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PARADOXICAL FUNCTIONS ON THE INTERVAL

VICTOR JIMENEZ LOPEZ

(Communicated by Andrew M. Bruckner)

Abstract. In this paper it is shown that any expanding with Lipschitz deriva-

tive function / has a contradictory behaviour from the point of view of chaos

in the sense of Li and Yorke. On the one hand it cannot generate scrambled

sets of positive Lebesgue measure. On the other hand the two-dimensional set

Ch(/) including the pairs (x, y) such that {x, y} is a scrambled set of /

has positive measure. In fact, both the geometric structure (almost everywhere)

and measure of Ch(/) can be explicitly obtained.

1. Introduction and statement of the results

Over the last few years an important amount of work has been done about

the notion of chaos such as it was defined by Li and Yorke in [15] (see also

[10] and [14]). Throughout the paper ^(1) will denote the set of continuous

functions f: I -*■ I, where / is a compact real interval.

Definition 1.1. Let / G W(I). Suppose that there exists Sci with at least
two elements such that for any x, y belonging to S, x ^ y, and any periodic

point p of f

(51) limsup|/"(x)-/"(y)|>0,
n—»oo

(52) liminf|/"(x)-/"(y)| = 0,
n—>oo

(53) limsup|/B(*)-/B(p)|>0.
n—»oo

Then S is called a scrambled set (of /) and / is said to be chaotic (in the

sense of Li and Yorke).

It is well known (see [7] or [10]) that if / has a periodic point of period not a

power of 2 (here we include 1 as a power of two) then it is chaotic. Nevertheless

this chaos can essentially be "unobservable". Consider f(x) = a - 1 - ax2,

where a(a - 1) = 1.75487... is the root of the equation 1 - x(x - l)2 = 0.
For this function, 0 is a periodic point of period 3, so it is chaotic. On the

other hand almost every x G [-1, 1] (with respect to the Lebesgue measure) is

attracted by the orbit of 0 (see [8]).
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Then a rather natural question is whether there can exist chaotic functions

possessing a scrambled set of positive measure. In what follows, X and X2 will

respectively denote one-dimensional and two-dimensional Lebesgue measure.

Definition 1.2. Let / G W(I). Then / is said to be strongly chaotic from the

point of view of measure (or, more briefly, sm-chaotic) if it has a measurable

scrambled set of positive measure.

A first partial answer to this problem was given by Smital [20], where he

proves that the function f: [0, 1] -> [0, 1] given by f(x) = 1 — |2jc — 11
has a scrambled set of outer measure 1. However, for expanding functions

we have the following (we say that / G W(I) is expanding—we also put / G

£>(I)—if it is piecewise monotonic and there exists a constant Kf > 1 such

that \f(x) - f(y)\ > Kf\x - y\ for every pair of points x, y belonging to any

interval on which / is monotonic):

Proposition 1.3. Let f e W(I). Then it cannot be sm-chaotic.

Proof. Suppose S is a measurable scrambled set with X(S) > 0. Since fn\$

is one-to-one for any n , we have X(fn(S)) > KfX(S), so X(fk(S)) > X(I) for

some k , which is impossible.   □

The first examples of sm-chaotic functions were simultaneously found by

Smital [21] and Kan [13]. Afterward Jankova and Smital (see [10] and [22])
proved that, in fact, any chaotic function is topological^ conjugate to an sm-
chaotic function. Maps with scrambled sets of full measure are also known;

see Misiurewicz [17] and Bruckner and Hu [3]. All the above functions are

nondifferentiable; a C°° sm-chaotic function is given in [11].

The problem with these maps (even the smooth one) is that they all are
highly sophisticated. Indeed, there are no known piecewise linear or analytic sm-

chaotic functions. Moreover, to identify sm-chaoticity with "large" chaos can be

misleading. In fact, f(x) = 1 - \2x - 1| is not sm-chaotic but exhibits sensitive

dependence with respect to initial conditions and possesses an invariant ergodic

measure (Legesgue measure itself). Thus / shows in some sense a "paradoxical"

behaviour from the point of view of measure. To deal with this situation, the

following notion will be useful.

Definition 1.4. Let / G W(I). Define Ch(/) c I x.1 as the set of points (x, y)

holding

(CHI) limsup|/"(x)-/"(j;)|>0,
n—>oo

(CH2) liminf|/',(x)-/"(y)| = 0,
n—»oo

and for any periodic point p of f

(CH3)        limsup|/',(x)-/"a7)|>0,        limsup|/"(y) - f(p)\ > 0.
n—»oo n—>oo

Then / is said to be empirically chaotic if X2(Ch(f)) > 0.

Notice that Ch(/) is always measurable.

Remark 1.5. The idea of passing to the square, in a different context, was sug-

gested by Lasota and has been used by Piorek [18], Snoha [19], and Gedeon [6].

In fact, they work with the set Ch*(/) of points verifying (CHI) and (CH2).
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Note that, if S is a set holding (SI) and (S2) in Definition 1.1, then by taking
off from it at most an adequately chosen point, it also verifies (S3). On the

other hand there exist examples of functions / holding X2(Ch*(f)) > 0 but

X2(Ch(f)) = 0 (see [12]). If / is expanding then Ch*(/)\Ch(/) is countable

and so X2(Ch*(f)) = X2(Ch(f)).

Definition 1.6. Let / G &(I). Then / is said to be paradoxical if it is empiri-

cally chaotic but not sm-chaotic.

In [20] it is implicitly proved that f(x) = 1 - \2x - 1| is paradoxical, with

Ch(/) possessing full measure. This conclusion was generalized by Gedeon [6]

to the family of full piecewise linear functions. Here a function /: [a, b] —>

[a, b] is called full piecewise linear if there exists a partition a = a§ < a\ < a2 <

• ■ ■ < ak = b with k > 1 such that /|[a,-_, ,at] is linear and /([a,-i, a,]) = [a, b]

for any i.
The aim of this paper is to show that a rather big class of maps, namely,

expanding with Lipschitz derivative, are paradoxical. It turns out that in these

cases the geometric structure of Ch(/) can (almost everywhere) be explicitly

described and its measure explicitly calculated.

Definition 1.7. Let / G &([a, b]). Then / is said to be expanding with Lips-

chitz derivative if there exists a (minimal) partition a = ao < ai < a2 < ■■■ <

ak = b and a constant Kf > 1 such that f = /!(«,_,,«,) is differentiable for

any i with (f)' Lipschitz and verifying \(f)'(x)\ >/cy for any x. The points

a\, a2, ... , «fc_i are called singular.
We shall denote the set of expanding with Lipschitz derivative functions

/: / -» / as &{I).

Now we can state our main result.

Theorem 1.8. Let f e 2C(I) ■ Then there exists a family {In}n of subintervals

of I with pairwise disjoint interiors holding the following properties:

(i) E„A(/n) = A(/).
(ii) Let Ik , Ij belong to {In}n ■ If there exists a nonnegative integer m such

that fm(Ik) n fm(Ii) / 0, then

X2(Ch(f)n(IkxIl))=X(Ik)X(Il);

otherwise

X2(Ch(f)n(Ikxi,)) = 0.

Remark 1.9. Indeed the proof of Theorem 1.8 provides us with more precise

information on {/„}„, so every /(/„) is included in some Im . Moreover,

there exists a finite family {/?,-},■ c {/„}„ (with {5,}, the bitransitive intervals

of /, see Definition 2.4) such that /(U,5/) C (J, 5;» and for every /„ there

exist some B, and m > 0 with fm(In) C fi,. On the other hand, the relative

position of the intervals {fi,}, can specifically be described as in [1].

Corollary 1.10. Let f G Sf(I) ■ Then it is paradoxical.

Proof. It immediately follows from Theorem 1.8 and Proposition 1.3.   a

Remark 1.11. Theorem 1.8 does not work if functions f in Definition 1.7
are only C1 ; see [12] for a counterexample. The same function also provides

counterexamples for Lemmas 3.7, 3.8, and (with a slight modification) 3.5. Still,

the question of whether every expanding function is paradoxical remains open.
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Corollary 1.12 (see Gedeon [6]). Let f:I—>I be a full piecewise linear function.

Then X2(Ch(f)) = (X(I))2.

Proof. Obvious, since for every subinterval J of I there exists some k such

that fk(J) = I.   D

Corollary 1.13. There exist analytic paradoxical functions.

Proof. Consider the functions /, g: [0, 1] —► [0,1] respectively given by

f(x) = 1 - |2x - 1| and g(y) = 4y(l - y), which are topologically conju-

gate through h(x) - sin (nx/2). Note that (x, y) G Ch(/) if and only if
(h(x), h(y)) G Ch(g). Since / is paradoxical and h is smooth, we conclude

that g is also paradoxical.   □

Remark 1.14. In fact, from X2(Ch(f)) = 1 (see Corollary 1.12), one can also

obtain X2(Ch(g)) = 1.
We finish this introductory section with an example illustrating Theorem

1.8. Namely, consider the family of functions fa: [0, 1] —► [0, 1] given by

fa(x) = a(\ - \2x - l|)/2, where a is a parameter belonging to (1,2]. Using

some estimations from [23] one can describe Ch(^) in an effective way. For

example, X2(Ch(fa)) = 1 when \/2 < a < 2, while Figures 1 and 2 show
the (almost everywhere) geometric structure of Ch(^) (painted in black) when

y/2 < a < V2 and \/2 < a < \[2 respectively (the proportions have been

distorted to increase the clarity of pictures). Moreover, the specific value of

X2(Ch(fa)) can be also calculated in all cases (see [12]).

2. Some preliminary lemmas on transitivity

Before beginning the proof of Theorem 1.8 we recall some necessary results

on transitivity that will be useful later.

Definition 2.1. Let f G 'S'(I) ■ Then / is said to be bitransitive if f2 is
(topologically) transitive.

Lemma 2.2 (see [2]). Let f G W(I).
(i) If f is bitransitive then f" is transitive for any positive integer n .

(ii) If f is transitive then either f is bitransitive or there exist J, K closed

subintervals of I verifying J li K = I, lnt(J) n lnt(K) = 0, and such that
f(J) = K and f(K) = J, being f2\j, f2\ic bitransitive.
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Lemma 2.3 (see [4]). Let /:/—►/ be a bitransitive piecewise monotonic func-

tion.   Then for any subinterval J  of I  there exists an integer k such that
fk(J) = I-

In fact, we are mainly interested in intervals on which some iterate of /

behaves as a bitransitive function.

Definition 2.4. Let / G %?(!) and J be a closed subinterval of /. We say

that J is bitransitive if there exists some r > 1 such that fr\j: J —> J is

bitransitive.

We shall denote the union set of all bitransitive intervals of / as cf(f).

Lemma 2.5. Let f G &{I).

(i) If J is bitransitive then f'(J) is bitransitive for any i.

(ii) If J ^ K are bitransitive then Int(J) n lnt(K) = 0.

Proof, (i) is immediate. For (ii), assume the contrary. Let r, s be such that
f\j and /*!* are bitransitive. Since frs(JC\K) c JnK, applying Lemma

2.2(i) we have J = K, a contradiction.   □

Remark 2.6. If / is piecewise monotonic, from Lemma 2.5 it has a finite num-
ber of bitransitive intervals.

In the general case, of course, (f(f) can be empty. Nevertheless this is not
possible for expanding functions.

Lemma 2.7. Let f G <£(I). Then it has some bitransitive interval.

Proof. In [9] it is proved that if / is expanding there exist an integer r and a

subinterval J of I such that fr\j: J -» J is transitive. This result together

with Lemma 2.2(ii) implies Lemma 2.7.   □

3. Proof of Theorem 1.8

First of all let us see an outline with the main ideas in the proof. Key results

are Proposition 3.1 and Lemma 3.3 (this last one simply allows us to consider

our functions as "almost" piecewise linear). With them plus Lemma 2.7 we

prove Lemma 3.5, which leads us to concentrate on bitransitive functions. If /

is bitransitive, Lemma 2.3 (and Proposition 3.1 and Lemma 3.3 again) imply

that / behaves in some sense as a full piecewise linear function, and from here

it is relatively easy to prove Lemma 3.8, which essentially finishes the proof.

Proposition 3.1. Let f e %(I) and J be a subinterval of I. Then there exist

a constant ef > 0 depending only of f and a family {J„}n of pairwise disjoint
subintervals of J holding the following properties:

W £„ *«.) = *(/).
(ii) For every J„ there exists some k such that fk\j„  is monotonic and

Hfk(Jn))>ef.

Proof. It is not restrictive to suppose that Kf > 2 (if necessary we would re-

place / by an adequate /'). Take sf > 0 small enough such that if K is
a subinterval of / with X(K) < Sf then it can contain at most a turning point
of f.
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Let ^m for any m be the set of maximal open subintervals of J on which

fm is monotonic. Inductively define S£\ = {K G f\ : X(f(K)) > ef} and

JTm = \K£jm: X(fm(K)) > ef and K n L = 0 for any L G |J J?, 1 .

Then put {Jn}n — Um=i -^n • Notice that all these intervals are pairwise disjoint

while condition (ii) is trivially verified. With regard to (i), note that if K G fm

but X(fm(K)) < ey then fm+l\ic has at most a turning point. Thus the set of

intervals K G fm such that KnL = 0 for any L G |J™ i ̂ / has cardinality at

most r2m~l, where r is the number of pieces of monotonicity of /. Moreover,

if K is one of these intervals, then X(K) < EfJKj . Hence,

i'\hJ)^
and (i) follows.   □

Remark 3.2. Notice that if / G ̂ (I) we can choose the intervals {/„}„ with

the additional property of not containing singular points.

Now we need an appropriate version of a classical Denjoy's lemma (see [5]).

It is implicitly shown in [23], but no concrete reference can be suggested, so we

give the proof here.

Lemma 3.3. Let f G £?(I), k be a positive integer, and J be a subinterval of

I. Suppose that the intervals J, f(J), ... , fk~](J) do not contain singular

points in their interiors. Then there exists a constant Sf > 0 depending only on

f such that for any subinterval K of J

X(fk(K))     X(fk(J))
f    X(K) X(J)     '

Proof. Take x0, yo belonging to Int(7) such that

l(/ } (Xo)l -     X(J)     '        l(/ } {yo)l -     X(K)     ■

From f eJtf(I) one gets

k-i

|log|(/k)'(yo)|-log|(/*)'(xo)||<5;|log|/'(/'(j;o))|-log|/'(/'(xb))||
i'=0

k-\

<oY,Kf\J))
1=0

for an approximate a , but it is obvious that X(fk~j(J)) < X^/kJ-1 for any

1 < j < k. Therefore,

Sf\(fk)'(yo)\<\(fk)'(x0)\,

where 8f = exp(-aX(I)Kf/(Kf - 1)). From this, Lemma 3.3 follows.   □

Remark 3.4. Lemma 3.3 does not hold if functions (f)' (see Definition 1.7)

are only absolutely continuous. For a counterexample, see [12].
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Consider Ef from Proposition 3.1. Fix a family 7i, ... , 7/(/) of subintervals

of / such that for any subinterval J of I with X(J) > &f there exist some

i G {1, ... , /(/)} holding 7, c 7. Let 7/ > 0 such that if J and 7, are in

these conditions, X(7,) > y/X(J).

Lemma 3.5. Let feSf(I). Then X([j!^L0f-n((f(f)))=X(I).

Proof. First we show that for any subinterval J of I there exists k such that

fk(J)nlnt(cf(f))^0. Indeed assume that C\({Jn>ofn(J))nlnt(c?(f)) = 0.

Since / is expanding, C\(\Jn>0f"(J)) = Ki u ••• U K; with the Kt pairwise

disjoint closed intervals. There exists then a positive number m such that

for some i0 G {1,...,/}, fm(Kl0) c Kk. Now f"\KiQ: Kl0 -+ Kio is an

expanding function, so by Lemma 2.7 it has a bitransitive interval, which is

impossible.
In particular, for every 7, there exist m(i) and £ > 0 such that

X(Ii C\f-m^(cf(f))) > c;X(Ii), with £ not depending on i.
Note that to prove Lemma 3.5 it is sufficient to show that if 7 is a subin-

terval of / there exist a constant p > 0 not depending on J and a finite col-

lection Ji, ... , Jr of pairwise disjoint subintervals of / verifying (J;=i Jt C

Ur=o/""(W)) and 2X1 xiJ') > P^J) • But this can easily be obtained from
Proposition 3.1 and Lemma 3.3 by taking p = £,Vf8f.   □

Remark 3.6. A similar result to Lemma 3.5 was proved in [16] by means of

techniques related with the Frobenius-Perron operator.

The next lemma generalizes Lemma 1 from [20].

Lemma 3.7. Let f G ̂ (1) be bitransitive. Suppose J is a subinterval of I

and M an infinite set of nonnegative integers. Then there exists a Borel set

Bf(J, M) c I such that X(Bf(J, M)) = X(I) and with the property that for any
x G Bf(J, M) there exist infinitely many n G M with fn(x) e J.

Proof. For any ;' let M}■■ = {n G M : n > j} and B}■■ = {x G / : fk(x) G J for

some k G Mj} . If we show that X(Bj) - X(I), obviously Bf(J, M) - f)jBj
will be the desired set.

Since / G ^(I), it follows from [24] that it has an invariant probability

measure p absolutely continuous with respect to X. We can suppose p(I) =

X(I). From Lemma 2.3 it follows that there exists s(f) not depending on /'

such that fs{f\li) = I for every i. Thus a similar argument as in Lemma 3.5

gives X(\J^L0 f~n(J)) = X(I), which also implies by the absolute continuity of p.

that ii{[\Z0f-n{J)) = W)- By li being invariant, p(f~k(J)) = p(f~'(J)) >
0 for any k and /, and by the continuity of p again inf„{X(f "(J))} > 0.

Therefore, there exists n > 0 not depending on i such that, for any m > s(f),

X(ji Df~m(J)) > rjXiJi). Now we can show X(Bj) = X(I) in an analogous way

as in Lemma 3.5.   □

Lemma 3.8. Let f G ̂ (I) and J, K be bitransitive intervals of f such that

J n K ^ 0.   Suppose L\,  L2 are subintervals of I such that f'(L\) c J,

f'(L2) c K for some nonnegative integer I.  Then X2(Ch(f) n (Li x L2)) =
X(LX)X(L2).

Proof. It is not restrictive to suppose / = 0, L\ = J, L2 — K. On the other

hand, from Lemma 2.5(H) we get that either J = K or J f)K = {a}. Assume

that we are in the second case (the first one is analogous).
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For example, suppose that g = f\j , h = fs\fc are bitransitive, and K =

[a, b]. Using Lemma 3.7 and reasoning as in [20], one can find a Borel set

Ac J with X(A) - X(J) such that for any x G A

limsupg"!(.x) = a.
n—»oo

Take x e A. Let (r(n))^=l be an increasing sequence of multiplies of rs

with (fr{n)(x))™={ converging to a, and put M = {r(n)/s}™=l. Also choose

sequences (Kn)'£=l and (Kn)^=l of subintervals of K containing respectively

a and b such that their lengths tend to zero. Then Lemma 3.7 gives that

oo

A(x)=f)(Bh(Kn,M)nBh(K",M))
n=\

has measure X(K). Since for every x e A and every y G A(x)

limsup|/"(x)-/',(y)|>0,        liminf |/"(j:) - /"f»| = 0,
n-»oo n->oo

Lemma 3.8 follows,   a

Proof of Theorem 1.8. It is a direct consequence of Lemmas 2.5, 3.5, 3.8, and
2.3.   □

Remark 3.9. With the same argument as in [20] one can also prove that any

f £ Jz?(I) possesses a scrambled set of positive exterior measure.
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