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Abstract  

Here in this research article we have investigated incompressible viscoelastic fluid flow over a 

uniform stretching surface sheet along with slip boundary conditions in the presence of porous 

media. The partial differential which govern the fluid flow are changed into ordinary differential 

equations through suitable similarity transformation variables Finally the transformed ordinary 

differential equations are solved with the help of semi numerical technique known as homotopy 

analysis method (HAM). The uniqueness of our study is not only to analyzed and carried out the 

effect of elastic parameter, but also to account for various dissipation which is important in the 

case of optically transparent flow. The novel effects for the parameters which affect the flow and 

heat-transfer, such as the Eckert number, porous medium parameter and the velocity slip parameter 

are studied through graphs. Also, the convergence analysis for the proposed method is addressed. 

Additionally, for the sake of validation present work is also compared with already published work 

and outstanding agreement is found. 

Keywords: viscoelastic fluid, porous medium, slip velocity, analytical approach. 

 

1. Introduction 

In recent years, gradual development in fluid dynamics, the flow over a stretching surface has 

resulted in active studies, due to its practical applications such as hot rolling, fiber plating and 

lubrication porous. Crane [1], first introduced an analytical solution of Newtonian boundary-layer 

flow due to a stretching surface. Vleggar [2] studied the laminar flow of Newtonian fluid on 

continuous accelerating stretching surface. Dutta et al. [3] investigated the temperature field flow 

due to a stretching sheet with uniform heat flux. In the content, a similar problem of Newtonian 

fluid flow due to the stretching surface have been investigated by many researchers [4, 5].  
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Investigation of viscoelastic fluid over a continuous stretching surface finds many important 

applications in the fields of engineering fluid mechanics such as inks, paints, jet fuels, polymer 

extrusion, drawing of plastic fiber and wire. The over increasing applications to this type of fluid, 

many researchers turned to the study of this type under different situations. Vajravelu and Rollins 

[6] studied viscoelastic fluid over a stretching surface with effect of heat transfer. Andersson [7] 

analyzed the effect of MHD on viscoelastic fluid flow due to stretching surface. Incompressible 

flow of viscoelastic fluid and heat transfer over a stretching sheet embedded in a porous medium 

has been investigated by Suhas and Veena [8]. Viscoelastic boundary layer fluid flow and hear 

transfer over an exponential stretching sheet has been discussed by Sanjaya and Khan [9]. 

Naneppanavar [10] studied the flow and heat transfer characteristic of a viscoelastic fluid over an 

impermeable stretching sheet embedded in a porous medium with viscous dissipation and heat 

transfer.  

In the above studies the effect of velocity slip is absent. This phenomenon is very important in 

fluid mechanics. It was first introduced by Navier [11]. Thompson and Troian studied [12] studied 

the incompressible flow at solid surface with general boundary condition. Slip effects and heat 

transfer analysis in a viscos fluid over an oscillatory stretching surface has been studied by Abba 

et al. [13]. MHD slip flow of viscoelastic fluid over stretching surface has been investigated by 

Turkyilmazoglu [14]. Ferras et al. [15] analyzed slip flow of Newtonian and viscoelastic fluids. 

The effect of slip and MHD on viscoelastic convection flow in a vertical channel has been 

discussed by Singh [16]. Krishan [17] analyzed magnetohydrodynamics mixed convection 

viscoelastic slip flow through a porous medium in a vertical porous channel with thermal radiation. 

The effect of slip conditions on the peristaltic flow of a Jeffrey fluid with a Newtonian fluid is 

studied by Vajravelu et al. [18]. 

For the non-Newtonian fluids, the perdition of heat transfer analysis is very important due to its 

practical engineering uses, such as food-processing, flow through filtering media and oil recovery. 

Because of the above motivation, in the present work, a new visualization for the effects of the 

non-uniform heat generation/ absorption, velocity slip and viscous dissipation with heat transfer 

flow of viscoelastic fluid due to stretching surface embedded in a porous medium is analyzed. 

Recently, viscoelastic Oldroyd 8-constant fluid has been analyzed for wire coating by Zeeshan 

et.al [19] using the Runge-Kutta method with heat transfer effect. Prasad et al. [20] investigated 

magnetohydrodynamic mixed convicted heat flow over a nonlinear sheet with temperature-

dependent viscosity. Similarly, Awati [21] carried out an analysis of MHD viscous flow with a 

heat source. Series and analytical solution have been obtained and the effects of emerging 

parameters were discussed through graphs. Ahmad et al. [22] investigated a steady flow of a power 

law fluid through an artery with a stenosis has been studied and the effects of various parameters 

of interest discussed through graphs. A detail analysis of MHD flow and heat transfer through 

viscoelastic fluid in presence of porous medium in wire coating analysis has been carried out by 

Zeeshan et al. [23]  

In the present study, two-dimensional flow of viscoelastic fluid with non-uniform heat source 

generation along a permeable stretching sheet is investigated analytically by semi-analytical 

method HAM with slip conditions. The modeled partial differential equations are converted to 
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ordinary differential equations by using similarity variables. The series solutions have been 

obtained by HAM. The effect of emerging parameters involved in the solution has been discussed 

through graphs in detail. Additionally, for the accuracy of the results the present work is also 

compared with the published work of Rajagopal et al. [24].  
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Fig.1. Physical Configurations Diagram 

 

2. Formulation of the problem 

In this section, we will consider a two-dimensional boundary layer flow of an incompressible 

viscoelastic fluid over a stretching sheet embedded in a porous medium. The origin is located at a 

slit, through which the sheet (see Figure 1) is drawn through the fluid medium. The x-axis is chosen 

along with the sheet and the y-axis is taken normal to it. The sheet is assumed to have the velocity 

u cx= where x is the coordinate measured along the stretching surface and 0C  is a constant for 

a stretching sheet. Likewise, the temperature distribution for the sheet is assumed to be in the form 
r

wT T Ax= + where wT is the temperature of the sheet, T is the temperature of the ambient, A and 

r  are constants. Also, the sheet is assumed to be porous with the suction velocity .wv  Making the 

usual boundary layer approximations the boundary layer equations read 

0,
u v

x y

 
+ =

 
                                                                                                                                                            (1)  

2 3 3 2 2

0

2 2 3 2
,e ku u u u u u u u u

u v u u v
x y x k x y y y x y x y



  

         
+ = − − + − + 

           
                                           (2) 
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                                                                       (3) 

 

where u  and v  are the velocity components in the x  and y directions, respectively.  is the 

density of the fluid,  is the fluid thermal conductivity and 0K  is a positive parameter associated 

with the viscoelastic fluid. T is the temperature of the fluid,  is the fluid viscosity, e is the 

dynamic viscosity of the fluid due to the flow in the porous medium, k is the permeability of the 

porous medium, '''q is the rate of internal heat generation, and pc is the specific heat at constant 

pressure. We musttobserve that in theesecond term of theeright-hand sideoof equation (3), we 

follow [25–28]. 

The boundarycconditions with the slipccondition [18–20] can be writtennas 

 

2 2

0

2
2 ,

ku u u u u
u U a u v

y x y y x y

      
= + − + +  

       
                                                                                        (4) 

,    0,

0,  ,   ,

r

w w

w

v v T T Ax at y

u T T as y





= − = + =

→ → →
                                                                                                 (5) 

where a   is the velocity slip factor, the mathematical analysis of the problem is simplified 

byyintroducing the followingddimensionless coordinates. 

( ) ( ),  ' ,  ,
c

y u cxf v c f   


= = = −                                                                                                       (6) 

( ) ,
w

T T

T T
  



 −
=  

− 
                                                                                                                                                (7) 

where   is the similarity variable, ( )f  is the dimensionless stream function, v



= is the 

kinematic viscosity, and ( )  is the dimensionless temperature. It can be seen that a similarity 

solution exists only when we take 2.r =  Likewise, the internal heat generation or absorption '''q is 

modeled according to the following formula [29]. 

( ) ( )* *''' .w

kU
q a T T e b T T

vx

−

 

 
 = − + −   

 
                                                                                    (8) 
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Therefore, uponnusing thesevvariables, the boundaryllayer governingeequations (1)-(3) can 

be writtennin the followingnnon-dimensionallform: 

( ) ( )( )2 2
''' ' '' ' '' 2 ' ''' '''' 0,f f ff f k f f f ff− + − + − + =                                                               (9) 

( ) ( )( ) ( )
2 2 * *1 1

'' ' 2 ' ' '' 0,
Pr Pr

f f Ec f f a e b    −+ − + + + + =                                           (10) 

the boundarycconditions are 

( ), 1 1 3 ' '' ''' ,  1,   ,w wf f f kf f kf f at  = = + + + = =                                                          (11) 

' 0,  '' 0,  0,   ,f f at → → → →                                                                                                 (12) 

where 
e

ck





= is the porous parameter, 

0ck
K


= is the viscoelastic parameter, Pr

pc


= κ is the 

Prandtl number, 
2

p

c
Ec

Ac
= is the Eckert number, 0w

w

v
f

cv
=  is the suction velocity parameter, 

and 
c

a
v

 = is the velocity slip parameter. 

3. HAM Solution 

Innorder to solveeequations (9) and (10) under the boundarycconditions (11) and (12), weeutilize 

the homotopy analysismmethod withtthe followingpprocedure. The solutionsshaving the 

auxiliarypparameters ℏ regulate and control thecconvergence of the solutions. The initiallguesses 

are selectedaas follows: 

We select the initialaapproximations such that the boundarycconditions aressatisfied as follows: 

0 0( ) 1 and ( )  . f s e e− − = − +  =
         (13)

 

The linear operators are introduced as  and f   : 

( )  and ( )= .f f f    =  
         (14) 

With the followingpproperties: 
2

1 2 3 4 5 6( ) 0 and ( ) 0,f c c c c e c c e

− − + +  + =  + =
      (15) 

where ( 1 6)ic i = −  are arbitrary constants in general solution. 

The nonlinearooperators, according to (9) and (10), are definedaas: 
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The auxiliaryffunction become, 
( ) ( ) .f e−  =   =

                    (17) 

The symbolic softwareeMathematica issemployed tossolve ith order deformationnequations:
 

   1 ,( ) ( ) ( ) ( ),f i i i f f f if f f R−  −  =  
   

 1 ,( ) ( ) ( ) ,i i ii R    −   −  = 
                                                                     (18) 

where is auxiliary non-zero parameter and   

 
1 1 1 1 1

' ' '''

, 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0

( ) 2
m m m m m k

f i m m k k m k k m m k k m m k k m k k l

k k k k k l

R f f f f f f k f f f f f f f f
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         
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 
 = − + − + − + 
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(19) 
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1 1 1 1
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, 1 1 1 1 1

0 0 0 0

1 1
( ) 2
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i m m k k m k k m k k m k k

k k k k

R f f Ec f f f f a e b
− − − −

 −
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= = = =

 
 =  +  −  +  + + +  

 
       

    
0,   if 1

 ,
1,    if 1

i

i

i


 = 

  
are the involvedpparameters in HAMttheory. For more details about the theory of Homotopy 

Analysis Method see [30-40]. 

 

3.1. Convergence of the method 

To validate the method, the convergence of the method is also, necessary. For this purpose, h-

curve has been drawn which ensure the convergence of the series solution. The calculations are 

carried out on a personal computer with 4GB RAM and 2.70 GHz CPU. The code is developed 

using computer software Mathematica Zeeshan et at. [41]. To see the range of admissible values 

of these parameters of the and are plotted in Fig.2 and Fig.3 given by 20th order approximation 

which takes approximately less than a minute in execution. The suitable range for fh  and θh  are 

f1.5 h 0.3−   − and θ1.7 h 0.3−   − , respectively. 
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Figure 2. h-curveefor velocityyfield. 

 

 

 

 

 

 

 

 

Fig.3.  h-curve for temperatureffield. 

 

4.  Results and discussion 

Two-dimensional non-Newtoniannviscoelastic fluid with non-uniformmheat generation over 

a permeablesstretching sheet embedded in a porousmmedium has been investigated. The similarity 

transformation has been applied to transform the PDEs to ODEs. The analyticalssolution has 

beenoobtained by using HAM. For the validation of our analytical solution, a comparison has been 

done with the publishedwwork of Rajagopal at el. [24]. This comparison is given in table-I. This 

ensurestthat our results are excellent andaagreement. The computationnresults are displayed in 

figures 4-13.  

Frommfigure 4, it is observed that the velocity of the fluid decreases with the increasing values 

of porous parameter  . Physically increases in   mean a high dynamic viscosity e , which 
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corresponds to porous medium and a small permeability for the porous medium, which causes the 

production of the resistance force to the fluid flow which causes a decrease for the velocity 

distribution enhances along the boundaryllayer as depicted in figure 5. Also, frommthis figure it is 

cleartthat withhincreasing of porouspparameter, the thermallboundary layer becomessthicker but 

the momentumbboundary layer becomes thinner.  

The effect of Eckert number 
cE  on velocity and temperaturepprofiles is shown in figure 6 and 

7 respectively. From figure 6, we see that the velocityccurve lower when the Eckertmnumber is 

larger and so, themmomentum, effect is lower. Also, from figure 7 we notice that the 

thermallboundary layer becomes thicker when the Eckertmnumber increases but the 

temperatureddistribution enhances.  

Figure 8 and 9 are plotted to see the effect of slip parameter versus similarity variable on 

velocity and temperature profiles. It is investigated that the velocity of the fluidddecreases with 

the increasingvvalues of the slip velocitypparameter while with the increases of the same 

parameter the temperature is increased. 

The effect of suction parameter 
wf on the fluid flow and temperature profile has been analyzed and 

results are given in figure 10 and 11 respectively. These figuressshow thattthe suction 

parameterrhas significanteeffect on the boundary layerrthickness. The suction parameterrreduces 

the boundaryllayer thickness as a result the fluid flow and the temperatureddistribution reduce.  

The effect of internalhheat generationpparameters  on the thermaldboundary layer 

thickness are presented in figures 12 and 13. It issobserved that as the values of the internal heat 

generation parameters 0  0a and b   become stronger, the thermal boundary layer thickness 

increases, whereas the internal heat generation parameters 0  0a and b   have the opposite effect. 

Also, it’s noticeddthat the highest temperatureddistribution for the fluid in the boundary layer was 

obtained with the greatest heat generation parameters * *0  0a and b  . Likewise, it is shown that 

the effect of the heat absorption parameters * *0  0a and b  causes a drop in the temperature 

distribution as the heat following from the sheet is absorbed. 

At last for accuracy of the problem, the present work is also compared with theppublished 

work reported by Rajagopal et al. [24] and outstandingaagreements founded and also, clarified 

from table 1. 

 

Table-1. Comparison of the presentwwork with publishedwwork 

 Rajagopal [24] Present work 

0.0 0.98561340 0.98561423 

1.0 0.27908819 0.27908734 

2.0 0.09291179 0.09291328 

3.0 0.03295374 0.03295452 

4.0 0.01196183 0.01196265 
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Figure 4. The influence of the velocity profile for different values of ,  when 
* *0.1,  0.3,  0.2,  Pr 5.0,  0.4,  0.2.K fw Ec a b= =  = = = = =  

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The influence of the temperature profile for different values of  , when 
* *0.1,  0.3,  0.2,  Pr 5.0,  0.4,  0.2.K fw Ec a b= =  = = = = =  
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Figure 6. The influence of the velocity profile for different values of 
cE , when 

* *0.1,  0.3,  0.2,  Pr 5.0,  0.4,  0.2.K fw a b= =  = =  = = =   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The influence of the temperature profile for different values of cE , when 
* *0.1,  0.3,  0.2,  Pr 5.0,  0.4,  0.2.K fw a b= =  = =  = = =  
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Figure 8. The influence of the velocity profile for different values of  , when 
* *0.1,  0.3,  0.2,  Pr 5.0,  0.4,  0.2.K fw Ec a b= =  = = = = =  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. The influence of the temperature profile for different values of  , when 
* *0.1,  0.3,  0.2,  Pr 5.0,  0.4,  0.2.K fw Ec a b= =  = = = = =  
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Figure 10. The influence of the velocity profile for different values of wf , 
* *0.1, 0.4,  Pr 5.0,  0.4,  0.2,  0.2.K Ec a b=  = = =  = = =  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. The influence of the temperature profile for different values of wf , when 

* *0.1, 0.4,  Pr 5.0,  0.4,  0.2,  0.2.K Ec a b=  = = =  = = =  
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Figure 12. The influence of the temperature profile for different values of * *,a b , when 

0.1, 0.4,  Pr 5.0,  0.4,  0.2,  0.3.wK Ec f=  = = =  = =  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. The influence of the temperature profile for different values of * *,a b , 

0.1, 0.4,  Pr 5.0,  0.4,  0.2,  0.3.wK Ec f=  = = =  = =  
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5.  Conclusions 

The homotopy analysis aethod is a semi numericalsscheme applied for the solution of the proposed 

modelpproblem of heat transferpphenomena in viscoelasticcfluid through a stretching sheet 

surface embedded in a porous medium with viscous dissipation of internallheat 

generation/absorption and slippvelocity. Convergenceaanalysis of the method is presented 

graphically. The effects of emergingpparameters on the solution have beenddiscussed in detail. It 

is observeddthat the suction parameter reduces the thickness of the boundary-layer flow. Similarly, 

thepporosity and slippparameters have same effect on thicknessoof the boundaryylayer flow as 

observed in suctionpparameter. Also, the thermalbboundary layeraand temperature distribution 

increaseswwith the increasingvvalues of Eckert number. Additionally, theppresent workiis 

compareddwith the publishedwwork reported by Rajagopal et al. [22] for limiting cases and good 

agreement is found. 
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Nomenclature 

,  x y  Velocity components   Thermal conductivity 

of the fluid 
cE  Eckert Number 

  Fluid density T  Fluid temperature   Velocity slip parameter 
  Fluid viscosity K  Porous Parameter wf  Suction velocity 

,  A r  Constants '''q  Internal heat 

generation 
fC  Skin friction 

e  Dynamics viscosity pc  Specific heat Nu  Nusselt number 

wT  Sheet temperature a  Velocity Slip factor exR  Reynolds number 

T  Ambient temperature   Similarity variable   Porous parameter 

wv  Suction velocity   Kinematics viscosity  * *,  a b  Heat generation 

parameters 

u  Sheet velocity Pr  Prandtl number   
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