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ALL MAPS OF TYPE 2∞ ARE BOUNDARY MAPS

VÍCTOR JIMÉNEZ LÓPEZ AND L’UBOMÍR SNOHA

(Communicated by Mary Rees)

Abstract. Let f be a continuous map of an interval into itself having periodic
points of period 2n for all n ≥ 0 and no other periods. It is shown that every
neighborhood of f contains a map g such that the set of periods of the periodic
points of g is finite. This answers a question posed by L. S. Block and W. A.
Coppel.

1. Introduction

Let I be a real compact interval and C(I, I) be the metric space of continuous
maps of I into itself with the distance between two elements f, g defined by %(f, g) =
max{|f(x)− g(x)| : x ∈ I}. Let N be the set of positive integers. A point p ∈ I is a
periodic point of a map f if fn(p) = p for some n ∈ N. The period of p is the least
such integer n, and the orbit of p under f is the set {fk(p) : k = 0, 1, . . . , n − 1}.
We refer to such an orbit as a periodic orbit of f of period n.

A map f ∈ C(I, I) is piecewise monotone if there are points min I = a0 < a1 <
· · · < an = max I such that for every k ∈ {1, 2, . . . , n}, the restriction of f to
the interval [ak−1, ak] is (not necessarily strictly) monotone. When speaking of a
piecewise monotone map we can always take n as the minimal positive integer with
this property and call the points a1, . . . , an−1 turning points of f (though they still
are not uniquely determined by f).

Consider the Sharkovskii ordering of the set N ∪ {2∞}:
3 � 5 � 7 � · · · � 2 · 3 � 2 · 5 � 2 · 7 � · · · � 4 · 3 � 4 · 5 � 4 · 7 � · · · � · · ·
� 2n · 3 � 2n · 5 � 2n · 7 � · · · � · · · � 2∞ � · · · � 2n � · · · � 4 � 2 � 1.

We will also use the symbol � in the natural way. For t ∈ N ∪ {2∞} we denote
by S(t) the set {k ∈ N : t � k} (S(2∞) stands for the set {1, 2, 4, . . . , 2k, . . . }). Let
f ∈ C(I, I) and Per(f) be the set of periods of its periodic points.

Sharkovskii’s Theorem ([Sh1],[Sh2]). For every f ∈ C(I, I) there exists a t ∈
N ∪ {2∞} with Per(f) = S(t). On the other hand, for every t ∈ N ∪ {2∞} there
exists an f ∈ C(I, I) with Per(f) = S(t).
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If Per(f) = S(t), then f is said to be of type t. When speaking of types we
consider them to be ordered by the Sharkovskii ordering. So if a map f is of type 2∞

or greater than 2∞ or less than 2∞, then, respectively, Per(f) = {1, 2, . . . , 2k, . . . }
or f has a periodic point with period not a power of 2 or Per(f) = {1, 2, . . . , 2n}
for some N. The set Per(f) is finite if and only if f is of type less than 2∞. The
topological entropy of f is positive if and only if f is of type greater than 2∞ (see
[BF] for the “if” part and [Mi] for the “only if” part or [ALM, Theorem 4.4.19]).

Recall that it is very easy to see that any neighborhood of any map f contains
maps of types greater than 2∞ (even maps of type 3) (see [Kl]). Contrary to the
maps of types greater than 2∞, the maps of types less than 2∞ do not form a dense
set in C(I, I). In fact, this set is nowhere dense in C(I, I). To see this use the
following Block’s Theorem.

Block’s Theorem ([Bl]). Let f ∈ C(I, I) and let n ∈ Per(f). Then there exists a
neighborhood U(f, n) of f such that for all g ∈ U(f, n) we have Per(g) ⊃ S(n)\{n}.

So, if f is of type greater than 2∞, then there is a neighborhood of f containing
no map of type less than (or equal to) 2∞ . L. S. Block and W. A. Coppel (see
[BC], the end of chapter II.4) posed the question of whether any neighborhood of
any map of type 2∞ contains a map of type less than 2∞ . We answer this question
in the affirmative by proving the following

Theorem. Let f ∈ C(I, I) be of type 2∞ . Then every neighborhood of the map f
contains a piecewise monotone map of type less than 2∞ .

We prove this theorem in two steps. First we prove it under the additional
assumption that f is piecewise monotone. Then we prove that in any neighborhood
of a map of type 2∞ there is a piecewise monotone map of type at most 2∞ . But
before going to the proof we wish to mention some aspects of this theorem.

Denote by G or E or L, respectively, the set of all maps of types greater than
or equal to or less than 2∞ . For any set A in the metric space C(I, I) let BdA
denote the boundary of A. Our theorem and Block’s Theorem show that BdG =
BdL = E ∪ L. This is what is meant by the title of this paper.

In the Sharkovskii ordering the smallest element is 1 and the largest one is 3.
For any n ∈ N \ {1} denote by ν(n) the predecessor of n, i.e., the maximum (in
the Sharkovskii ordering) of the set S(n) \ {n}. If f is of type n ∈ N \ {1} then,
by Block’s Theorem, there is a neighborhood U of f such that for every g ∈ U , the
type of g is at least ν(n). It is also known (and not difficult to show) that for any
n ∈ N there exist a map fn of type n and a neighborhood U of fn such that for
every g ∈ U , the type of g is at least n. Our theorem shows that this is not true for
n = 2∞. In other words, if f is of type 2∞, and if for every n ∈ N the neighborhood
Un of f satisfies that every map in Un is at least of type 2n (the existence of such
neighborhoods follows from Block’s Theorem), then

⋂∞
n=0 Un = {f}.

The Sharkovskii Theorem holds also for the set C(R,R) of continuous maps from
the real line R into itself (in this case we have the additional possibility Per(f) = ∅)
(see, e.g., [ALM, Corollary 2.1.2]). It is known that Block’s Theorem works also
for maps from C(R,R) (now %(f, g) = sup{|f(x) − g(x)| : x ∈ R} may be infinite)
(see [ALM], Remark 2.8.5). So, it is natural to ask whether at least the weaker
form of the theorem without the words “piecewise monotone” is true in C(R,R).
The answer is negative. In fact, for any n ∈ N take a map ϕn ∈ C([0, 1], [0, 1]) of
type 2n with ϕn([0, 1]) ⊂ [1/4, 3/4] and 0 < εn < 1/4 such that the ball B(ϕn, εn)
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contains only maps with types at least 2n−1. Then there are an > 0 and a map
αn ∈ C([0, an], [0, an]) of type 2n with αn([0, an]) ⊂ [1, an − 1] such that the ball
B(αn, 1) contains only maps with types at least 2n−1 (take an = 1/εn and αn =
hn ◦ ϕn ◦ h−1

n where hn is the increasing affine map of [0, 1] onto [0, an]). Further,
put b0 = 0, b1 = 1 and b2n = n +

∑n
i=1 ai, b2n+1 = b2n + 1 for n = 1, 2, . . . and let

βn ∈ C([b2n−1, b2n], [b2n−1, b2n]) be defined by βn = kn ◦ αn ◦ k−1
n where kn is the

increasing affine map from [0, an] onto [b2n−1, b2n]. Then f ∈ C(R,R) defined by

f(x) =


x, if x < 0,

βn(x), if x ∈ [b2n−1, b2n],

affine, if x ∈ [b2n−2, b2n−1]

is a map from C(R,R) of type 2∞ such that all maps from the ball B(f, 1) have
types at least 2∞ (use that g([b2n−1, b2n]) ⊂ [b2n−1, b2n] whenever g ∈ B(f, 1)).

2. Proof of the Theorem

If A ⊂ I, then intA or diamA will denote the interior or the diameter of A,
respectively. If J1, J2 ⊂ I are intervals, then J1 < J2 will mean that sup J1 < inf J2.
If f is a map and A is a set, then f |A is the restriction of f to A. Let f ∈ C(I, I).
We say that x ∈ I is eventually periodic if fn(x) is periodic for some n.

Given f ∈ C(I, I), a closed subinterval J of I is periodic of period n if fn(J) = J
and fk(J) ∩ f l(J) = ∅ for any 0 ≤ k < l < n. Further, we say that S ⊂ I is a

(simple) solenoid of f if S =
⋂∞
n=0

⋃2n−1
k=0 fk(In) where for any n, In is a periodic

interval of period 2n such that In ⊃ In+1. The equality S =
⋂∞
n=0

⋃2n−1
k=0 fk(In)

will be said to be a standard representation of the solenoid S. Clearly, S is a
compact set, f(S) = S and S cannot contain any eventually periodic point of f .

Lemma 1. Let f ∈ C(I, I) and let R,S be different solenoids of f . Then R∩S = ∅.
Proof. This follows immediately from the proofs of Proposition 2.2 (7) and Lemma
2.15 in [Pr] (these proofs work without the assumption of piecewise monotonicity).

Lemma 2. Let f ∈ C(I, I) be piecewise monotone and S be a solenoid of f . Then
S must contain a turning point. In particular the number of solenoids of f is finite.

Proof. If S =
⋂∞
n=0

⋃2n−1
k=0 fk(In) is a standard representation of a solenoid S of f ,

then, taking any n, f cannot be monotone on all intervals fk(In), k = 0, 1, . . . , 2n−
1. Consequently, there is at least one of the finitely many turning points of f
belonging to S. The rest of the lemma follows from Lemma 1.

The set of all limit points of the trajectory (fn(x))∞n=0 of a point x is called the
ω-limit set of x under f and is denoted by ωf (x). A standard well-known result
says that every finite ω-limit set is a periodic orbit.

A well-known result implicit in several of Sharkovskii’s papers and proved in
[Sm] (see also [FS]) states that every infinite ω-limit set of a map of type 2∞ is
contained in a solenoid. In [Ge] it is proved that if a map f of type 2∞ is additionally
piecewise monotone, then any infinite ω-limit set of f is Cantor-like. Finally, we
will substantially use a result from [JS] saying that every piecewise monotone map
of type 2∞ must have an infinite (Cantor-like) ω-limit set. Combining these facts
we get
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Lemma 3. Every piecewise monotone map f ∈ C(I, I) of type 2∞ has infinite
ω-limit sets, each of them being Cantor-like and contained in a solenoid.

Now we are able to prove our main result under the additional assumption that
f is piecewise monotone.

Lemma 4. Let f ∈ C(I, I) be of type 2∞ and piecewise monotone. Then every
neighborhood of f contains a piecewise monotone map of type less than 2∞ .

Proof. Let ε > 0. We wish to find a map g ∈ C(I, I) of type less than 2∞ with
%(f, g) < ε. Take δ > 0 such that diam f(J) < ε whenever diamJ < δ.

Special case. Assume that the map f has only one solenoid S (see Lemma 3 and
Lemma 2).

In the standard representation S =
⋂∞
n=0

⋃2n−1
k=0 Ink , Ink = fk(In), we may

assume that In0 ⊃ In+1
0 for every n. Then In+1

k , In+1
k+2n ⊂ Ink for every n and

k = 0, 1, . . . , 2n − 1. Denote by Kn
k the (maximal) closed interval lying between

int In+1
k and int In+1

k+2n . Further, for every n denote I(n) = {Ink : k = 0, 1, . . . , 2n−1},
K(n) = {Kn

k : k = 0, 1, . . . , 2n−1} and
⋃
I(n) =

⋃2n−1
k=0 Ink ,

⋃
K(n) =

⋃2n−1
k=0 Kn

k .
Realize the following:
(i) There is a (sufficiently large) l1 such that

⋃
I(l1) contains only those turning

points of f which belong to S. Then, for any n ≥ l1, int(
⋃
K(n)) does not contain

any turning point of f .
(ii) There is an l2 such that I(l2) contains an interval with diameter less than δ.
Take l = max{l1, l2}. Then I(l) contains an interval, say I l0, with diameter less

than δ. Further, f is monotone on each of the intervals belonging to K(l).

We have P = I l+1
0 ∪ K l

0 ∪ I l+1
2l

⊂ I l0 where we may assume that I l+1
0 < I l+1

2l
.

Define g ∈ C(I, I) by

g(x) =


f(x), for x ∈ I \ (K l

0 ∪ I l+1
2l

),

f(max I l+1
2l

), for x ∈ I l+1
2l

,

affine on K l
0.

The map g is piecewise monotone and since diam f(P ) < ε, g(P ) ⊂ f(P ) and f
coincides with g on I \ P , we have %(f, g) < ε. To finish the proof of the Special
case, it is sufficient to show that g is of type less than 2∞ .

Take any x ∈ I. If the trajectory (gn(x))∞n=0 does not visit K l
0 ∪ I l+1

2l
, then

it coincides with the trajectory (fn(x))∞n=0, whence ωg(x) = ωf (x). Since the set
ωg(x) = ωf (x) is not a subset of S (otherwise the trajectory (gn(x))∞n=0 would

intersect I l+1
2l

), it is a finite set, a periodic orbit of f (as well as of g) of period a
power of 2.

Now suppose that (gn(x))∞n=0 visits the set I l+1
2l

. Then the point x is eventually

periodic with period 2l+1 and so ωg(x) is finite.

Finally suppose that (gn(x))∞n=0 does not visit I l+1
2l

and, for some n0, g
n0(x) ∈

K l
0. Then (gn(x))∞n=n0

lies in
⋃
K(l). Due to the fact that g is monotone on each

of the intervals belonging to K(l), for any k ∈ {0, 1, . . . , 2l − 1} the set M l
k = {y ∈

K l
k : (gn(y))∞n=0 lies in

⋃
K(l)} is an interval (possibly degenerate), the map

h = g2l maps this interval into itself and is monotone on it. Hence, for any y ∈M l
k

the cardinality of ωh(y) is at most 2 (see [Co] or [Sh2]). Therefore, for our point x
we get that ωg(x) has cardinality 2l or 2l+1.
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We have proved that for every x ∈ I, ωg(x) is finite and, moreover, has cardinality
a power of 2. So g is of type at most 2∞ . It cannot be of type 2∞ since otherwise,
being piecewise monotone, by [JS] (cf. Lemma 3) it would have an infinite ω-limit
set. Therefore g is of type less than 2∞ .

General case. The map f has the solenoids S1, S2, . . . , Sr (and no other ones)
for some r ∈ N.

Since the solenoids Si, i = 1, 2, . . . , r, are compact and mutually disjoint, each

of them has a positive distance from the others. So, if Si =
⋂∞
n=0

⋃2n−1
k=0 (Ii)

n
k is

a standard representation of Si, there exists an m such that the sets
⋃

(Ii)(m) =⋃2m−1
k=0 (Ii)

m
k , i = 1, 2, . . . , r, are pairwise disjoint. Now the same procedure which

was applied in the Special case to a map having one maximal solenoid S can be
applied r-times to our map f having r solenoids S1, S2, . . . , Sr. As a result we get
a piecewise monotone map g of type less than 2∞ with %(f, g) < ε.

In what follows, h(f) denotes the topological entropy of f (see [AKM] or [ALM]
for the definition and properties). Here we just recall that h(f) ∈ [0,+∞].

Lemma 5. Let X be a compact metric space, and let T : X → X be a continuous
map. Suppose that (Un)n≥1 is a sequence of open subsets of X, and let S : X → X
be a continuous map such that S(x) = T (x) for all x ∈ X \⋃∞n=1 Un and S|Un is
constant for all n ≥ 1. Then h(S) ≤ h(T ).

Proof. Set V :=
⋃∞
k=0

⋃∞
n=1 S

−k(Un) and C := X \ V . Obviously S(C) ⊂ C
and S|C = T |C . An easy calculation shows that Ω(S) ∩ V equals an at most
countable union of periodic orbits (Ω(S)∩V may be empty), where Ω(S) denotes the
nonwandering set of S (see [W] for the definition and properties). The variational
principle (see [W, Theorem 8.6 and Corollary 8.6.1] and [W, Theorem 6.15]) give

h(S) =

{
h(S|C), if C 6= ∅,
0, otherwise.

In the first case h(S|C) = h(T |C) ≤ h(T ), and in the second case h(S) ≤ h(T ) is
trivial.

Remark. An easy consequence of Lemma 5 is the following fact. If f, g ∈ C(I, I)
coincide outside an open set G, and if g is constant on every connected component
of G, then h(g) ≤ h(f).

Lemma 6. Let f ∈ C(I, I) and let [u, v] ⊂ I be a closed interval with max f([u, v])
∈ {f(u), f(v)}. Then there is a map g ∈ C(I, I) with the following properties:

(1) g(x) = f(x) whenever x /∈ (u, v),
(2) g|[u,v] is (not necessarily strictly) monotone, and
(3) h(g) ≤ h(f).

Proof. Assume that max f([u, v]) = f(v) (if the maximum is attained at the point
u, the proof is analogous). Define the map g|[u,v] as the so-called rising sun function
corresponding to the map f |[u,v] when a rising sun is on the x-axis at −∞ (equiv-
alently, pour water into the graph of f |[u,v] until you get all “holes in the ground”
full of water). More precisely, put

g(x) =

{
f(x), if x ∈ I \ [u, v],

max{f(t) : u ≤ t ≤ x}, if x ∈ [u, v].
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Then (1) and (2) hold trivially, the continuity of g follows from the assumption
that max f([u, v]) = f(v). Finally, the set G = {x ∈ [u, v] : f(x) < g(x)} is open,
g equals f on I \ G and g is constant on every connected component of G. So,
Lemma 5 gives (3).

Lemma 7. Let f ∈ C(I, I). Then in every neighborhood of f there is a piecewise
monotone map g with h(g) ≤ h(f).

Proof. Let ε > 0. Take δ > 0 such that diam f(J) < ε whenever diamJ < δ.
Now take points min I = z1 < z2 < · · · < zk = max I with |zi − zi+1| < δ for
i = 1, 2, . . . , k − 1. In each interval [zi, zi+1] take a point si such that f(si) =
max f([zi, zi+1]). Let

{zi : i = 1, 2, . . . , k} ∪ {si : i = 1, 2, . . . , k − 1} = {x1, x2, . . . , xn}

with min I = x1 < x2 < · · · < xn = max I. Since each of the intervals [xi, xi+1],
i = 1, 2, . . . , n − 1, can be viewed as the interval [u, v] in Lemma 6, we can use
the lemma n − 1 times to get a piecewise monotone map g with h(g) ≤ h(f) and
%(f, g) < ε.

Proof of Theorem. Since for ϕ ∈ C(I, I) we have h(ϕ) = 0 if and only if ϕ is of
type at most 2∞ , it suffices to use Lemma 7 and Lemma 4.
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