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Abstract

In this paper, a non-steady-state amperometric biosensor with the
mixed enzyme kinetics and diffusion limitations under the inhibitions
of substrate and product is modeled mathematically. The non-steady-
state reaction-diffusion equations of the system consist non-linear terms
related to an enzymatic reaction of non-Michaelis-Menten kinetics.
We have presented the approximate analytical solutions for the con-
centrations of substrate and product in non-steady and steady-state
models using the new approach of Homotopy perturbation method
(HPM). The provided expression is presented for all potential dif-
fusion and kinetic parameter values. Analytical expressions of the
biosensor current and sensitivity are also presented and discussed. In
addition, we also provided numerical solutions for the proposed model
by utilizing the pdepe tool in MATLAB software. When compar-
ing the analytical solution with the numerical solution, a satisfactory
result is noted for all the possible values of the parameters. Further-
more, the influence of diffusion and kinetic parameters on both the
current and the sensitivity are discussed. Analytical expressions for
the limiting cases of biosensor enzyme kinetics are presented in this
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research article. Additionally, an analytical expression for determining
the effective thickness of the membrane is derived and presented.

Keywords: Homotopy perturbation method (HPM), Non-Michaelis–Menten
reaction, Amperometric biosensor, Substrate and product inhibition

1 Introduction

Biosensors are analytical devices that detect and measure the concentration
of biological or chemical compounds in a sample using a biological recognition
element, such as an enzyme. Among the various types of biosensors, ampero-
metric biosensors are particularly attractive due to their high sensitivity, rapid
response, and simple operation.Amperometric biosensors detect variations in
the electric current produced at the electrode due to the direct oxidation
or reduction of a biochemical reaction. An amperometric biosensor typically
consists of an electrode, a biological recognition element immobilized on the
electrode surface, and a transducer that converts the biochemical signal into
an electrical signal [1]-[2]. These biosensors have been widely used in various
applications, such as clinical diagnosis, environmental monitoring, and food
analysis. They offer advantages over traditional analytical methods, such as
high sensitivity, real-time monitoring, and low sample consumption [3]-[5].

Amperometric techniques exhibit a linear relationship between the mea-
sured current and analyte concentration in the buffer solution, delivering a
current response that increases in direct correlation with rising concentra-
tions, typically within a standard dynamic range. In spite of potential errors
in current measurements that may arise as a result of multitude of influencing
factors, meticulous calibration and vigilant control of experimental variables
guarantee the reliability and precision of these methods for quantifying ana-
lyte concentration [6]-[7]. Various models have been developed for biosensors
that account for substrate and product inhibition under steady-state [8]-[9] and
non-steady-state conditions [10]. To optimize the amperometric biosensor by
reducing the substrate and product inhibition in enzyme activity Šimelevičius
and Baronas [11] proposed a mathematical model of biosensor considering the
mixed enzyme kinetics with both substrate and product inhibition.

Meena and Rajendran [12] utilized the Homotopy perturbation method,
which was proposed by Ji Huan He [13] to obtain approximate analytical
expressions for concentrations of substrate and product of the non-steady-state
reaction-diffusion equations of amperometric biosensor that describe the dif-
fusion coupled with a Michaelis–Menten kinetics and analytical expression of
biosensor current are also provided. In the case of substrate inhibition kinetics
in enzymatic reaction of amperometric biosensor, Manimozhi et al. [14] derived
an analytical expression for the steady-state substrate concentration of the
amperometric biosensor with substrate inhibition through the use of the vari-
ational iteration method (VIM) and HPM which is proved to the suitable for
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all values of parameters. Whereas for the case of the amperometric biosensor’s
non-steady-state reaction-diffusion equation with substrate inhibition kinetics,
an approximate analytical solution for both the substrate concentration and
the dimensionless current response was presented in the study by Senthamarai
and Jana Ranjani [15]. They employed the Homotopy Perturbation Method
(HPM) to derive these solutions.

Swaminathan et al. [16] derived approximate analytical solutions for sub-
strate and product concentrations, current, sensitivity, and resistance in
steady-state amperometric biosensors featuring substrate inhibition kinetics,
employing both the Taylors series method and the new Homotopy perturba-
tion method. For the product inhibition kinetics, Rani et al. [17] provided
mathematical analysis by utilising the Adomian Decomposition and Taylors
series method to obtain the approximate analytical solutions for both substrate
and product concentrations, fluxes of the enzymes in the biosensor and pro-
vided analytical expressions for the sensitivity and resistance of amperometric
biosensor. In [18], authors have considered and analysed a mathematical model
of a steady-state amperometric biosensor incorporating the mixed enzyme
kinetics with external and internal diffusion limitations under the substrate
and product inhibition kinetics. Approximate analytical expressions for the
substrate and product concentrations have been provided using the Adomian
Decomposition and Taylors series method and the analytical expressions for
current, sensitivity and resistance are provided, parameter analysis is also
done.

However, this approach is limited to the steady-state conditions of the
amperometric biosensor with the substrate inhibition and product inhibition
kinetics. To the author’s best knowledge, no approximate analytical formula-
tion exists for substrate and product concentrations, current, and biosensor
sensitivity in the context of non-steady-state amperometric biosensors oper-
ating with mixed enzyme kinetics and subject to internal and mass transfer
limitations under substrate and product inhibition kinetics.

This paper aims to present the results of a non-steady-state amperomet-
ric biosensor model incorporating mixed enzyme kinetics with substrate and
product inhibitions. It was observed that a broad spectrum of concentrations
of substrate and product lead to significant variations in both physical and
kinetic parameters within the system. Analytical expressions for the math-
ematical model is particularly preferred over numerical simulations due to
their simplicity in manipulation of data and optimizing the critical param-
eters across a wide range of applications. In this paper, we have provided
approximate analytical expressions for non-steady-state substrate and product
concentrations as well as current density for all the parameter values of the
amperometric biosensor with the mixed enzyme kinetics with the inhibition
in substrate and product. The numerical solution is obtained using MATLAB
software and subsequently compared with the derived approximate analytical
results. Analytical expression for the sensitivity of biosensor is provided. The
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limiting cases in the enzymatic kinetics affecting the biosensor working is pre-
sented. Also, the analytical expression for effective thickness of the membrane
layer for obtaining the maximum current potential is presented.

2 Mathematical Model

Biosnenors generally operate by the Michaelis-Menten reaction, which is given
as

E + S
k1−−⇀↽−−
k−1

ES
k2−→ E + P (1)

where enzyme and substrate are represented as E and S, which react with k1
kinetics and k−1 kinetics for reverse reaction to produce the unstable enzyme
substrate complex ES, which then with k2 kinetics produces enzyme and
product P , where the ki i = −1, 1, 2 is the rate constants of reaction. The
Michaelis-Menten reaction demonstrates irreversibility in second step due to
its unidirectional enzymatic conversion, with electrons flowing from the enzy-
matic reaction to the electrode as substrate is transformed into product. This
irreversibility is a fundamental aspect in biosensor applications, as it ensures
the biosensor specificity and sensitivity. The rate at which the product is
generated is contingent upon the substrate concentration.

Fig. 1: Illustration of the working of Amperometric biosensor

we consider the non-Michaelis-Menten reaction where the enzyme-substrate
complex ES is inhibited and reacts with additional substrate molecule and
forms a non-active ESS complex with k3 kinetics (k−3 for backward kinetics),
here k3 and k−3 are the rate constant of substrate inhibition

ES + S
k3−−⇀↽−−
k−3

ESS (2)

Also, this paper examines the inhibition of the product molecule interacting
with a molecule of enzyme producing the non-active EP complex with k4
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kinetics (k−4 for backward kinetics), here k4 and k−4 are the rate constant of
product inhibition

E + P
k4−−⇀↽−−
k−4

EP (3)

Comprehending the distinct attributes of biosensors is a vital aspect of their
design, as depicted in Figure 1. In the bulk solution, the analyte exists and
flows to the diffusion layer, where mass transport by diffusion occurs. In the
enzyme membrane layer, enzymatic reactions and additional mass transport
through diffusion take place. Finally, the analyte reaches the electrode, where
electron transfer occurs, leading to the generation of a measurable electrical
signal.

The significance of the reversible interactions involving both the substrate
and the product often goes unnoticed, even though they constitute a cru-
cial component of the entire process. The following are non-steady non-linear
differential kinetics equations of substrate and product inhibition [11]:

∂s(x, t)

∂t
= Ds

∂2s(x, t)

∂x2
− v(s, p), (4)

∂p(x, t)

∂t
= Dp

∂2p(x, t)

∂x2
+ v(s, p), 0 < x < d (5)

where

v(s, p) =
Vmaxs(x, t)

km

(
1 + p(x,t)

kp

)
+ s(x, t)

(
1 + s(x,t)

ks

) (6)

Ds and Dp represent the diffusion coefficients of the substrate and prod-
uct concentration, respectively, at the enzyme layer.The concentrations of the
substrate and product are represented by the variables s(x, t) and p(x, t),
respectively. The parameter Vmax corresponds to the maximum enzymatic
rate, while ks and kp are the inhibition constants which is same as k3 and k4
in Eqs. (2) and (3). Furthermore, km denotes the Michaelis-Menten constant.

s (x, 0) = 0, p (x, 0) = 0 when t = 0, (7)

∂s (0, t)

∂x
= 0, p (0, t) = 0 when x = 0, (8)

s (d, t) = s0, p (d, t) = 0 when x = d. (9)

where s0 is the concentration of substrate at x = d.

The biosensor current density I is expressed as

I = neFDp
∂p

∂x

∣∣∣∣
x=0

(10)

ne is the amount of electron taking part in the electrochemical reaction.
By using the following dimensionless parameters Eqs. (4) and (5) are made
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dimensionless.

χ =
x

d
, τ =

DSt

d2
, S (χ, τ) =

s (x, t)

s0
, P (χ, τ) =

p (x, t)

s0
,

ϕ2 =
Vmaxd

2

Dss0
, φ =

Dp

Ds
, α =

s0
kp

, γ =
km
s0

, β =
s20
ks

(11)

where S(χ, τ) and P (χ, τ) depict the dimensionless concentration of the sub-
strate and product. ϕ2, φ are reaction diffusion parameters, α, β, γ illustrate
saturation parameters. τ and χ are dimensionless time and distance.

∂S(χ, τ)

∂τ
=

∂2S(χ, τ)

∂χ2
− ϕ2S(χ, τ)

γ + αP (χ, τ) + S(χ, τ) + βS2(χ, τ)
, (12)

∂P (χ, τ)

∂τ
= φ

∂2P (χ, τ)

∂χ2
+

ϕ2S(χ, τ)

γ + αP (χ, τ) + S(χ, τ) + βS2(χ, τ)
. (13)

with the following boundary conditions:

S (χ, 0) = 0, P (χ, 0) = 0 when τ = 0, (14)

∂S (0, τ)

∂χ
= 0, P (0, τ) = 0 when χ = 0, (15)

S (1, τ) = 1, P (1, τ) = 0 when χ = 1. (16)

the dimensionless current is as follows:

Ψ =
I

neFDp

[
d

s0

]
=

∂P (χ, τ)

∂χ

∣∣∣∣
χ=0

(17)

3 Approximate analytical expressions of non -
steady - state substrate and product
concentrations and current using HPM

In fields like applied mathematics, physics and chemical engineering, prob-
lems are depicted using non-linear equations. Finding solutions for these
non-linear differential equations is the constant problem faced by scientists in
those fields. In recent years, various analytical and semi-analytical techniques
have gained considerable attention for solving strongly nonlinear differen-
tial equations in physical, biological, and chemical sciences. These methods
include the Homotopy analysis method (HAM) [19], Taylor’s series method
(TSM) [20]-[23], Homotopy perturbation method (HPM) [13], [24]-[28], Varia-
tional iteration method (VIM) [29]-[32], and Adomian decomposition method
(ADM) [33]-[35].

Ji-Huan He introduced the Homotopy perturbation method (HPM) [13] as
a technique for obtaining approximate analytical solutions for various strongly
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non-linear differential equations. Recently, J.H. He and his colleagues [24]
have applied the HPM to solve problems arising in oscillators, while Vijay-
alakshmi and Senthamarai [25] have utilized the method to solve a non-linear
prey-predator model and Rajendran et al made use of the HPM to obtain
approximate analytical expressions for non-linear steady [26] and non-steady
state [27] amperometric biosensor models and packed bed reactors model [28].
The HPM offers an advantage over other approximate analytical methods by
reducing the inherent complexity of solving non-linear differential equations.
Approximate analytical solution of substrate concentration Eq. (12) derived
using HPM (see Appendix - A) is obtained as follows:

S (χ, τ) =
cosh

(√
δχ

)
cosh(

√
δ)

−
∞∑

n=0

(2n+ 1) e−ητcos
(

(2n+1)π
2 χ

)
η sin

(
(2n+1)π

2

) (18)

approximate analytical solution of product concentration Eq. (13) derived
using the HPM is obtained as:

P (χ, τ) =
χ

φ
+

1− χ− cosh(
√
δχ)

φ cosh(
√
δ)

+δπ

∞∑
n=0

(−1)n(2n+ 1)

η[δφ− η(φ− 1)]
×

[
sin(

√
η/φ(χ− 1))

sin(
√

η/φ)
+ cos

(
(2n+ 1)

π

2
χ
)]

e−ητ

−2δ

π

∞∑
n=1

(−1)n

n[δφ− n2π2φ(φ− 1)]
×

[
sin[nπ(χ− 1)]

cosh(
√

δ − n2π2φ)
− sin(nπχ)

]
e−n2π2φτ

+
(φ− 1)

φ

[
2 sin(

√
[δ/(φ− 1)](χ− 1))

sin(2
√

[δ/(φ− 1)])
−

sin(
√

[δ/(φ− 1)]χ)

sin(
√

[δ/(φ− 1)])

+
cos(

√
[δ/(φ− 1)]χ)

cos(
√

[δ/(φ− 1)])

]
e−

δφ
1−φ τ (19)

where

η =
π2(2n+ 1)2

4
+ δ, δ =

ϕ2

α (γ/α+ 1/α + β/α)
(20)

Eqs. (18) and (19) satisfies the given boundary conditions (14) - (16) and
we obtain dimensionless current given by Eq. (17) as

Ψ =
I(τ)

neFDp

[
d

s0

]
=

[
1

φ
− 1

φ cosh(
√
δ)

]
+ δπ

∞∑
n=0

[
(−1)n(1 + 2n) cot(

√
η/φ)

√
ηφ[δφ− η(φ− 1)]

]
e−ητ
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+ 2δ

∞∑
n=1

[
(−1)n − sec(

√
δ − n2π2)

δφ− n2π2φ(φ− 1)

]
e−n2π2φτ (21)

3.1 Limiting cases

3.1.1 First-Order (unsaturated) kinetics

We first discuss a limitation that arises when the Michaelis-Menten constant
ki exceeds the amount of substrate available in the enzyme layer S(χ, τ) i.e
S ≪ ki where i = s, p,m. Hence the Eqs. (12) and (13) is reduced as

∂S(χ, τ)

∂τ
=

∂2S(χ, τ)

∂χ2
− ϕ2

γ
S(χ, τ) (22)

∂P (χ, τ)

∂τ
= φ

∂2P (χ, τ)

∂χ2
+

ϕ2

γ
S(χ, τ) (23)

The above represented Eqs. (22) and (23) are linear partial differential equation
for which we can obtain the exact solutions. By solving the above equations the
substrate and product concentrations and the biosensor current are obtained
identical to the Eqs. (18), (19) and (21) but δ = ϕ2/γ

3.1.2 Zero-Order (saturated) kinetics

We examine another significant constraint involving substrate concentration
S(χ, τ) exceeding the Michaelis-Menten kinetics ki in the enzymatic layer i.e.
S ≫ ki where i = s, p,m. Hence the Eqs. (12) and (13) is reduced as

∂S(χ, τ)

∂τ
=

∂2S(χ, τ)

∂χ2
− ϕ2 (24)

∂P (χ, τ)

∂τ
= φ

∂2P (χ, τ)

∂χ2
− ϕ2 (25)

The solution of the substrate and product concentration of zero order kinetics
by solving the above equations is obtained as

S(χ, τ) = 1 +
ϕ2

2
(χ2 − 1)− 4

π

∞∑
n=0

(
4ϕ2

π2(2n+ 1)2
− 1

)

×
cos

(
(2n+1)π

2 χ
)
e−ητ

(2n+ 1) sin
(

(2n+1)π
2

) (26)

P (χ, τ) =
ϕ2

2φ
(χ− χ2) +

2ϕ2

φπ3

∞∑
n=1

sin(nπx)

n3
[(−1)n − 1] e−n2π2φτ (27)
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and the current expression is obtained as

Ψ =
ϕ2

2φ
+

2ϕ2

φ

∞∑
n=1

(
(−1)n − 1e−n2π2φτ

)
n2π2

(28)

the above Eqs. (26), (27) and (28) are the analytical expressions of the
substrate Eq. (24) and product Eq. (25) concentrations and current.

4 Approximate analytical expressions of steady
- state substrate and product concentrations
and current using HPM

Biosensor reaches its equilibrium and attains a steady-state over an extended
period of time as τ approaches infinity. In this state, the system’s dynamics
become independent of time, and the system has achieved a stable, unchanging
configuration.
The steady-state analytical expressions of dimensionless concentrations of the
substrate and product can be obtained by evaluating Eqs. (18) - (19) as τ → ∞,
given as follows:

S (χ) =
cosh

(√
δχ

)
cosh(

√
δ)

(29)

P (χ) =
χ

φ
+

1− χ− cosh(
√
δχ)

φ cosh(
√
δ)

(30)

the steady-state dimensionless current is obtained by evaluating Eq. (21) as

Ψ =
I

neFDp

[
d

s0

]
=

[
1

φ
− 1

φ cosh(
√
δ)

]
(31)

Previously [18] we have derived approximate analytical solution for the steady-
state condition of amperometric biosensor with substrate inhibition and
product inhibition kinetics using TSM and ADM. Eqs. (29) and (30) pro-
vide new approximate analytical solution for the concentrations of substrate
and product of amperometric biosensor with substrate inhibition and product
inhibition kinetics.

5 Validation of analytical results

In order to validate the accuracy of the approximate analytical solution
obtained using HPM for non-steady-state conditions, we employed the pdepe
tool in Matlab software to obtain the numerical solution. The pdepe utilizes the
method of lines (MOL) to solve time-dependent partial differential equations
(PDEs). MOL discretizes the spatial variables while treating the time variable
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analytically, effectively converting the PDE into a system of ordinary differ-
ential equations (ODEs). It automatically manages the spatial discretization
and selects the suitable ODE solver for the given problem.

The results were then compares and presented in Figs. 2 and 5 and Table 1
- 3. The comparison revealed that the analytical solution obtained using HPM
was satisfactory the maximum error percentage noted between the numerical
and non-steady-state approximate analytical solution is 0.078%. In addition,
we have compared the novel steady-state approximate analytical solution Eqs.
(29) and (30) using HPM with the previous results obtained in [18]. From the
Table 2 it is scene that the approximate analytical result obtained using the
HPM gives better result for our system compared to the previous result. The
maximum error obtained between the analytical and numerical solution for
steady-state condition is found to be 0.024% which is lesser than the previous
result.

The comparison of the dimensionless current response is also presented
in Table 3. The comparison revealed that the analytical solution obtained
using HPM was satisfactory for the dimensionless current of the amperomet-
ric biosensor with substrate and product inhibition kinetics. The maximum
error percentage obtained between the numerical solution and current response
obtained analytically using HPM is 0.32%.
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Fig. 2: Concentration profiles of substrate Eq. (18) and product Eq. (19) in
dimensionless form are depicted as a function of distance from the electrode
(χ) for the parameter values τ = 10, ϕ2 = 1, α = 2, β = 3, γ = 1 and
φ = 0.1 where ‘—’ represents the numerical solution and ■ represents the
HPM solution.

6 Result and discussion

Eqs. (18) and (19) present new closed-form approximate analytical expres-
sions for the non-steady-state substrate and product concentrations, Eqs.
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(12) and (13), respectively, of the amperometric biosensor model with sub-
strate inhibition and product inhibition. Similarly, Eqs. (29) and (30) provide
approximate analytical expressions for the steady-state concentrations of the
substrate and product. Finally, Eq. (21) and Eq. (31) describe the analytical
expressions for the non-steady-state and steady-state current, respectively.

Fig. 2 represents the dimensionless concentration of substrate S and
product P of the non-Michaelis-Menten reaction kinetics model of the amper-
ometric biosensor with substrate and product inhibition. From the figure, it
is observed that the substrate concentration is a increasing function. By the
boundary condition Eq. (16) the substrate reaches its maximum concentration
at χ = 1 it can be observed that the from the initial point χ = 0 substrate
concentration increases gradually and reaches its maximum concentration
when χ = 1. Whereas, the product concentration initially increases from 0
and reaches its peak concentration as the χ approaches the 0.5 away from the
surface of the electrode and it gradually decreases to 0 concentration when
χ = 1 equivalent to the boundary condition Eq. (16) for all values of other
parameters.

Figs. 3 and 4 represents the effect of dimensionless time τ and dimen-
sionless distance χ on the concentrations of substrate and product. From the
figures it is observed that both the concentrations are decreasing functions
with respect to time this phenomenon can be clearly seen in Figs. 3b and
4b. The concentration attains is at its maximum at the initial stage of the
dimensionless time and then gradually decreases as the time increases. This
can be clearly seen in Fig. 5, it is seen that time is inversely proportional to
the concentrations. From Figs. 5a and 5b it is seen that the concentration
decreases as time increases and attains its equilibrium when the time τ ≥ 2
and there is no change in the concentrations of substrate and product.

From the graphs of the dimensionless current presented in Fig. 6 - 9, it can
be observed that the current stabilizes instantly when τ > 1 for all parameter
values. When the saturation parameters β and γ are increased, the current
decreases, as shown in Figs. 6 and 7. Where as in the case of ratio of diffusion
coefficient φ the current decreases with the increase of the parameter this can
be seen in Fig. 8. When τ = 1 the current reaches its maximum and then when
dimensionless time τ = 2 the current gradually decreases and stabilizes when
τ = 3. However, Figs. 9 indicates that the current increases with an increase
in the diffusion parameter ϕ2. The saturation parameter α does not have any
significant effect on the current response of amperometric biosensor.
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(a) (b)

Fig. 3: Simulation of substrate concentration versus dimensionless time τ and
dimensionless distance χ for the parametric values ϕ2 = 0.5, α = 2, β =
5, γ = 0.1, φ = 0.6.

(a) (b)

Fig. 4: Simulation of product concentration versus dimensionless time τ and
dimensionless distance χ for the parametric values ϕ2 = 0.5, α = 2, β =
5, γ = 0.1, φ = 0.6.
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Fig. 5: Non-steady-state concentrations of (5a) substrate and (5b) product
versus dimensionless distance χ with variation in dimensionless time τ for the
fixed parametric values ϕ2 = 0.5, α = 2, β = 5, γ = 0.1, φ = 0.6, where ‘−’
represents numerical and ‘■’ represents the HPM solution.
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Fig. 6: Dimensionless current Ψ as a function of dimensionless time (τ) for
fixed ϕ2 = 0.5, α = 2, γ = 0.1, φ = 1 and for different values of β
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Fig. 7: Dimensionless current Ψ as a function of dimensionless time (τ) for
fixed ϕ2 = 0.5, α = 2, β = 5, φ = 1 and for different values of γ
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fixed ϕ2 = 0.5, α = 2, β = 5, γ = 0.1 and for different values of φ
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Fig. 9: Dimensionless current Ψ as a function of dimensionless time (τ) for
fixed α = 2, β = 5, γ = 0.1, φ = 1 and for different values of ϕ2

Table 1: Table presenting a comparison between the numerical solution for
the non-steady-state substrate S(χ) and product P (χ) concentration and the
analytical solution obtained through the HPM for the fixed parameters τ =
10, ϕ2 = 0.74, α = 2, β = 5, γ = 0.1, and φ = 1

S(χ) P (χ)

χ Numerical HPM Error% Numerical HPM Error

0.0 0.96960 0.97030 0.07219 0.00000 0.00000 0.00000
0.2 0.97083 0.97081 0.00185 0.04858 0.04852 0.12351
0.4 0.97449 0.97609 0.16371 0.07276 0.07266 0.13156
0.6 0.98058 0.98165 0.10883 0.07269 0.07260 0.12022
0.8 0.98909 0.99026 0.11868 0.04844 0.04842 0.04129
1.0 1.00001 1.00000 0.00093 0.00000 0.00000 0.00000
Average Error% 0.07677 0.06943

6.1 Sensitivity

Sensitivity is a pivotal attribute of amperometric biosensor. The sensitivity
of the biosensor can be defined as the rate of change of the steady-state
current concerning the variations of substrate concentration. Because of the
significant variations in both biosensor current and substrate concentration,
particularly when making comparisons between different sensors, another valu-
able parameter to consider is the dimensionless sensitivity. The sensitivity of
the amperometric biosensor with the substrate inhibition and product inhi-
bition kinetics to changes in substrate concentration is calculated using Eq.
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(31).

BA =
∂I(s0)

∂s0
× s0

I(s0)
=

(
Ds s0 sinh

(√
δ
)
×

(
δ
s0

− ϕ2(kp/s
2
0+kp/kskm)

α(1/α+β/α+γ/α )2

))
2 Dp

√
δ cosh

(√
δ
)2

(
1
φ − 1

φcosh(
√
δ)

) (32)

where BA is the sensitivity of the biosensor.

Fig. 10 - 13 represents the non-monotonic sensitivity of biosensor BA for
increasing substrate concentration s0. It is noted that the increase in the
concentration decreases the sensitivity of the amperometric biosensor. When
s0 ≈ 103µM , the biosensor sensitivity reduces to its minimum value 0. An
increase in the enzyme layer distance d and the maximum enzymatic rate Vmax

results increase of the sensitivity BA which can be seen in Figs. 10 and 13.
Whereas in the case of the diffusion constants Ds, Dp and rate constant km,
the biosensor sensitivity of the maximum enzymatic rate results in a decrease
of the sensitivity BA as represented in Figs. 11 and 12.
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Fig. 10: Sensitivity of biosensor BA Eq. (32) versus s0µM for fixed values of
Vmax = 1µM/s, ks = 100M, km = 100M, kp = 100M, Ds = Dp = 100µm2/s
and for various valued of distance d
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6.2 Effective membrane thickness

By making use of the dimensionless current Eq. (31), the approximate value
of the effective membrane thickness d can be determined analytically. This
value corresponds to the point at which the steady-state current reaches its
maximum, given specific parameter values of Vmax, Ds, Km, Kp, Ks, s0.
Current equation Eq. (31) can be written as follows:

I(d)

neF
=

Dss0
d

[
1− sech(

√
δ)
]

(33)

by differentiating the above equation with respect to d we obtain the expression
as follows

∂I(d)

∂d
=

neFDss0
d2

[√
δ tanh(

√
δ)− cosh(

√
δ) + cosh(

√
δ)sech(

√
δ)

cosh2(
√
δ)

]
(34)

and we aim to find the value of d when the derivative reaches zero

√
δ tanh(

√
δ)− 2 sinh2(

√
δ/2) = 0 (35)

The numerical solution of Eq. (35) results in a singular value of δmax ≈ 1.5055.
As a result, we can determine the membrane thickness d at which the maximum
current I is achieved, where

dmax = δmax

√√√√Dskms0

(
kp

s0
+

kp

km
+

s0kp

kskm

)
Vmaxkp

= 86.87µm (36)
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at the parametric values Ds = 300µm2/s, km = 100M,kp = 100M,ks =
100M,Vmax = 10µM/s, s0 = 10µM .

7 Conclusion

The mathematical model of amperometric biosensor with the inhibitions of
substrate and product is discussed in this paper. The model is a non-linear
non-steady-state reaction-diffusion equation of second order. The closed-form
approximate analytical expressions for substrate and product concentrations
obtained using the Laplace transform and HPM method for non-steady and
steady-state system. The obtained approximate analytical solutions are com-
pared with the numerical solution obtained by using MATLAB software. The
limiting cases of the enzyme kinetics on the amperometric biosensor is also
analysed and the analytical expressions for the both cases are derived and
presented.

In addition, the analytical expressions of Biosensor current and sensitivity
are also presented. It is noted that the diffusion coefficient ratio φ has a sig-
nificant impact on the biosensor current as it peaks when dimensionless time
τ = 1 then starts decreasing gradually and stabilizes only when τ = 3 where
as the other parameters stabilizes instantly after τ = 1. The bulk substrate
concentration s0 has a significant impact on the sensitivity of amperomet-
ric biosensor. The expression for calculating effective membrane thickness for
which the maximum current can be obtained for the given specific parameter

values is represented as dmax = 1.5055

√
Dskms0

(
kp

s0
+

kp

km
+

s0kp

kskm

)
/Vmaxkp.

The theoretical model represented in this paper will be helpful for the exper-
imental scientists to improve the sensitivity of amperometric biosensor and a
better understanding of the characteristics of substrate and product inhibitions
in amperometric biosensor.

Appendix A Obtaining an Approximate
Analytical Solution of the
Equation through HPM.

The homotopy for Eq. (12) is constructed as follows:

(1− p)

[
∂S (χ, τ)

∂τ
− ∂2S (χ, τ)

∂χ2
+

ϕ2S(χ, τ)

α (γ/α + 1/α+ β/α)

]
+p

[
∂S (χ, τ)

∂τ
− ∂2S (χ, τ)

∂χ2
+

ϕ2S(χ, τ)

γ + αP (χ, τ) + S (χ, τ) + βS2(χ, τ)

]
= 0(A1)

The given conditions at the initial and boundaries of Eq. (A1) are

At τ = 0, S (τ, 0) = 0,

At χ = 0, ∂S(0,τ)
∂χ = 0, (A2)
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At χ = 1, S (1, τ) = 1

Approximate solution of the above Eq. (A1) is [13]

S (χ, τ) = S0 (χ, τ) + pS1 (χ, τ) + p2S2 (χ, τ) + p3S3 (χ, τ) + · · · (A3)

By substituting Eq. (A3) into Eq. (A1) and equating the coefficients of the
zeroth power of p, we obtain

∂S0 (χ, τ)

∂τ
− ∂2S0 (χ, τ)

∂χ2
+ δS0 (χ, τ) = 0 (A4)

where

δ =
ϕ2

α (1/α + γ/α+ β/α)

The given conditions at the initial and boundaries are defined by.

At τ = 0, S0 (χ, 0) = 0,

At χ = 0, ∂S0(0,τ)
∂τ = 0, (A5)

At χ = 1, S0 (1, τ) = 1

We can express the Eqs. (A4) and (A5) in the Laplace domain as follows [36]:

d2S̃0 (χ, s)

dχ2
− (s+A) S̃0 (χ, s) = 0, (A6)

the boundary conditions are specified as

when χ = 0, dS̃0(χ,s)
dχ = 0,

when χ = 1, S̃0 (χ, s) =
1
s . (A7)

the Laplace transformation of S0(χ, τ) is denoted as S̃0 (χ, s), where s is the

Laplace variable. By using Eq. (A7), the solution of S̃0 can be obtained as
shown in Eq. (A8).

S̃0 (χ, τ) =
cosh

(√
s+ δχ

)
cosh(

√
s+ δ)

(A8)

The concentration of substrate S(χ, τ) can be obtained by utilizing the com-
plex inversion formula we get the approximate analytical expression for the
concentration of the substrate S(χ, τ) which is the result given in Eq. (18).
Similarly, we can get the approximate analytical expression of the product
concentration Eq. (13).
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Appendix B Nomenclature

Symbol Meaning Unit

s Concentration of substrate µM
p Concentration of product µM
s0 Concentration of substrate at x = d µM
t Time s
km Michaelis-menten constant M
ks, kp Inhibition constants M
Vmax Maximal enzymatic rate µM/s
d Thickness of the enzyme layer µm
F Faraday constant C/mol
Ds Diffusion coefficient of the substrate µm2/s
Dp Diffusion coefficient of the product µm2/s
I Density of the current µA/cm2

x Distance cm
ne Number of electrons take part in electrochemical

reaction
None

S Dimensionless substrate concentration None
P Dimensionless product concentration None
χ Dimensionless distance None
τ Dimensionless time None
ϕ2 Diffusion parameter of substrate None
φ Ratio of diffusion coefficient None
α Saturation parameter None
β Saturation parameter None
γ Saturation parameter None
BA Sensitivity of biosensor None
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