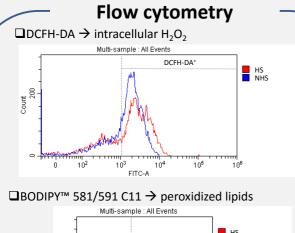
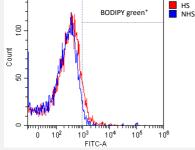


PEROXIDATION IN BOVINE SPERMATOZOA

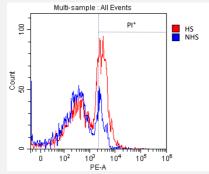
Núria Llamas Luceño¹, Kristel Demeyere², Daniel Angrimani^{1,3}, Bart Leemans¹, Evelyne Meyer², Ann Van Soom¹ ¹Department of Reproduction, Obstetrics and Herd Health; ²Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Ghent, Belgium; ³Department of animal reproduction, University of São Paulo, São Paulo, Brazil. Email: nuria.llamasluceno@ugent.be

Introduction -


Heat-stressed semen displays:

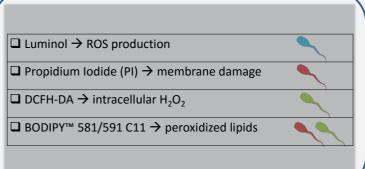

Lower protamination

Lower sperm motility


Changes in the methylation of paternal pronuclei

(Rahman et al., Theriogenology, 76, 1246–1257, 2011).

□ Propidium Iodide (PI) \rightarrow membrane damage



Objectives

□ To elucidate the effects of heat stress on oxidative status in bovine spermatozoa by quantifying reactive oxygen species (ROS) and lipid peroxidation (LPO).

 Heat-stressed (HS) and non-heat-stressed (NHS) frozen semen samples of <u>Holstein-Friesian bulls</u>

Sperm stainings

	Heat Stress	No Heat	Р	N
	neat stress	Stress	P	
PI - Membrane	30.69 ±	21.89 ±	0.0006	N=4
damage	1.46%	0.44%		
DCFH -	34.79 ±	35.31 ±	0.9729	N=4
Intracellular H ₂ O ₂	8.40%	12.11%		
BODIPY – RED -	83.62 ±	91.30 ±	0.0057	N=4
Lipids	0.92%	1.57%		
BODIPY – GREEN	5.84 ± 3.36%	3.13 ± 1.87%	0.3671	N=4
- Oxidized lipids				
LUMINOL 15 MIN	0.56 ± 0.24	0.38 ± 0.27	0.653	N=3
- ROS production				
LUMINOL 30 MIN	1.04 ± 0.45	0.79 ± 0.46	0.724	N=3
- ROS production				

	Bodipy Green
lal	R=0.828
Luminol	P=0.04

Data was analyzed using correlation of Spearman (p \leq 0.05).

*Please ask the representing author for further experimental details

Discussion and Conclusions

- No differences were observed in the percentage of DCFH-DA⁺ cells between HS and NHS semen. However, a higher mean fluorescence intensity (MFI) was observed in HS compared to NHS semen, indicating that HS cells have more intracellular H₂O₂.
- A positive correlation was observed between ROS production (luminol) and LPO (BODIPY green) (r=0.82, p=0.01).
- The survival rate of sperm cells was higher in NHS than in HS semen, while a higher LPO and ROS production were observed in HS
- compared to NHS semen. These results suggest a possible effect of heat stress on the oxidative status of bovine spermatozoa.