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THERE ARE NO PIECEWISE LINEAR MAPS OF TYPE 2∞

VÍCTOR JIMÉNEZ LÓPEZ AND L’UBOMÍR SNOHA

Abstract. The aim of this paper is to show that there are no piecewise linear
maps of type 2∞. For this purpose we use the fact that any piecewise monotone
map of type 2∞ has an infinite ω-limit set which is a subset of a doubling period
solenoid. Then we prove that piecewise linear maps cannot have any doubling
period solenoids.

1. Introduction and main results

The main aim of this paper is to show that piecewise linear maps of type 2∞ do
not exist. The basic scheme behind the proof is as follows. First we realize that
any piecewise monotone map (in particular any piecewise linear map) of type 2∞

has an infinite ω-limit set. But it is also known that any map of type 2∞ having
an infinite ω-limit set also has a doubling period solenoid. Then we show that a
piecewise linear map cannot have any doubling period solenoids.

We start with some notations and definitions.
Let I be a real compact interval and C(I) be the set of continuous maps from I

into itself. Let N be the set of positive integers. A point p ∈ I is a periodic point of a
map f ∈ C(I) if fn(p) = p for some n ∈ N. The period of p is the least such integer
n, and the orbit of p under f is the set orbf (p) = {fk(p) : k = 0, 1, . . . , n − 1}.
We refer to such an orbit as to a periodic orbit of f of period n. A periodic
point of period 1 is called a fixed point. Similarly, we say that a sequence (Ik)

n−1
k=0

of closed subintervals of I is periodic of period n if they have disjoint interiors
and f(Ik) ⊂ Ik+1 for any k = 0, 1, . . . , n − 2 and f(In−1) ⊂ I0. In this case we

call C =
⋃n−1
k=0 Ik a cycle of periodic intervals. Further, we say that A ⊂ I is

a solenoid of f (the term solenoid is used, e.g., in [MSt2]) if there are a strictly

increasing sequence (kn)∞n=1 of positive integers and periodic sequences (Ink )kn−1
k=0

of closed intervals of period kn such that
⋃kn−1
k=0 Ink ⊃ ⋃kn+1−1

k=0 In+1
k for any n and

A =
⋂∞
n=1

⋃kn−1
k=0 Ink . We call the family {(Ink )kn−1

k=0 }∞n=1 a covering of A of type
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(kn)∞n=1. If a solenoid admits a covering of type (2n)∞n=1 we call it a doubling period
solenoid of f .

The set of all limit points of the trajectory (fn(x))∞n=0 of a point x is called the
ω-limit set of x under f and denoted by ωf(x). We say that x is an asymptotically
periodic point of f if for some periodic point p, |fn(x)− fn(p)| → 0 when n→∞.
We also describe this situation by saying that x is attracted by (the orbit of ) p.

The key to understanding the dynamics of maps from C(I) is the well known
Sharkovskii theorem [Sh1]. Consider the Sharkovskii ordering of the set N∪ {2∞}:

3 � 5 � 7 � · · · � 2 · 3 � 2 · 5 � 2 · 7 � · · · � 4 · 3 � 4 · 5 � 4 · 7 � · · · � . . .

� 2n · 3 � 2n · 5 � 2n · 7 � · · · � · · · � 2∞ � · · · � 2n � · · · � 4 � 2 � 1.

We will also use the symbol � in the natural way. For n ∈ N∪ {2∞} we denote by
S(n) the set {k ∈ N : n � k} (S(2∞) stands for the set {1, 2, 4, . . . , 2k, . . . }). Let
f ∈ C(I) and Per(f) be the set of periods of its periodic points. The Sharkovskii
theorem says that there exists n ∈ N∪{2∞} such that Per(f) = S(n). The converse
of the Sharkovskii theorem also holds, that is, for every n ∈ N ∪ {2∞} there exists
f ∈ C(I) with Per(f) = S(n) (see [Sh1], [Sh2]). If Per(f) = S(n), then f is said
to be of type n. So any map f ∈ C(I) is of some type and for every n ∈ N ∪ {2∞}
there is a map of type n. When speaking of types we consider them to be ordered
by the Sharkovskii ordering. So if a map f is of type 2∞ or greater than 2∞, then
Per(f) = {1, 2, . . . , 2k, . . . } or f has a periodic point with period not a power of 2,
respectively.

It turns out that the Sharkovskii theorem allows us to organize a classification
of the maps from C(I) in terms of their dynamical complexity. So, maps of type
2n, n = 0, 1, 2, . . . , are simple: all their points are asymptotically periodic (see
[Le], [Co], cf. [Sh2]). On the other hand, maps of type greater than 2∞ have a
very complicated dynamics. For instance, they are chaotic in the sense of Li and
Yorke [LY], which means that there exists an uncountable set S ⊂ I containing no
asymptotically periodic points (which implies that ωf (x) is infinite for each x ∈ S,
see [Ba]) and such that

lim sup
n→∞

|fn(x)− fn(y)| > 0, lim inf
n→∞ |fn(x) − fn(y)| = 0

for any x, y ∈ S, x 6= y. Maps of type 2∞ are located somewhere between these two
groups. Indeed, there are examples of maps F , G of type 2∞ respectively having
only asymptotically periodic points [BP] and chaotic in the sense of Li and Yorke
[Sm].

Let R be the real line and J ⊂ R a (not necessarily compact) interval. We
say that a continuous map f : J → R is piecewise monotone (resp. piecewise
linear) if there are points inf I = a0 < a1 < · · · < an = sup I such that for every
k ∈ {1, 2, . . . , n}, the restriction of f to the interval (ak−1, ak) is (not necessarily
strictly) monotone (resp. linear and non-constant). Note that, according to the
definitions, piecewise monotone maps can have constant pieces, while piecewise
linear maps cannot. In the case of piecewise linear maps, notice also that the
consecutive linear pieces need not be alternatively increasing and decreasing.

One could wonder whether the converse of the Sharkovskii theorem holds for
piecewise monotone (or even polynomial) maps from C(I). It is well known that the
answer is affirmative. For instance, the classical logistic family {Fλ}λ∈[0,4] defined
by Fλ(x) = λx(1 − x) contains examples of maps of all types in the Sharkovskii
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ordering (see [Gu1]). On the other hand, compare this with the family of “tent”
maps {Gµ}µ∈[0,1] defined by Gµ(x) = µ(1−|2x−1|). The map Gµ is of type greater
than 2∞ if µ > 1/2 but Gµ is of type 1 for any µ 6 1/2 (see e.g. [BP]). So, a
question remains: does the converse of the Sharkovskii theorem hold for piecewise
linear maps? Examples of piecewise linear maps of all types except of type 2∞ are
well known (see e.g. Corollary 2.2.9 in [ALM]) and the map F from [BP] of type
2∞ mentioned earlier consists of an infinite number of non-constant linear pieces.
Further, the map H ∈ C([0, 1]) defined by H(x) = min{κ,G1(x)}, κ ≈ 0.8249... is
of type 2∞ (see [MS]) but it has a constant piece and so it is not piecewise linear.
No examples of piecewise linear maps of type 2∞ are known. The main result of
this paper says that such examples do not exist.

We will use the following proposition which is a part of folklore knowledge.

Proposition. If f ∈ C(I) is a piecewise monotone map of type 2∞, then it has a
doubling period solenoid.

To see that the Proposition holds true recall a well known result implicit in
several of Sharkovskii’s papers and proved in [Sm] stating that every infinite ω-
limit set of a map of type 2∞ is contained in a doubling period solenoid. So it is
sufficient to show that any piecewise monotone map of type 2∞ has an infinite ω-
limit set. But this is proved in [BC], Proposition II.28 and Proposition VI.10. (The
proof is based on the ideas similar to those from [FSh] and though the definition
of piecewise monotonicity used in [BC] is more restrictive than the one used in the
present paper, one can see that the proof remains valid also for maps which are
piecewise monotone in our sense.)

The Proposition seems to be useful for applications. For instance, we have
strongly used it in [JS] to show that it is always possible to find, for any given map
of type 2∞ (not necessarily piecewise monotone), maps of type 2k, k <∞, as close
to it as required. On the other hand, it is not easy to follow its proof in the sense
that the proofs of Propositions II.28 and VI.10 from [BC] involve several auxiliary
results, some of them not being very well known. Therefore we will give below a
short elementary proof.

The following theorem is the key result of the present paper.

Theorem. If f ∈ C(I) is piecewise linear, then it has no doubling period solenoids.

After the first version of this paper was submitted, we learned of a recent paper
by Martens and Tresser [MT] where this result was strengthened (see Section 3
below). The Proposition and Theorem give

Corollary. There are no piecewise linear maps of type 2∞ in C(I).

Remark. The Sharkovskii theorem also holds for the set C(R) of continuous maps
from the real line into itself (in this case we have the additional possibility Per(f) =
∅). It turns out that C(R) does not contain any piecewise linear maps of type 2∞

either. To prove it, assume f ∈ C(R) is a piecewise linear map of type 2∞. Take
a homeomorphism φ : (0, 1) → R and construct g = φ−1 ◦ f ◦ φ. We can extend
g to a piecewise monotone map g0 ∈ C([0, 1]) of type 2∞. By the Proposition, g0

has a doubling period solenoid A. Let {(Ink )2
n−1
k=0 }∞n=1 be a covering of A of type

(2n)∞n=1. Since g0({0, 1}) ⊂ {0, 1} (note that both φ at the points 0+, 1− and f at
the points −∞, +∞ have infinite limits) and A cannot contain any asymptotically

periodic points,
⋃2l−1
k=0 I lk ⊂ (0, 1) for some l large enough. Since the restriction of
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g2l to the interval I l0 is of type 2∞, so is the restriction of f2l to the interval φ(I l0).
This contradicts our Theorem.

2. Proofs

Before going to the proofs fix some notations. The convex hull of a set A ⊂ I
will be denoted by convA, intA is the interior of A. If f : A → B and C ⊂ A,
f |C is the restriction of f to C. A subinterval J of I containing no asymptotically
periodic points of f ∈ C(I) and such that fn(J) ∩ fk(J) = ∅ for any n > k > 0
will be called a wandering interval of f .

Let f ∈ C(I) be piecewise monotone. In what follows we will say that t ∈ I
is a turning point of f if there are points u < t < v in I such that the maps
f |[u,t] and f |[t,v] are non-constant and one of them is increasing while the other
is decreasing (the monotonicity may not be strict). Each connected component of
the set of turning points of f will be called a turning interval of f . Notice that
a turning interval may degenerate to a point. Clearly, f has a finite number of
turning intervals, and if T is a turning interval of f , then f |T is constant. One
can also check that if T is a turning interval of fn for some n, then there exists
0 6 k < n such that fk(T ) intersects some turning interval of f .

Proof of Proposition. Assume the contrary. Then all turning points of f are asymp-
totically periodic. It is not restrictive to assume that all turning points of f are
attracted by fixed points (take into account the properties of turning intervals de-

scribed above to replace f if necessary by an appropriate f2k).
Let P be a periodic orbit of f of period four and denote convP = [a, b]. Since the

set {a, b} cannot be mapped by f onto itself, one of the points where the map f |[a,b]
attains its absolute extremum (with no loss of generality we can suppose that it is
the minimum) must belong to (a, b). This point (denote it by c) is a turning point
of f . Let d < c < e be the closest points to c with the property f(d) = f(e) = a.
Clearly, the interval [d, e] contains no fixed points of f . Denote the fixed point
attracting c by p. Let for example p < d. Then there is an m large enough so that
fm(c) < d and fm(d) = fm(e) = b. In particular, [d, e] ⊂ fm([d, c]) ∩ fm([c, e])
(fm has a horseshoe). But it is well known and easy to prove that then the type of
f is greater than 2∞.

We will need the following lemma.

Lemma. Let J be an interval and f : J → R be a piecewise linear map with at most
one point for which f ′ does not exist. Let m ∈ N and q0 < t1 < q1 < t2 < q2 < · · · <
tm < qm be points from J for which f ′ exists. Then there is an r ∈ {0, 1, . . . ,m}
such that

m∏
i=0

f ′(qi) = f ′(qr) ·
m∏
i=1

f ′(ti).

Proof. If f is linear with slope ρ, then for an arbitrary choice of r each of the
sides equals ρm+1. Now assume that c is the only point where f ′ does not exist.
If c < q0 or c > qm, then the lemma holds for the same reason as above. So
let qi < c < ti+1 for some i ∈ {0, 1, . . . ,m − 1} or tj < c < qj for some j ∈
{1, 2, . . . ,m}. In the former case we have f ′(q0) = f ′(t1), . . . , f ′(qi−1) = f ′(ti) and
f ′(ti+1) = f ′(qi+1), . . . , f

′(tm) = f ′(qm), so it suffices to take r = i. Similarly, in
the latter case take r = j.
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Proof of Theorem. Assume the contrary. Let f be a piecewise linear map having a
doubling period solenoid A. Let {(Ink )2

n−1
k=0 }∞n=1 be a covering of A of type (2n)∞n=1.

For any n, write Cn =
⋃2n−1
k=0 Ink . We are going to show that without loss of

generality we may assume that

the intervals Ink , k = 0, 1, . . . , 2n − 1, are pairwise disjoint for any n > 1.(1)

To this end denote Jnk = conv(A∩ Ink ). Since A cannot contain any asymptotically
periodic points, the intervals Jnk , k = 0, 1, . . . , 2n − 1, are pairwise disjoint. There
is an m large enough such that if c is a relative extremum of f belonging to Cm,
then it also belongs to A. Since f(A) ⊂ A this implies that f(Jmk ) ⊂ Jmk+1 for
any k = 0, 1, . . . , 2m − 2 and f(Jm2m−1) ⊂ Jm0 . Consequently, it is not restrictive to

assume (1) (replacing if necessary f by f2i |Ji0 for i = m− 1 if m > 1).
Further observe that

the length of the intervals Ink converges uniformly to zero when n→∞.(2)

Otherwise, there exist ε > 0 and kn for any n such that Inkn has length greater
than ε. Let an be the midpoint of each interval Inkn and (ani)i be a subsequence of
(an)n converging to some a. It is not restrictive to suppose that |ani − a| < ε

3 for

any i. Then Inikni
∩ I

ni+1

kni+1
6= ∅ and so I

ni+1

kni+1
⊂ Inikni

for any i (see (1). This means

that there is an interval J such that J ⊂ A. Obviously, f j(J) ∩ fm(J) = ∅ for any
j > m > 0. Since A does not contain any asymptotically periodic points, J is a
wandering interval of f which is impossible since by [MMS] piecewise linear maps
have no wandering intervals.

Denote by C the set of points for which f ′ does not exist (in general this set is
larger than the set of relative extrema of f). From (2) and the fact that C is finite
it follows that there is an l such that

C ∩ Cl ⊂ A and each Ink contains at most one point from C for any n > l.(3)

Fix each In0 in such a way that In+1
0 ⊂ In0 for any n. Then In+1

k , In+1
k+2n ⊂ Ink

for any n and any k = 0, 1, . . . , 2n − 1. Let Kn
k be the set consisting of all points

lying between int In+1
k and int In+1

k+2n . According to (1), Kn
k is a non-degenerate

closed interval. Since for a fixed n the intervals Kn
k are pairwise disjoint and

f(Kn
k ) ⊃ Kn

k+1 for any k = 0, 1, . . . , 2n − 2 and f(Kn
2n−1) ⊃ Kn

0 , there exists a
periodic orbit Pn of period 2n containing exactly one point (which will be denoted
by pnk ) from each Kn

k .

For any n > l define δn = (f2n)′(pn0 ) = f ′(pn0 ) · f ′(pn1 ) · · · f ′(pn2n−1). Notice that
δn is well defined, since by (3) the set C ∩ Cn ⊂ A and so it cannot contain any
periodic points. We claim that

|δn| > 1 for any n > l.(4)

Indeed let i > l be such that |δi| 6 1 and define the map g = f2i |Ii0 ∈ C(Ii0).

Consider the maximal interval containing pi0 on which g′ exists. Since g is piecewise
linear and pi0 is a fixed point of g, there exists an endpoint c of this interval such
that gj(c) → pi0 when j →∞ if |δi| < 1 and g2(c) = c if |δi| = 1. In either case c is
an asymptotically periodic point of g and then an asymptotically periodic point of
f . Clearly we can choose c with the additional property of not being an endpoint
of the interval Ii0, and then g′(c) does not exist. This means that fm(c) ∈ C
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Figure 1. The structure of the map f from the proof of Theorem.
Here we assume l = 1, n = 3.

for some m ∈ {0, 1, . . . , 2i − 1}, which is impossible because fm(c) would be an
asymptotically periodic point of f belonging to C ∩ Ci and then, by (3), to A.

Let L be the (finite) set of all possible values of f ′ (where it is defined) and
construct M = {ρ0 · ρ1 · · · ρ2l−1 : ρk ∈ L, k = 0, 1, . . . , 2l − 1}, also a finite set. Fix
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n > l and let x ∈ In0 be such that δ = (f2n)′(x) exists. We are going to show that

δ = δl · δl+1 · · · δn−1 · ν for some ν ∈M .(5)

Define Q = {f j(x)}2n−1
j=0 , T =

⋃n−1
s=l Ps and write also Qk = Q ∩ I lk, Tk = T ∩ I lk,

k = 0, 1, . . . , 2l−1. Recall that f j(x) ∈ Inj for any j = 0, 1, . . . , 2n−1 and that each

point psr of the periodic orbit Ps lies between the intervals Is+1
r and Is+1

r+2s . Then

the cardinality of the sets Qk and Tk is respectively 2n−l and 2n−l − 1. Moreover,
if qk0 < qk1 < qk2 < · · · < qk2n−l−1 and tk1 < tk2 < · · · < tk2n−l−1 are the elements

of Qk and Tk, we have qk0 < tk1 < qk1 < tk2 < qk2 < · · · < tk2n−l−1 < qk2n−l−1 (see

Figure 1). Also, recall that by (3) each interval I lk can contain at most one point
from C. Therefore, by the Lemma, for every k ∈ {0, 1, . . . , 2l − 1} there exists a
point q̃k ∈ Qk such that ∏

q∈Qk

f ′(q) = f ′(q̃k) ·
∏
t∈Tk

f ′(t).

Hence

δ = (f2n)′(x) =
∏
q∈Q

f ′(q) =

2l−1∏
k=0

∏
q∈Qk

f ′(q) =

2l−1∏
k=0

(
f ′(q̃k) ·

∏
t∈Tk

f ′(t)

)
.

To prove (5) realize that the number
∏2l−1

k=0 f
′(q̃k) belongs to M and

2l−1∏
k=0

∏
t∈Tk

f ′(t) =

n−1∏
s=l

∏
t∈Ps

f ′(t) =

n−1∏
s=l

δs.

In particular (note that pn0 ∈ In0 ), for any n > l there exists νn ∈M such that

δn = δl · δl+1 · · · δn−1 · νn.(6)

We claim that there exists a number δ′ > 1 such that

|δn| > δ′ for any n > l.(7)

Indeed, notice that the set {νn}∞n=l+1 is finite and take m > l such that {νn}∞n=l+1 =
{νl+1, νl+2, . . . , νm}. By (4) we have |δn| > 1 for n = l + 1, l + 2, . . . ,m. Now
take any n > m. Then there is w ∈ {l + 1, l + 2, . . . ,m} with νn = νw and so
|δn| = |δl · δl+1 · · · δm−1 · δm · · · δn−1 · νn| = |δl · δl+1 · · · δm−1 · δm · · · δn−1 · νw| =
|δw| · |δw · · · δn−1| > |δw| (we have used (4) and (6)). Thus it is sufficient to take
δ′ = min{|δl+1|, |δl+2|, . . . , |δm|}.

Clearly, there exists some integer r not depending on n such that the number of
points for which (f2n |In0 )′ does not exist is less than r. On the other hand, if n is

large enough we have from (5) and (7) that |(f2n |In0 )′(x)| > r in each point x for

which (f2n |In0 )′(x) exists. This is impossible, since in the opposite case the length

of the interval f2n(In0 ) would be greater than the length of In0 .

3. Final remarks and open questions

We are going to discuss possible generalizations of our results as well as some
related conjectures.

First we recall the role of wandering intervals in the dynamics and introduce a
class of maps without wandering intervals which could seem at a first glance to be
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a candidate for the generalization of our result on the non-existence of piecewise
linear maps of type 2∞.

The dynamics of maps from C(I) can be substantially complicated due to the
presence of wandering intervals. For example, if a map of type 2∞ is chaotic in
the sense of Li and Yorke, then it must have wandering intervals (see [Sm]), while
for each piecewise strictly monotone map (i.e., piecewise monotone and constant
in no subinterval of I) having no wandering intervals there is a residual set R ⊂
I such that for any x ∈ R its ω-limit set is either a periodic orbit, a cycle of
periodic intervals or a solenoid (this follows for example from Theorem 2.4 and
Propositions 2.8, 2.9 and 4.2 in [Pr]).

Fortunately, for a large class of continuous maps wandering intervals do not exist.
Recall that a point c is said to be a critical point of f if f is differentiable in c and
f ′(c) = 0. If additionally f is of class Ck+1 in a neighborhood of c and f (k)(c) 6= 0
for some k ≥ 2, then c is called non-flat. Let A(I) denote the class of all maps f
from C(I) with the following properties:

1. There are points min I = a0 < a1 < · · · < an = max I such that f |[ak−1,ak]

is C1 for any k = 1, 2, . . . , n (in the points ak−1 and ak we mean one-sided
derivatives). Further, each (f |[ak−1,ak])

′ is a bounded variation map which
does not vanish in (ak−1, ak).

2. For any k = 0, 1, 2, . . . , n, either ak is a non-flat critical point of f , or the
one-sided derivatives of f in ak do not vanish.

Notice that A(I) contains all (non-constant) analytic maps and all piecewise lin-
ear maps. In a remarkable paper by Martens, de Melo and van Strien [MMS]
(cf. [MSt2], pp. 267–268), which generalizes earlier results by Denjoy [De], Guck-
enheimer [Gu2], de Melo and van Strien [MSt1], Lyubich [Ly1] and Blokh and
Lyubich [BL], it was proved that if f ∈ A(I), then it has no wandering intervals
(in fact they prove their result for a more general class of maps).

One would expect that our result on the nonexistence of maps of type 2∞ in
the class of piecewise linear maps could be extended to larger classes of maps, in
particular to the class A0(I) of maps from A(I) whose derivatives never vanish.
More precisely, f ∈ C(I) is said to belong to A0(I) if there are points min I =
a0 < a1 < · · · < an = max I such that f |[ak−1,ak] is C1 for any k = 1, 2, . . . , n (in
the points ak−1 and ak we mean one-sided derivatives) and each (f |[ak−1,ak])

′ is a
bounded variation map which does not vanish in [ak−1, ak]. However this is not the
case. We give below an example of a map f ∈ A0([0, 1]) of type 2∞ which is in fact
piecewise C∞. The map f has a doubling period solenoid (see the Proposition or
the construction of f below). This is basically the only possible type of a solenoid
of f . More precisely, it follows from the construction of f (cf. also [AJS]) that if
(kn)∞n=1 is the type of a covering of a solenoid of f , then each kn is a power of two.

We are going to define f . First notice that for any a > 0 it is easy to construct
a strictly increasing C∞ map Ψa : [0, 1] → [0, a] such that Ψa(0) = 0, Ψa(1) = a,

Ψ′
a(0) = Ψ′

a(1) = 1 and Ψ
(n)
a (0) = Ψ

(n)
a (1) = 0, n = 2, 3, . . . (here f (n) denotes

the n-th derivative of f). Moreover, the maps Ψa can be defined in such a way
that for any ε > 0 and n ∈ N there exists δε,n > 0 such that if |a − 1| < δε,n,

then |Ψ′
a(x) − 1| < ε and |Ψ(k)

a (x)| < ε for any x ∈ [0, 1] and k = 2, 3, . . . , n. Now
construct a sequence (γn)∞n=0 of positive real numbers with γ0 = 1 and γn

γn−1
< 1

3 for

any n > 1. Put κn = γn−1−γn−γn+1

γn−1−2γn
, εn = 1

n (γn−1

3 )n−1 for any n > 1. Modifying if
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Figure 2. The graph of the map f from the example of Section 3.
We have distorted the values of numbers γn to increase the clarity
of the picture.

necessary (γn)∞n=0 we can assume that |κn−1| < δεn,n for any n. So, |Ψ′
κn(x)−1| <

εn and |Ψ(k)
κn (x)| < εn for any x ∈ [0, 1] and k = 2, 3, . . . , n. Further, define b1 = 1

and bn = bn−1 + (−1)n−1γn−2, n = 2, 3, . . . , and put an = bn + (−1)nγn. Write
also cn = 1 − γn−1, dn = 1 − γn−1 + γn for any n > 1 and put In = conv{an, bn},
Jn = conv{bn+2, an}. Observe that cn+2−dn = γn−1−γn−γn+1 and |bn+2−an| =
γn−1 − 2γn for any n and so κn = cn+2−dn

|bn+2−an| . Finally, put c =
∑∞

n=1(−1)n−1γn.

We are ready to define f . For any n ≥ 1 and x ∈ In (resp. x ∈ Jn), put
f(x) = cn + |x − bn| (resp. f(x) = dn + |bn+2 − an|Ψκn(| x−an

bn+2−an |)). Finally put

f(c) = 1 (see Figure 2).
It is easy to check that f is well defined, f ∈ C([0, 1]) and it is of type 2∞.

Moreover, f |[0,c) and f |(c,1] are clearly C∞ maps. Further, recall that |bn+2−an| =
γn−1 − 2γn >

γn−1

3 and then |f (k)(x)| < 1
n for any x ∈ In ∪ Jn and k = 2, 3, . . . , n,

while |f ′(x) − 1| < 1
n for any x ∈ In ∪ Jn if n is even and |f ′(x) + 1| < 1

n for

any x ∈ In ∪ Jn if n is odd. Therefore, limx→c f
(n)(x) = 0 for any n > 2 while
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limx→c− f
′(x) = 1 and limx→c+ f

′(x) = −1. Using the L’Hôpital rule we get that
f |[0,c] and f |[c,1] are C∞ maps (whose first derivatives do not vanish).

So A0(I) failed as a candidate for the extension of our result. Still, some degree
of generalization for it must be possible. Denote by K2(I) the class of continuous
maps I → I consisting of two pieces with zero Schwarzian derivative. So, f ∈ K2(I)

if f ∈ C(I) and for some c ∈ int I, f(x) = a1x+b1
c1x+d1

for any x 6 c and f(x) = a2x+b2
c2x+d2

for any x > c (aidi − bici 6= 0, i = 1, 2). Let K(I) be the class of similar maps with
an arbitrary (finite) number of pieces of monotonicity. In [Ko] it is proved that if
f ∈ K2(I), then it has no doubling period solenoid and so, by the Proposition, is
not of type 2∞. In [AJS] it is proved that maps from K2(I) have no solenoids at all.
We conjecture that the same result remains valid for maps from K(I). Recently
Martens and Tresser [MT] extended our Theorem by showing that piecewise linear
maps do not have any solenoids at all. Thus, they answered in the affirmative the
above conjecture for the subclass of K(I) consisting of all piecewise linear maps.

It is easy to check that for the map f we discussed in the example above there
is a sequence (pn)∞n=1 with every pn a periodic point of f of period 2n such that
|(f2n)′(pn)| → 1 when n → ∞. On the other hand, in [MMS] (cf. also [MSt2],
p. 268) it is proved that if f ∈ B(I) (where B(I) is the class of C2 maps having
only non-flat critical points), there are a real number af > 1 and an integer nf
depending only on f such that if p is a periodic point of f of period n > nf ,

|f (n)(p)| > af . Our example shows that this result cannot be generalized to maps
from A0(I). However, we conjecture that it holds for maps from K(I).

In connection with the result mentioned at the beginning of this section it was
conjectured for some years that if f is “reasonably smooth” (ideally if f ∈ A(I)),
then for almost every x ∈ I, ωf (x) is either a periodic orbit, a cycle of periodic
intervals or a solenoid. Indeed, this result has been proved in particular for the
family of logistic maps [Ly2], but unfortunately it does not hold even for polynomial
maps (see [BKNS]). We conjecture that if f ∈ K(I), then ωf (x) is either a periodic
orbit or a cycle of periodic intervals for almost every x.

It is hard to propose more general settings where the above described properties
may hold. In particular, it is not clear whether the existence of piecewise analytic
maps (with non-vanishing derivatives) of type 2∞ should be reasonably expected
or not.
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