0497

Note. �T and �C=population proportions; k=number of studies; N=average sample size; nT=nC=ratio between sample sizes; �=population risk di�erence.
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estimates of � receive a disproportionate weight, leading to the erroneous rejection
of the null hypothesis.
Conversely the �2CW test, applying unconditional weights allows an adequate ad-

justment to the nominal � level in all of the conditions. Therefore, the �2C, �
2
MH, and

�2Y tests achieve an adequate adjustment. However, the �
2
MH test exhibits a slightly

lower empirical rate than the nominal 0.05, implying that the one-half continuity
correction makes the test more conservative.
On the other hand, the �2U test does not adjust the Type I error rate under any of

the conditions, with empirical rates systematically higher than the nominal �= 0:05.
As anticipated from the large sample theory, the performance of the �2U test improves
as the number of studies and sample size increase.
Tables 3–6 present the empirical and asymptotical statistical power of the �ve

procedures as a function of the manipulated conditions. The �2C and �
2
Y tests showed

the highest empirical power, averaging 0.8479 and 0.8461, respectively. Because of
its more conservative Type I error rates, �2MH presented a slightly lower average power
of 0.8337. On the other hand, the �2CW and �2U tests achieved the lowest empirical
power, with average values of 0.8002 and 0.8004, respectively. Nevertheless, the
averages give a very simplistic picture of the results, because the factors manipulated
in our simulation study greatly a�ected the power rates.
As anticipated, the power of all of the tests increased as the number of studies

(k), average sample size (N ), and the population risk di�erence (�) increased. Fur-
thermore, the more extreme the population proportions, the higher the power; and
as the ratio between sample sizes increased, from equal to unbalanced sample sizes,
the power decreased.
Although the �2CW test achieved the lowest average empirical power, paradoxically

it achieved the largest power under many of the conditions. In particular, when the
population proportions were in a central position (�T and �C over 0.50), the �

2
CW

test was systematically the most powerful of the procedures (see Tables 3 and 5).
In contrast, when the population proportions were in an extreme position (�T and
�C over 0.10) the power was not always the highest. In particular, when each of the
individual 2× 2 tables presented the most extreme population proportion assigned to
the largest sample size, the �2CW test su�ered a drastical decrease in the power (see
Tables 4 and 6), becoming the least powerful of the procedures. However, when the
most extreme population proportion was linked to the lowest sample size, the power
of the �2CW test surpassed that of the other procedures.
The dependence between the sample risk di�erences and the estimated weights

explains the irregular performance of the �2CW test. The most problematic conditions
are those of a very low statistical power, which occur when the population propor-
tions are in an extreme position and the most extreme proportion is associated with
the largest sample size. In these conditions, sample risk di�erences of opposite value
to that of the population e�ect size received a disproportionate weight, leading to
the erroneous acceptance of the null hypothesis.
Unlike the �2CW test, the unweighted test, �2U, showed a trend similar to that of

the �2C, �
2
MH, and �

2
Y tests in all the manipulated conditions, although exhibiting a

systematically lower power.
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Table 3
Empirical and asymptotical (in parentheses) power rates

�T = 0:525, �C = 0:475; �= 0:05

k = 10 k = 20 k = 40

N nT=nC �2U �2CW �2C �2MH �2Y �2U �2CW �2C �2MH �2Y �2U �2CW �2C �2MH �2Y

60 1 0.2169 0.2706 0.2497 0.2093 0.2347 0.3009 0.4531 0.4219 0.3910 0.4148 0.4969 0.7132 0.6845 0.6588 0.6748
(0.2323) (0.2318) (0.2052) (0.2287) (0.4108) (0.4100) (0.3823) (0.4043) (0.6889) (0.6878) (0.6658) (0.6804)

60 2 0.1941 0.2619 0.2216 0.1875 0.2154 0.2805 0.4246 0.3730 0.3457 0.3650 0.4603 0.6822 0.6419 0.6167 0.6402
(0.2117) (0.2113) (0.1851) (0.2085) (0.3728) (0.3721) (0.3443) (0.3669) (0.6377) (0.6367) (0.6131) (0.6294)

60 4 0.1645 0.2989 0.1718 0.1417 0.1656 0.2160 0.4219 0.2840 0.2559 0.2799 0.3524 0.6079 0.5013 0.4782 0.4963
(0.1654) (0.1652) (0.1403) (0.1633) (0.2839) (0.2835) (0.2561) (0.2796) (0.5009) (0.5002) (0.4735) (0.4936)

100 1 0.3410 0.3710 0.3602 0.3261 0.3489 0.5484 0.6366 0.6194 0.5995 0.6194 0.8180 0.8965 0.8871 0.8777 0.8840
(0.3533) (0.3526) (0.3267) (0.3497) (0.6099) (0.6088) (0.5872) (0.6045) (0.8861) (0.8854) (0.8759) (0.8823)

100 2 0.3177 0.3475 0.3248 0.2939 0.3243 0.4926 0.5831 0.5611 0.5377 0.5541 0.7721 0.8590 0.8459 0.8353 0.8459
(0.3209) (0.3203) (0.2944) (0.3177) (0.5608) (0.5599) (0.5370) (0.5557) (0.8481) (0.8473) (0.8356) (0.8437)

100 4 0.2529 0.2917 0.2456 0.2186 0.2409 0.3851 0.4815 0.4307 0.4065 0.4296 0.6414 0.7528 0.7206 0.7043 0.7192
(0.2446) (0.2443) (0.2187) (0.2423) (0.4330) (0.4325) (0.4072) (0.4289) (0.7167) (0.7160) (0.6981) (0.7117)

160 1 0.5119 0.5320 0.5134 0.4925 0.5119 0.7727 0.8161 0.8082 0.7963 0.8082 0.9682 0.9772 0.9758 0.9745 0.9758
(0.5170) (0.5160) (0.4936) (0.5135) (0.8084) (0.8074) (0.7951) (0.8050) (0.9796) (0.9793) (0.9774) (0.9787)

160 2 0.4712 0.4858 0.4643 0.4510 0.4641 0.7245 0.7743 0.7613 0.7527 0.7584 0.9484 0.9668 0.9638 0.9613 0.9638
(0.4704) (0.4696) (0.4463) (0.4672) (0.7601) (0.7592) (0.7447) (0.7566) (0.9649) (0.9646) (0.9615) (0.9637)

160 4 0.3770 0.3929 0.3635 0.3394 0.3621 0.5955 0.6461 0.6198 0.5991 0.6196 0.8581 0.8982 0.8900 0.8827 0.8900
(0.3604) (0.3599) (0.3351) (0.3580) (0.6201) (0.6194) (0.5997) (0.6167) (0.8933) (0.8928) (0.8850) (0.8909)

Note. �T and �C=population proportions; k=number of studies; N=average sample size; nT=nC=ratio between sample sizes; �=population risk di�erence.
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Table 4
Empirical and asymptotical (in parentheses) power rates

�T = 0:125, �C = 0:075; � = 0:05

k = 10 k = 20 k = 40

N nT=nC �2U �2CW �2C �2MH �2Y �2U �2CW �2C �2MH �2Y �2U �2CW �2C �2MH �2Y

60 1 0.4131 0.4921 0.5412 0.4784 0.5367 0.6415 0.7740 0.8281 0.7972 0.8247 0.8968 0.9675 0.9837 0.9801 0.9835
(0.5353) (0.5324) (0.4718) (0.5256) (0.8256) (0.8230) (0.7902) (0.8166) (0.9837) (0.9831) (0.9783) (0.9816)

60 2da 0.4151 0.7917 0.4667 0.4013 0.4631 0.6270 0.9763 0.7767 0.7380 0.7726 0.8757 0.9996 0.9731 0.9651 0.9716
(0.5190) (0.4593) (0.3990) (0.4531) (0.8103) (0.7476) (0.7079) (0.7405) (0.9801) (0.9604) (0.9510) (0.9576)

60 2ib 0.3423 0.1524 0.5210 0.4559 0.5151 0.5647 0.2126 0.7988 0.7628 0.7936 0.8563 0.3326 0.9758 0.9704 0.9747
(0.4614) (0.5163) (0.4504) (0.5096) (0.7501) (0.8077) (0.7705) (0.8011) (0.9613) (0.9794) (0.9734) (0.9777)

60 4d 0.3809 0.9561 0.3338 0.2575 0.3241 0.5356 0.9997 0.6050 0.5469 0.5977 0.7771 1.0 0.9013 0.8823 0.8992
(0.4213) (0.3359) (0.2761) (0.3312) (0.7022) (0.5839) (0.5324) (0.5767) (0.9409) (0.8668) (0.8428) (0.8611)

60 4i 0.2187 0.1493 0.4214 0.3473 0.4116 0.3936 0.2398 0.6778 0.6262 0.6727 0.6967 0.4311 0.9162 0.9006 0.9142
(0.3370) (0.4195) (0.3449) (0.4138) (0.5855) (0.7000) (0.6462) (0.6926) (0.8681) (0.9398) (0.9241) (0.9362)

100 1 0.6807 0.7360 0.7550 0.7153 0.7519 0.9202 0.9542 0.9650 0.9577 0.9643 0.9976 0.9991 0.9993 0.9993 0.9993
(0.7532) (0.7502) (0.7113) (0.7460) (0.9624) (0.9614) (0.9529) (0.9598) (0.9996) (0.9995) (0.9994) (0.9995)

100 2d 0.6651 0.8864 0.6962 0.6529 0.6921 0.9039 0.9935 0.9427 0.9306 0.9417 0.9946 0.9999 0.9986 0.9982 0.9986
(0.7371) (0.6703) (0.6260) (0.6659) (0.9563) (0.9243) (0.9102) (0.9219) (0.9994) (0.9978) (0.9971) (0.9976)

100 2i 0.6120 0.4290 0.7302 0.6871 0.7283 0.8811 0.6432 0.9497 0.9411 0.9486 0.9934 0.8779 0.9984 0.9983 0.9984
(0.6728) (0.7342) (0.6905) (0.7300) (0.9257) (0.9551) (0.9448) (0.9534) (0.9978) (0.9993) (0.9991) (0.9993)

100 4d 0.5734 0.9563 0.5207 0.4613 0.5187 0.8069 0.9991 0.8343 0.8055 0.8306 0.9758 1.0 0.9885 0.9860 0.9881
(0.6231) (0.5090) (0.4560) (0.5050) (0.8954) (0.8006) (0.7711) (0.7966) (0.9952) (0.9775) (0.9728) (0.9764)

100 4i 0.4539 0.2004 0.6022 0.5488 0.5985 0.7355 0.1741 0.8666 0.8451 0.8648 0.9649 0.1721 0.9901 0.9883 0.9899
(0.5106) (0.6209) (0.5618) (0.6166) (0.8021) (0.8938) (0.8711) (0.8909) (0.9779) (0.9950) (0.9935) (0.9947)

160 1 0.8815 0.9146 0.9225 0.9075 0.9213 0.9933 0.9973 0.9982 0.9978 0.9981 1.0 1.0 1.0 1.0 1.0
(0.9170) (0.9152) (0.8997) (0.9135) (0.9972) (0.9971) (0.9963) (0.9969) (1.0) (1.0) (1.0) (1.0)

160 2d 0.8573 0.9528 0.8785 0.8573 0.8763 0.9897 0.9995 0.9943 0.9930 0.9943 1.0 1.0 1.0 1.0 1.0
(0.9056) (0.8576) (0.8352) (0.8555) (0.9962) (0.9900) (0.9878) (0.9896) (1.0) (1.0) (1.0) (1.0)

160 2i 0.8279 0.7327 0.8870 0.8685 0.8858 0.9845 0.9425 0.9950 0.9931 0.9947 0.9999 0.9983 1.0 1.0 1.0
(0.8596) (0.9038) (0.8852) (0.9020) (0.9903) (0.9960) (0.9950) (0.9959) (1.0) (1.0) (1.0) (1.0)

160 4d 0.7706 0.9575 0.7435 0.7026 0.7406 0.9576 0.9992 0.9664 0.9603 0.9659 0.9993 1.0 0.9998 0.9998 0.9998
(0.8202) (0.7081) (0.6708) (0.7053) (0.9825) (0.9437) (0.9340) (0.9424) (0.9999) (0.9989) (0.9986) (0.9988)

160 4i 0.6892 0.3777 0.7878 0.7561 0.7860 0.9408 0.5068 0.9716 0.9667 0.9711 0.9992 0.6608 0.9999 0.9999 0.9999
(0.7097) (0.8182) (0.7846) (0.8158) (0.9445) (0.9820) (0.9775) (0.9814) (0.9989) (0.9999) (0.9999) (0.9999)

Note. �T and �C=population proportions; k=number of studies; N=average sample size; nT=nC=ratio between sample sizes; �=population risk di�erence.
ad denotes a direct relationship where the most extreme proportion is associated with the lowest sample size.
bi denotes an inverse relationship where the most extreme proportion is associated with the largest sample size.
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Table 5
Empirical and asymptotical (in parentheses) power rates

�T = 0:550, �C = 0:450; �= 0:10

k = 10 k = 20 k = 40

N nT=nC �2U �2CW �2C �2MH �2Y �2U �2CW �2C �2MH �2Y �2U �2CW �2C �2MH �2Y

60 1 0.5292 0.7241 0.7054 0.6566 0.6878 0.7877 0.9450 0.9366 0.9267 0.9354 0.9707 0.9980 0.9976 0.9971 0.9976
(0.6921) (0.6878) (0.6509) (0.6804) (0.9359) (0.9337) (0.9218) (0.9299) (0.9985) (0.9984) (0.9979) (0.9981)

60 2 0.4891 0.6932 0.6537 0.6069 0.6466 0.7407 0.9215 0.9108 0.8947 0.9071 0.9571 0.9965 0.9970 0.9964 0.9968
(0.6410) (0.6371) (0.5969) (0.6298) (0.9070) (0.9045) (0.8887) (0.8998) (0.9963) (0.9961) (0.9951) (0.9956)

60 4 0.3861 0.5918 0.5069 0.4594 0.5007 0.6118 0.8251 0.7979 0.7694 0.7947 0.8778 0.9654 0.9756 0.9716 0.9750
(0.5038) (0.5013) (0.4544) (0.4947) (0.7954) (0.7928) (0.7646) (0.7861) (0.9761) (0.9754) (0.9701) (0.9734)

100 1 0.8215 0.9014 0.8970 0.8799 0.8904 0.9802 0.9955 0.9950 0.9940 0.9950 0.9998 1.0 1.0 1.0 1.0
(0.8884) (0.8854) (0.8694) (0.8823) (0.9944) (0.9940) (0.9928) (0.9936) (1.0) (1.0) (1.0) (1.0)

100 2 0.7757 0.8622 0.8512 0.8295 0.8505 0.9650 0.9903 0.9889 0.9868 0.9880 0.9997 1.0 1.0 1.0 1.0
(0.8507) (0.8476) (0.8275) (0.8440) (0.9888) (0.9882) (0.9859) (0.9875) (1.0) (1.0) (1.0) (1.0)

100 4 0.6491 0.7487 0.7182 0.6881 0.7162 0.8964 0.9547 0.9471 0.9400 0.9459 0.9947 0.9991 0.9989 0.9989 0.9989
(0.7199) (0.7172) (0.6854) (0.7128) (0.9491) (0.9478) (0.9395) (0.9459) (0.9991) (0.9991) (0.9988) (0.9990)

160 1 0.9582 0.9811 0.9787 0.9760 0.9785 0.9994 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(0.9803) (0.9793) (0.9760) (0.9787) (0.9999) (0.9999) (0.9999) (0.9999) (1.0) (1.0) (1.0) (1.0)

160 2 0.9356 0.9687 0.9658 0.9617 0.9657 0.9988 0.9994 0.9994 0.9994 0.9994 1.0 1.0 1.0 1.0 1.0
(0.9660) (0.9647) (0.9594) (0.9638) (0.9997) (0.9996) (0.9995) (0.9996) (1.0) (1.0) (1.0) (1.0)

160 4 0.8524 0.9080 0.9006 0.8881 0.8988 0.9901 0.9954 0.9949 0.9945 0.9949 1.0 1.0 1.0 1.0 1.0
(0.8955) (0.8936) (0.8797) (0.8917) (0.9952) (0.9950) (0.9941) (0.9948) (1.0) (1.0) (1.0) (1.0)

Note. �T and �C=population proportions; k=number of studies; N=average sample size; nT=nC=ratio between sample sizes; �=population risk di�erence.
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Table 6
Empirical and asymptotical (in parentheses) power rates

�T = 0:150, �C = 0:050; � = 0:10

k = 10 k = 20 k = 40

N nT=nC �2U �2CW �2C �2MH �2Y �2U �2CW �2C �2MH �2Y �2U �2CW �2C �2MH �2Y

60 1 0.9056 0.9728 0.9873 0.9821 0.9869 0.9960 0.9998 0.9999 0.9999 0.9999 1.0 1.0 1.0 1.0 1.0
(0.9854) (0.9831) (0.9746) (0.9816) (1.0) (0.9999) (0.9999) (0.9999) (1.0) (1.0) (1.0) (1.0)

60 2da 0.8933 0.9974 0.9758 0.9649 0.9751 0.9931 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(0.9887) (0.9492) (0.9296) (0.9459) (1.0) (0.9991) (0.9986) (0.9990) (1.0) (1.0) (1.0) (1.0)

60 2ib 0.8447 0.7100 0.9809 0.9729 0.9807 0.9897 0.9278 0.9999 0.9999 0.9999 1.0 0.9976 1.0 1.0 1.0
(0.9532) (0.9867) (0.9787) (0.9855) (0.9993) (1.0) (0.9999) (1.0) (1.0) (1.0) (1.0) (1.0)

60 4d 0.8271 0.9998 0.9108 0.8701 0.9051 0.9703 1.0 0.9977 0.9964 0.9976 0.9999 1.0 1.0 1.0 1.0
(0.9731) (0.8298) (0.7818) (0.8235) (1.0) (0.9846) (0.9783) (0.9832) (1.0) (0.9999) (0.9999) (0.9999)

60 4i 0.6628 0.1406 0.9390 0.9123 0.9373 0.9393 0.1553 0.9982 0.9971 0.9980 0.9995 0.1973 1.0 1.0 1.0
(0.8350) (0.9700) (0.9505) (0.9677) (0.9857) (0.9997) (0.9995) (0.9997) (1.0) (1.0) (1.0) (1.0)

100 1 0.9959 0.9991 0.9996 0.9996 0.9996 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(0.9996) (0.9995) (0.9993) (0.9995) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

100 2d 0.9946 0.9998 0.9994 0.9988 0.9994 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(0.9998) (0.9964) (0.9948) (0.9962) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

100 2i 0.9891 0.9613 0.9994 0.9990 0.9993 1.0 0.9990 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(0.9969) (0.9997) (0.9995) (0.9997) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

100 4d 0.9802 0.9997 0.9912 0.9874 0.9907 0.9998 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(0.9989) (0.9642) (0.9521) (0.9627) (1.0) (0.9996) (0.9994) (0.9996) (1.0) (1.0) (1.0) (1.0)

100 4i 0.9483 0.4860 0.9933 0.9901 0.9932 0.9993 0.6313 1.0 1.0 1.0 1.0 0.8332 1.0 1.0 1.0
(0.9662) (0.9986) (0.9976) (0.9985) (0.9997) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

160 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

160 2d 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

160 2i 0.9999 0.9990 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

160 4d 0.9992 1.0 0.9998 0.9997 0.9998 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(1.0) (0.9974) (0.9964) (0.9973) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

160 4i 0.9977 0.8958 1.0 1.0 1.0 1.0 0.9836 1.0 1.0 1.0 1.0 0.9998 1.0 1.0 1.0
(0.9977) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

Note. �T and �C=population proportions; k=number of studies; N=average sample size; nT=nC=ratio between sample sizes; �=population risk di�erence.
ad denotes a direct relationship where the most extreme proportion is associated with the lowest sample size.
bi denotes an inverse relationship where the most extreme proportion is associated with the largest sample size.
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Tables 3–6 also included the asymptotical statistical power of the �2C, �
2
MH, �

2
Y,

and �2CW tests. In general, the asymptotical power of �2CW, which was computed
using the optimal weights, Wi = 1=�2di , achieved the largest values in comparison
with the asymptotical power of the remaining procedures. The exception occurred
when the most extreme population proportion was assigned to the largest sample
size, achieving the smallest asymptotical values.
Comparing the empirical power values of the �2C, �

2
MH, and �

2
Y procedures with

their corresponding asymptotical powers, the three procedures showed an adequate
adjustment. Conversely, the conditional �2CW test showed the largest discrepancies
between the asymptotical and empirical values. The discrepancies were more pro-
nounced with unbalanced sample sizes and the most extreme population proportion
occurring in the largest sample size.

5. Conclusions

In this paper we compared the Type I error and statistical power rates of �ve
statistical procedures for testing the signi�cance of a common risk di�erence in
conditions usually found in meta-analytic research in health and behavioural sciences.
We assumed a set of k 2×2 tables comparing treated vs control groups, homogeneous
control proportions through the studies, and a �xed-e�ects model. Therefore, the
results of our simulation study must be limited to the particular conditions where the
use of a risk di�erence as the e�ect size index is advisable.
As anticipated, the unweighted �2U test showed the lowest empirical power values

under most of the conditions. In contrast with some meta-analytic approaches (e.g.,
Glass et al., 1981), this �nding does not support the use of unweighted procedures
in meta-analysis.
Our results demonstrate an anomalous performance by the conditional weighted

�2CW test, and for this reason we advise against its application in meta-analyses with
unbalanced sample sizes, especially when the most extreme proportion occurs in
the largest sample size. This adverse e�ect increases when the number of studies
and the sample sizes are low, as is frequently the case in meta-analyses of health
sciences. Therefore, although recently recommended by Shadish and Haddock (1994),
we consider the �2CW test as being far from the most appropriate procedure for testing
the signi�cance of a common risk di�erence.
The unconditional weighted procedures achieved the best performance, adequately

adjusting both the Type I error and empirical power rates. Throughout the manip-
ulated conditions, the �2C, �

2
MH, and �

2
Y tests presented very similar power values,

con�rming the commentary of Laird and Mosteller (1990) concerning the equiva-
lence of the three procedures. Nevertheless, �2MH was slightly more conservative than
the other two procedures, due to the inclusion of the one-half continuity correction.
Consequently, although procedures of Mantel-Haenszel and Yusuf et al. were pro-
posed as an improvement on Cochran’s original test, our results do not con�rm such
higher performances under the manipulated conditions. In practice, because the de-
tected di�erences among the �2C, �

2
MH, and �

2
Y tests are negligible, we consider that the



312 J. S�anchez-Meca, F. Mar��n-Mart��nez / Computational Statistics & Data Analysis 33 (2000) 299–313

three tests are interchangeable. However, it must be noted that the statistical power of
these procedures was not always suitable, with empirical values even lower than 0.50
in some conditions. If the criterion of 0.80 proposed by Cohen (1988) in social and
behavioural sciences is taken into account as the minimum advisable power, caution
is necessary under many of the conditions, especially with small sample sizes, a low
number of studies, and small di�erences between the two population proportions.
Finally, it is important to note that the di�erences observed in our simulation study

are limited to manipulated conditions. Real meta-analyses include more heterogeneous
studies than simulated ones, for example with variable sample size ratios and di�erent
relationships between sample sizes and population proportions of treated and control
groups. These, and other, factors can also a�ect the performance of the procedures.
As a consequence, we believe that new research e�orts should be devoted to assessing
the performance of meta-analytic techniques in integrating 2 × 2 tables, such as
homogeneity tests, the search for moderator variables and comparing di�erent e�ect
size indexes.
Consequently, new simulation studies are needed in order to probe deeper into the

performance of the procedures advocated from di�erent meta-analytic approaches.
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