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Abstract: In this research study, an advance computational intelligence paradigm is used for 

solving second order Emden-Fowler system (EFS) based on artificial neural network, genetic 

algorithm (GA) which is famous global search method, sequential quadratic programming (SQP) 

known as rapid local refinement and the hybrid of GA-SQP. The proficiency of the designed 

scheme is inspected by solving the three examples of EFS to check the efficiency, consistency, 

precision and exactness of the technique. The numerical outcomes of the purposed scheme are 

compared with the exact solution that shows the significance of the scheme based on accuracy, 

correctness and convergence. Moreover, statistical explorations have been executed to verify the 

precision and accuracy of the outcomes based on performance measures of mean absolute 

deviation, root mean squared error and variance account for. 

Keywords: Emden-Fowler system, artificial neural network, genetic algorithm, sequential 

quadratic programming, statistical analysis.  

1. Introduction 

The Lane-Emden model (LEM) is the fundamental model introduced by Lane and further explored 

by Emden has many applications and widely use to study the stellar structure. This model has a 

great history and broad applications in the density profile of gaseous star [1], mathematical physics 

and geometry [2], catalytic diffusion reactions [3], polytrophic and isothermal gas spheres [4], 

electromagnetic theory [5], oscillating magnetic fields [6], classical and quantum mechanics [7], 

isotropic continuous media [8], dusty fluid models [9] and morphogenesis [10]. Many techniques 

have been implemented to solve this challenging and famous singular LEM. To mention the few 

of them, Bender et al [11] applied perturbative method, Shawagfeh [12] proposed Adomian 

decomposition method, Liao [13] suggested an analysis algorithm, Nouh [14] applied power series 

by using an Euler-Abel and Pade approximation, Mandelzweigand and Tabakin [15] developed 

Bellman and Kalabas quasi linearization method for solving these type of singular problems. The 

Emden–Fowler system (EFS) is used to model the several phenomena, like as population 

evolution, pattern formation and chemical reactions. The general form of EFS can be expressed as 

[16, 17] 

Intelligence computing approach for solving 

second order system of Emden–Fowler model 
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Where 1 and 2 are positive constants. All the above-mentioned techniques have their own 

performance, accuracy and efficiency, as well as imperfections over one another. The heuristic 

techniques based on the stochastic type of solvers optimize with linear/nonlinear models by 

manipulating the neural network’s strength and practical adaptation of the applications of 

evolutionary computing [18-19]. Some possible recent applications are Thomas-Fermi atom's 

model [20], uncertainties in computational mechanics [21], nonlinear singular functional 

differential model [22], transistor-level uncertainty quantification [23], heartbeat model [24], 

control systems [25], cell biology [26], power [27] and energy [28]. 

The intention of the recent study is to present numerical solutions of EFS (1) using intelligent 

computing technique based on the strength of artificial neural networks (ANNs) optimized with 

genetic algorithm (GA) supported by sequential quadratic programming (SQP). The salient 

features of the scheme are summarized as: 

• ANNs applied successfully and effectively for solving the three variants of nonlinear 

singular system of Emden-Fowler equations.  

• Investigation and manipulation via neural networks based stochastic solvers are applied to 

find the accurate and consistent numerical outcomes for the nonlinear EFS. 

• The consistent overlapping with the present outcomes and the exact solutions established 

the stability and correctness of the designed scheme.  

• The performance measures through statistics based operators is checked using 100 

independent runs give more satisfaction of the designed scheme  

• EFS is not easy to solve due to the nonlinear behavior and singularity. ANN is a good 

selection to handle such kind of complicated problems where the other 

conventional/traditional techniques fail. 

2. Design Methodology 

For the solution of Emden-Fowler system (EFS), the designed proposed methodology based on 

two phases: first phase is to use an error based fitness function based on the differential equation 

of the EFS. While the second phase is to provide the detailed discussions using the hybrid of GA-

SQP.  

2.1 Modeling 

The mathematical description of the EFS (1) is formulated to feed-forward ANNs in the form of 

u(t) and v(t), as well as, their respective nth order derivatives are given as: 
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Where the number of neurons are denoted by m, while the n represents derivative order. The terms

 , w  and b are the unknown weight vector W defined as:  

[ , ]u v=W W W , for [ , , ]u u u u=W w b  and [ , , ]v v v v=W w b . The components of weight vector are 

given as: 
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Using h(t) = 1/(1+e-t) i.e., log-sigmoid activation function, the network (2) is updated using the 

approximate values of ˆ ˆ( )and ( )u t v t with their first and second order derivatives are respectively 

given as:  
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Using the network (3), the fitness function in the sense of mean squared error is written as: 

 1 2 3= + +  (4) 
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Where, 1  and 2 are error functions related to the EMS, the approximate solutions are denoted as 

 ˆ ˆ( ), ( )u t v t . Whereas, the error function 3  related to initial conditions, given as: 

 ( ) ( )( )2 2

3 0 1 0 2

1
ˆ ˆ

2
u a v a = − + −  (7) 

The solution of the EFS (1) can be achieved to the available appropriate weights, the fitness 

function   tends to zero, i.e., 0→ , then, the approximate solutions i.e.,  ˆ ˆ( ), ( )u t v t  identical with 

the desired results, i.e., [ ˆ( ) ( )u t u t→ ] and [ ˆ( ) ( )v t v t→ ]. 

2.2 Optimization of networks 

A vital explanation of the optimization to get the design parameter values of ANNs on the basis of 

GAs combined with SQP given as: 

Genetic Algorithm: population of candidate solution in genetic algorithm known as creatures or 

phenotypes, individuals to an optimization problem, which is progressing toward improved 

solutions. Each applicant solution has a property set (chromosomes) that can be transformed or 

improved. Usually, results are signified in binary form as strings of zeros and ones. The evolution 

normally starts from a population of randomly made individuals, which is an iterative process and 

it became generation with the population. The fitness values of each individual in the population 

are calculated on each iteration. GA has a variety of applications in many fields of technologies, 

engineering and applied sciences. Recently, GAs used to optimize heterogeneous bin packing [29], 

emergency humanitarian logistics scheduling [30], cost optimized for a multi-energy source 

building [31], traveling salesman problem [32], the optimal set of overlapping clusters [33], design 

of buildings for residential buildings [34], new encoding on the basis of least spanning tree for the 

reconfiguration of feeder distribution [35], wind power system [36], an implementation of 

intrusion detection system [37], determination of glass transitions in boiling candies [38] and in 

the design of military surveillance networks [39]. The GA becomes faster through the 

hybridization procedure with the appropriate local search method. 

Sequential Quadratic Programming: It is implemented for solving the optimization sub-problems 

sequence. In this regards, an objective function is optimized due to linearization of the constraints. 

For unconstrained problem, the method diminishes to Newton method for finding a point, where 

the gradient of the objective vanishes. For equality constraints, the method is equivalent to apply 

the Newton’s method to the first-order optimality conditions, or Karush–Kuhn–Tucker conditions, 

of the problem. Some recent application of SQP is multiproduct economic production [40], 

economic load dispatch problem [41], optimal attitude and flight vector recovery for large 

transport aircraft [42], bipedal dynamic walking robot [43] and short-term hydrothermal 

coordination. 

In this study, the hybrid strength of GA-SQP is oppressed for design variability of the networks to 

solve the EFS. GA-SQP steps in the workflow diagram are provided in Fig. 1, whereas the detail 

of GA-SQP pseudocode is given in Table 1. 
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2.3 Performance Metrics 

The performance measures based on the mean absolute deviation (MAD), root mean squared error 

(RMSE), and variance account for (VAF) are investigated on the functioning of the designed 

method. Mathematical form for both u(t) and v(t) of EFS in the form of MAD, RMSE and VAF 

are given, respectively, as: 
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The error function EVAF related to VAF mathematically given as: 

    , 100 ,100u v u vEVAF EVAF VAF VAF= − −  (11) 

Where, m represents the grid points. Global description of MAD, RMSE and VAF are formulated 

on the mean values of these operators over numerous independent runs. Mathematically, global 

variations of performance indices are indicated as, Global MAD (GMAD), Global RMSD 

(GRMSD) and Global VAF (GVAF) are used to scrutinize the designed methodology for solving 

the EFS.  
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Fig 1. Workflow diagram of the proposed methodology 

 



Table 1: Pseudo code for GA-SQP to optimize the systems 

Start of Genetic Algorithms  

 Inputs: 

  The chromosome signified with same number of entries of  

  Networks as:  

   [ , ] [( , , ), ( , , )]u v u u u v v v= =W W W w b w b   

    ,1 ,2 , ,1 ,2 , ,1 ,2 ,[ , ,..., ], [ , ,..., ], [ , ,..., ],u u u u m v v v v m u u u u mw w w     = = =  w   

   ,1 ,2 , ,1 ,2 , ,1 ,2 ,[ , ,..., ], [ , ,..., ], [ , ,..., ].v v v v m u u u u m v v v v mw w w b b b b b b= = =w b b  

  Population: chromosome’s set is indicated as:  

   1 2 3 1 2 2[( , , ,..., ), ( , , ,..., )]u u u un v v v vn=P W W W W W W W W   

   [ , ] [( , , ), ( , , )]uj vj uj uj uj vj vj vj=W W w b w b   

 Output: Global best individual of GAs is denoted as WGA-Best 

 Initialization 

  Produce a W vector of real confined numbers to denote a  

  chromosome. To form an initial P Set of W used. Set Generation 

  and declarations values of “GA” and “gaoptimset” procedures 

 Calculations of Fitness 

  Achieved the fitness  using equation (4)for all W in P

 Termination 

  Implementation of the scheme terminates for accomplishment of the 

  following 

 ‘Fitness limit = e → 10-12’,‘Generations = 100’, ‘TolFun →10-18,  

 ‘TolCon →10-20 , ‘StallGenLimit →75, ‘PopulationSize →200’ and 
  other values are taken as default   

  Go to storage step, If termination condition meets, 

 Ranking 

  Each W of P ranked through excellence of the fitness rate. 

 Reproduction  

  Repeated the new P with following hands at each iteration  

• ‘Selection’: “@selectionuniform”. 

• ‘Crossover’: “@crossoverheuristic routine”. 

• ‘Mutations’: “@mutationadaptfeasible function”. 

• ‘Elitism’: “best ranked chromosome of P”. 

Continue from fitness step 

 Storage 

  WGA-Best store, fitness, time, generation and count of functions for 

  the current run of GAs  

End Genetic algorithms 

 

GA-SQP Procedure Start 

 Inputs 

  Best global vector WGA-Best 

 Output 

  GA-SQP is the best weight vector, i.e., WGA-SQP 

 Initialize 

  Use start point WGA-Best 

  Decelerations and bounded are prepared for the ‘optimset’ and 

  ‘fmincon’ routines,  

 Termination 



  Algorithm stop, any of the value meet 

  ‘Fitness limit = e ≤ 10-14, ‘total Iterations = 800’, ‘TolFun ≤ 

  10-18, ‘TolX ≤ 10-18, ‘TolCon ≤ 10-20, or MaxFunEvals ≤ 200000 

 While (Terminate) 

  Fitness calculation 

  Using equations (4-7), find the fitness  of present weight vector 

  Adjustments 

  Invoking “fmincon” routine using algorithm “SQP” to adjust  

  weight vector for each incremental phase in iteration. 

   Go to the step of fitness with update weight vector W 

 End 

  Save the final adaptive weights WGA-SQP and its fitness,  

  iterations, time and function assessed for the current run. 

GA-SQP Procedure End 

Statistics 
 Repeat the GA-SQP procedure for 100 times to train the networks for the 

outcomes of EFS and collected data is used for effective Statistics  

3. Simulations and results 

The numerical study of the proposed methodology is narrated to investigate the EFS. 

Comparison of results are made with the exact solutions for three examples 

Example 1: Consider the nonlinear EFS is 

The fitness function of the system (12) is  
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Example 2: Consider the nonlinear EFS is 

The formulation of the fitness function is 
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Example 3: Consider the EFS having strong nonlinearity 

The fitness function of the model (16) is 
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Optimization of all three examples of EFS is supported with the hybrid of GA-SQP for 100 

multiple runs to achieve the modifiable networks parameters. Set of weights is also plotted in Fig. 

3 for u(t) and v(t). These weights are used to find the approximate solution for all three examples. 

The mathematical form is given as: 

 1 ( 5.2407 2.4439) (1.8582 -2.4439) ( 1.9377 0.752 )  2

0.4388 6.4835 1.3676
ˆ ...

1 1 1
p t t t

u
e e e

− − − − − − − −
= + + +

+ + +
, (18) 

 2 ( 8.2022) ( 0.4691 13.43654 ).8372   (7.5298 11.4087) 

20 0.6866 7.4195
ˆ ...

1 1 1t tp t
u

e e e+ +− − − − − −

−
= + + +

+ + +
, (19) 

 3 ( 0.2095 0.7312) ( 2099 1.2441) (2.9497t+1.16    19)

0.4823 0.2412 1.8088
ˆ ...

1 1 1tp t
u

e e e−− − − + − + −

− −
= + + +

+ + +
, (20) 

 1 (1.0314 1.3248) (2.   0.552836 ) (0.847379   t+1.5818)

0.1392 0.9027 0.1624
ˆ ...

1 1 1tp t
v

e e e
− − + −− −
= + + +

−

+

−

+ +
, (21) 

 2 (14.5169 9.1492) ( 10.7660 14.6074) ( 2.9999 11.4678) 

4.3832 9.1174 8.3274
ˆ ...

1 1 1
p tt t

v
e e e

− − + − − − − − −

−
= + + +

+ + +

−
, (22) 

 3 (0.9012 4.4533) ( 0.3953 14.1205) (0.8348 1.6292)   

3.8293 2.5218 2.4976
ˆ ...

1 1 1tp t t
v

e e e− −− − − − − −
= + + +

+ + +
. (23) 

  

2 5

2 3

3
( 4) 1, (0) 1, (0) 0,

4
(4 5) 1, (0) 1, (0) 0.

u u uv t u u u
t

v v uv t u v v
t


  + + + + = = =


   + + − + = = =


 (16) 



The approximate values ˆ( )u t  and ˆ( )v t by using equations (18-23) are plotted in Fig. 2. The 

overlapping of the proposed and exact solution for all three examples is also presented in Fig. 2. 

Absolute error (AE) is presented in Fig. 3 to access the similarities of the results for both 

parameters of all three examples. The AE value for ˆ( )u t  lie around 10-05 to 10-06, 10-05 to 10-07 and 

10-06 to 10-07, while ˆ( )v t  lie around 10-06 to 10-08, 10-05 to 10-07 and 10-06 to 10-07 for example (1-

3). The scale of fitness, MAD, RMSE, and EVAF based on performance measures for u(t) and v(t) 

are also plotted in Fig. 3. The optimal values are observed for all the performance indices that 

establish the value of the proposed scheme. Fig. 4 depicts the fitness and histogram plots for all 

three examples. It is clear in understanding that almost 75% of independent executions attained 

best fitness values for the examples 1, 2 and 3. The outcomes for MAD, RMSE and EVAF are 

drawn in Figs (5-7) along with the histogram plots. The results indicate that about 80% runs attain 

precise standards of MAD, RMSE and EVAF. 

For the precision of the proposed scheme, statistical analysis is established on the basis of 

minimum (Min), mean (Mean) and standard deviation (SD). The results of these operators for 

examples (1-3) are tabulated in Tables 2 (a-b) for ˆ( )u t and ˆ( )v t . The Min, Mean and SD values for 

each problem lie around 10-06 to 10-10, 10-02 to 10-06 and 10-01 to 10-05 for both of the functions ˆ( )u t

and ˆ( )v t . The accuracy degraded for Mean values and SD values due to the effect of only one bad 

run can affect the mean values significantly. Table 3 presents the global performance operators 

GMAD, GRMSE and GVAF for the index ˆ( )u t and ˆ( )v t for 100 independent execution. It is 

observed that these operator values lie in good ranges. To find the proposed scheme performance, 

convergence analysis is made for various performance metrics and outcomes are presented in 

Table 4 for both ˆ( )u t and ˆ( )v t . The results are clear that a large number of independent runs attain 

the level of accuracy. While for comparatively harder standards, the number of runs decreased 

extensively, but a proficient number of runs still there to achieve that level of accuracy. In order 

to find the algorithm computational cost, implementation/execution time values, number of 

cycle/iteration and counts of function for the networks are listed in Table 5 for the EFS.  

 

 

 

 

 

 

 



  

(a): Results of ˆ( )u t for Example (1-3) (b): Results of ˆ( )v t for Example (1-3) 

   

(c): ˆ( )u t  weights for Example 1 (d): ˆ( )u t  weights for Example 2 (e): ˆ( )u t  weights for Example 3 

   

(f): ˆ( )v t  weights for Example 1 (g): ˆ( )v t  weights for Example 2 (h): ˆ( )v t  weights for Example 3 

Fig 2: Set of weights and comparison of outcomes for Example (1-3) 

 

 

  

 

 



  

(a) AE of Example (1-3) for u(t) (b) AE of Example (1-3) for v(t) 

 
(c) Performance indices of examples (1-3) for u(t) 

 
(d) Performance indices of examples (1-3) for v(t) 

Fig 3: Absolute Error and Performance measures for Example (1-3) 



 

Fitness value in convergence analysis for  Examples (1-3) 

   
Fig 4: Fitness value and histogram of GA-SQP for Example (1-3) 

 

 

 

 

 



 

MAD value in convergence analysis for  u(t) 

   

(a) Histogram for Example 1  (b) Histogram for Example 2 (c) Histogram for Example 3 

 

MAD value in convergence analysis for  v(t) 

   
(d) Histogram for Example 1  (e) Histogram for Example 2 (f) Histogram for Example 3 

Fig 5: MAD value and histogram of GA-SQP for Example (1-3) 

 



 

RMSE value in convergence analysis for  u(t) 

   

(a) Histogram for Example 1  (b) Histogram for Example 2 (c) Histogram for Example 3 

 

RMSE value in convergence analysis for  v(t) 

   
(d) Histogram for Example 1  (e) Histogram for Example 2 (f) Histogram for Example 3 

Fig 6: RMSE value and histogram of GA-SQP for Example (1-3) 

 



 

EVAF value in convergence analysis for  u(t) 

   

(a) Histogram for Example 1  (b) Histogram for Example 2 (c) Histogram for Example 3 

 

EVAF value in convergence analysis for  v(t) 

   
(d) Histogram for Example 1  (e) Histogram for Example 2 (f) Histogram for Example 3 

Fig 7: EVAF value and histogram of GA-SQP for Example (1-3) 

 



Table 2 (a): Statistics outcomes of ˆ( )u t for all Examples  

t 
Example 1 Example 2 Example 3 

Min Mean SD Min Mean SD Min Mean SD 

0 2.13E-08 5.21E-03 3.78E-02 2.70E-08 1.59E-02 6.07E-02 2.91E-08 1.23E-04 4.59E-04 

0.1 7.01E-07 5.43E-03 3.76E-02 1.52E-06 1.41E-02 6.27E-02 2.76E-08 1.52E-04 4.15E-04 

0.2 1.52E-08 5.84E-03 4.04E-02 8.69E-07 1.52E-02 7.32E-02 7.56E-08 1.61E-04 3.72E-04 

0.3 2.94E-06 6.36E-03 4.33E-02 2.71E-06 1.75E-02 8.40E-02 6.84E-09 1.80E-04 3.53E-04 

0.4 1.85E-06 7.05E-03 4.72E-02 3.17E-07 2.04E-02 9.62E-02 4.03E-09 9.25E-05 3.14E-04 

0.5 3.73E-06 7.84E-03 5.31E-02 4.38E-07 2.33E-02 1.91E-01 1.59E-08 7.15E-05 2.47E-04 

0.6 5.20E-06 8.93E-03 6.14E-02 2.46E-06 2.82E-02 1.73E-01 1.11E-08 5.71E-05 1.75E-04 

0.7 5.71E-06 1.07E-02 7.05E-02 9.59E-07 3.43E-02 1.56E-01 1.94E-08 2.78E-05 9.83E-05 

0.8 6.94E-06 1.28E-02 8.16E-02 8.69E-07 4.14E-02 2.60E-01 7.95E-10 1.43E-05 4.82E-05 

0.9 6.42E-06 1.49E-02 9.67E-02 1.77E-08 5.25E-02 2.25E-01 2.06E-09 5.37E-06 1.71E-05 

1 7.07E-06 1.72E-02 1.18E-01 4.37E-07 6.57E-02 3.41E-01 1.37E-09 3.09E-06 1.30E-05 

 

Table 2 (b): Statistics outcomes of ˆ( )v t  for all Examples  

t 
Example 1 Example 2 Example 3 

Min Mean SD Min Mean SD Min Mean SD 

0 9.43E-11 8.76E-04 6.12E-03 2.05E-07 3.12E-02 1.53E-01 1.16E-10 1.56E-05 5.68E-05 

0.1 4.42E-07 8.97E-04 6.14E-03 2.82E-07 3.23E-02 1.66E-01 3.14E-07 2.60E-05 6.50E-05 

0.2 6.35E-07 9.04E-04 6.25E-03 5.47E-07 3.34E-02 1.67E-01 1.13E-09 2.72E-05 6.48E-05 

0.3 2.47E-07 9.50E-04 6.26E-03 9.31E-07 3.16E-02 1.78E-01 9.02E-09 2.84E-05 8.31E-05 

0.4 8.61E-08 9.60E-04 6.27E-03 3.24E-07 3.38E-02 1.86E-01 2.32E-08 2.97E-05 9.28E-05 

0.5 2.74E-07 9.08E-04 6.22E-03 8.64E-07 4.42E-02 2.05E-01 4.94E-08 3.97E-05 1.13E-04 

0.6 2.56E-07 9.05E-04 6.28E-03 1.79E-06 4.56E-02 2.24E-01 4.35E-08 5.32E-05 1.48E-04 

0.7 1.36E-07 8.99E-04 6.29E-03 1.39E-08 5.82E-02 2.53E-01 4.36E-09 6.24E-05 2.62E-04 

0.8 5.72E-08 9.01E-04 6.28E-03 1.14E-06 6.70E-02 2.92E-01 1.58E-08 7.10E-05 2.75E-04 

0.9 1.91E-07 8.80E-04 6.27E-03 4.83E-07 7.61E-02 3.41E-01 3.39E-08 7.43E-05 2.86E-04 

1 1.08E-07 9.10E-04 6.26E-03 2.12E-07 8.54E-02 4.06E-01 8.99E-09 7.54E-05 2.87E-04 

 

Table 3: Global performance results of ˆ( )u t and ˆ( )v t  for all Examples 

Index Example 
GFIT GMAD GRMSE GVAF 

Magnitude SD Magnitude SD Magnitude SD Magnitude SD 

ˆ( )u t  1 1.19E-03 8.49E-03 8.94E-03 6.14E-02 9.26E-03 6.57E-02 2.16E-03 1.52E-02 

 2 8.88E-03 4.29E-02 2.87E-02 1.36E-01 3.25E-02 1.54E-01 8.20E-03 4.22E-02 
 3 2.46E-06 7.48E-06 6.73E-05 2.23E-04 8.22E-05 2.71E-04 2.76E-06 1.43E-05 

ˆ( )v t  1 1.19E-03 8.49E-03 8.97E-04 6.20E-03 9.00E-05 6.20E-03 5.79E-07 4.37E-06 
 2 8.87E-03 4.28-02 4.74E-02 2.27E-01 4.99E-02 2.39E-01 1.36E-01 7.06E-01 

 3 2.46E-06 7.78E-06 4.39E-05 1.48E-04 5.27E-05 1.68E-04 5.16E-07 2.72E-06 

 

 

 



Table 4: Convergence analysis for problems (1-3) 

Index Ex 
FIT≤ MAD ≤ RMSE≤ ENSE ≤ 

10-04 10-05 10-06 10-03 10-04 10-05 10-03 10-04 10-05 10-07 10-08 10-09 
ˆ( )u t  1 98 97 94 97 93 22 97 93 20 94 69 34 

 2 89 80 60 90 78 33 90 77 30 82 77 54 

 3 100 100 87 100 96 87 100 95 87 88 87 82 
ˆ( )v t  1 98 97 94 98 98 93 98 98 92 97 97 86 

 2 89 80 60 88 77 27 87 77 21 72 45 16 

 3 100 100 87 100 98 88 100 97 88 92 88 87 

Table 5: Complexity analysis for problems (1-3) 

Example 
Implementation Time Iterations Function Values 

Mean SD Mean SD Mean SD 

1 539.2775994 4612.871109 847.29 60.46357865 116627.45 17373.14954 

2 97.91541211 243.6168986 856.18 38.09912112 110510.22 9469.53933 

3 199.2706581 1181.289639 842.87 75.80126262 119546.38 19841.77236 

 

4. Conclusion 

The motivation behind this study is to solve singular system of Emden-Fowler model using ANNs 

optimized with GA, SQP and the hybrid of GA-SQP. Some key findings of the present study are 

summarized as: 

• ANN applied effectively for solving the singular system of Emden-Fowler equation. By 

using the ANNs, the achieved outcomes using the proposed mythology are very accurate 

and reliable. 

• To analyze the accuracy and convergence of the present method, statistical analysis is made 

for 100 independent runs to solve the model equation. 

• The best AE values lie up to 10-05 to 10-09. However, the worst outcomes of AE lie up to 

10-01 to 10-05. 

• The statistical operators MAD, RMSE and VAF and their global forms are presented 

effectively with good agreements. 
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