
Group Theory

Problem Set 1 October 12, 2001

Note: Problems marked with an asterisk are for Rapid Feedback; problems marked with a
double asterisk are optional.

1. Show that the wave equation for the propagation of an impulse at the speed of light c,

1
c2
∂2u

∂t2
=
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
,

is covariant under the Lorentz transformation

x′ = γ(x− vt), y′ = y, z′ = z, t′ = γ

(
t− v

c2
x

)
,

where γ = (1− v2/c2)−1/2.

2.∗ The Schrödinger equation for a free particle of mass m is

ih̄
∂ϕ

∂t
= − h̄2

2m
∂2ϕ

∂x2
.

Show that this equation is invariant to the global change of phase of the wavefunction:

ϕ→ ϕ′ = eiαϕ ,

where α is any real number. This is an example of an internal symmetry transformation,
since it does not involve the space-time coordinates.

According to Noether’s theorem, this symmetry implies the existence of a conservation
law. Show that the quantity

∫∞
−∞ |ϕ(x, t)|2 dx is independent of time for solutions of the

free-particle Schrödinger equation.

3.∗ Consider the following sets of elements and composition laws. Determine whether they
are groups and, if not, identify which group property is violated.

(a) The rational numbers, excluding zero, under multiplication.

(b) The non-negative integers under addition.

(c) The even integers under addition.

(d) The nth roots of unity, i.e., e2πmi/n, for m = 0, 1, . . . , n− 1, under multiplication.

(e) The set of integers under ordinary subtraction.
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4.∗∗ The general form of the Liouville equation is

d
dx

[
p(x)

dy
dx

]
+
[
q(x) + λr(x)

]
y = 0

where p, q and r are real-valued functions of x with p and r taking only positive values.
The quantity λ is called the eigenvalue and the function y, called the eigenfunction, is
assumed to be defined over an interval [a, b]. We take the boundary conditions to be

y(a) = y(b) = 0

but the result derived below is also valid for more general boundary conditions. No-
tice that the Liouville equations contains the one-dimensional Schrödinger equation as a
special case.

Let u(x;λ) and v(x;λ) be the fundamental solutions of the Liouville equation, i.e. u
and v are two linearly-independent solutions in terms of which all other solutions may
be expressed (for a given value λ). Then there are constants A and B which allow any
solution y to be expressed as a linear combination of this fundamental set:

y(x;λ) = Au(x;λ) +Bv(x;λ)

These constants are determined by requiring y(x;λ) to satisfy the boundary conditions:

y(a;λ) = Au(a;λ) +Bv(a;λ) = 0

y(b;λ) = Au(b;λ) +Bv(b;λ) = 0

Use this to show that the solution y(x;λ) is unique, i.e., that there is one and only one
solution corresponding to an eigenvalue of the Liouville equation.
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Group Theory

Problem Set 2 October 16, 2001

Note: Problems marked with an asterisk are for Rapid Feedback.

1.∗ Show that, by requiring the existence of an identity in a group G, it is sufficient to require
only a left identity, ea = a, or only a right identity ae = a, for every element a in G,
since these two quantities must be equal.

2.∗ Similarly, show that it is sufficient to require only a left inverse, a−1a = e, or only a right
inverse aa−1 = e, for every element a in G, since these two quantities must also be equal.

3. Show that for any group G, (ab)−1 = b−1a−1.

4.∗ For the elements g1, g2, . . . , gn of a group, determine the inverse of the n-fold product
g1g2 · · · gn.

5.∗ Show that a group is Abelian if and only if (ab)−1 = a−1b−1. You need to show that
this condition is both necessary and sufficient for the group to be Abelian.

6. By explicit construction of multiplication tables, show that there are two distinct struc-
tures for groups of order 4. Are either of these groups Abelian?

7.∗ Consider the group of order 3 discussed in Section 2.4. Suppose we regard the rows of
the multiplication table as individual permutations of the elements {e, a, b} of this group.
We label the permutations πg by the group element corresponding to that row:

πe =

(
e a b

e a b

)
, πa =

(
e a b

a b e

)
, πb =

(
e a b

b e a

)

(a) Show that, under the composition law for permutations discussed in Section 2.3,
the multiplication table of the 3-element group is preserved by this association, e.g.,
πaπb = πe.

(b) Show that for every element g in {e, a, b},

πg =

(
e a b

g ga gb

)
Hence, show that the πg have the same multiplication table as the 3-element group.

(c) Determine the relationship between this group and S3. This is an example of Cayley’s
theorem.

(d) To which of the operations on an equilateral triangle in Fig. 2.1 do these group
elements correspond?
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Group Theory

Problem Set 3 October 23, 2001

Note: Problems marked with an asterisk are for Rapid Feedback.

1.∗ List all of the subgroups of any group whose order is a prime number.

2.∗ Show that a group whose order is a prime number is necessarily cyclic, i.e., all of the
elements can be generated from the powers of any non-unit element.

3. Suppose that, for a group G, |G| = pq, where p and q are both prime. Show that every
proper subgroup of G is cyclic.

4.∗ Let g be an element of a finite group G. Show that g|G| = e.

5. In a quotient group G/H , which set always corresponds to the unit “element”?

6. Show that, for an Abelian group, every element is in a class by itself.

7. Show that every subgroup with index 2 is self-conjugate.

Hint: The conjugating element is either in the subgroup or not. Consider the two cases
separately.

8.∗ Consider the following cyclic group of order 4, G = {a, a2, a3, a4 = e} (cf. Problem 6,
Problem Set 2). Show, by direct multiplication or otherwise, that the subgroup H =
{e, a2} is self-conjugate and identify the elements in the factor group G/H .

9.∗ Suppose that there is an isomorphism φ from a group G onto a group G′. Show that the
identity e of G is mapped onto the identity e′ of G′: e′ = φ(e).

Hint: Use the fact that e = ee must be preserved by φ and that φ(g) = e′φ(g) for all g
in G.
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Group Theory

Problem Set 4 October 30, 2001

Note: Problems marked with an asterisk are for Rapid Feedback.

1.∗ Given a set of matrices D(g) that form a representation a groupG, show that the matrices
which are obtainable by a similarity transformation UD(g)U−1 are also a representation
of G.

2.∗ Show that the trace of three matrices A, B, and C satisfies the following relation:

tr(ABC) = tr(CAB) = tr(BCA)

3. Generalize the result in Problem 4 to show that the trace of an n-fold product of matrices
is invariant under cyclic permutations of the product.

4.∗ Show that the trace of an arbitrary matrixA is invariant under a similarity transformation
UAU−1.

5. Consider the following representation of S3:

e =

(
1 0

0 1

)
, a = 1

2

(
1 −

√
3

−
√

3 −1

)
, b = 1

2

(
1
√

3
√

3 −1

)

c =

(
−1 0

0 1

)
, d = 1

2

(
−1 −

√
3

√
3 −1

)
, f = 1

2

(
−1

√
3

−
√

3 −1

)

How can these matrices be permuted to provide an equally faithful representation of S3?
Relate your result to the class identified with each element.

6.∗ Consider the planar symmetry operations of an equilateral triangle. Using the matrices
in Example 3.2 determined from transformations of the coordinates in Fig. 3.1, construct
a three-dimensional representation of S3 in the (x, y, z) coordinate system, where the z-
axis emanates from the geometric center of the triangle. Is this representation reducible
or irreducible? If it is reducible determine the irreducible representations which form the
direct sum of this representation.

7. Show that two matrices are simultaneously diagonalizable if and only if they commute.
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Group Theory

Problem Set 5 November 6, 2001

Note: Problems marked with an asterisk are for Rapid Feedback.

1. In proving Theorem 3.2, we established the relation BiB
†
i = I. Using the definitions in

that proof, show that this result implies that B†iBi = I as well.

Hint: Show that BiB
†
i = I implies that ÃiDÃ

†
i = D.

2.∗ Consider the three-element group G = {e, a, b} (Sec. 2.4).

(a) Show that this group is Abelian and cyclic (cf. Problem 2, Problem Set 3).

(b) Consider a one-dimensional representation based on choosing a = z, where z is a
complex number. Show that for this to produce a representation of G, we must
require that z3 = 1.

(c) Use the result of (b) to obtain three representations of G. Given what you know
about the irreducible representations of Abelian groups (Problem 8, Problem Set
4), are there any other irreducible representations of G?

3.∗ Generalize the result of Problem 2 to any cylic group of order n.

4.∗ Use Schur’s First Lemma to prove that all the irreducible representations of an Abelian
group are one-dimensional.

5.∗ Consider the following matrices:

e =

(
1 0

0 1

)
, a = 1

2

(
−1 −

√
3

−
√

3 1

)
, b = 1

2

(
−1 −

√
3

−
√

3 1

)

c = 1
2

(
−1 −

√
3

−
√

3 1

)
, d =

(
1 0

0 1

)
, f =

(
1 0

0 1

)

Verify that these matrices form a representation of S3. Use Schur’s first Lemma to
determine if this representation reducible or irreducible. If reducible, determine the
irreducible representations that are obtained from the diagonal form of these matrices.
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Group Theory

Problem Set 6 November 13, 2001

Note: Problems marked with an asterisk are for Rapid Feedback.

1.∗ Verify the Great Orthogonality Theorem for the following irreducible representation of
S3:

e =

(
1 0

0 1

)
, a = 1

2

(
1 −

√
3

−
√

3 −1

)
, b = 1

2

(
1
√

3
√

3 −1

)

c =

(
−1 0

0 1

)
, d = 1

2

(
−1

√
3

−
√

3 −1

)
, f = 1

2

(
−1 −

√
3

√
3 −1

)

2.∗ Does the following representation of the three-element group {e, a, b}:

e =

(
1 0

0 1

)
, a = 1

2

(
−1

√
3

−
√

3 −1

)
, b = 1

2

(
−1 −

√
3

√
3 −1

)

satisfy the Great Orthogonality Theorem? Explain your answer.

3.∗ Specialize the Great Orthogonality Theorem to Abelian groups. When viewed as the
components of a vector in a |G|-dimensional space, what does the Great Orthogonal-
ity Theorem state about the relationship between different irreducible representations?
What bound does this place on the number of irreducible representations of an Abelian
group?

4.∗ Consider the irreducible representations of the three-element calculated in Problem 2 of
Problem Set 5.

(a) Verify that the Great Orthogonality Theorem, in the reduced form obtained in
Problem 3, is satisfied for these representations.

(b) In view of the discussion in Sec. 4.4, would you expect to find any other irreducible
representations of this group?

(c) Would you expect your answer in (b) to apply to cyclic groups of any order?

5.∗ Consider any Abelian group. By using the notion of the order of an element (Sec. 2.4),
determine the magnitude of every element in a representation. Is this consistent with the
Great Orthogonality Theorem?
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Group Theory

Problem Set 7 November 20, 2001

Note: Problems marked with an asterisk are for Rapid Feedback.

1.∗ Identify the 12 symmetry operations of a regular hexagon.

2. Show that elements in the same class of a group must have the same order.

3.∗ Identify the 6 classes of this group.

Hint: You do not need to compute the conjugacy classes explicitly. Refer to the discus-
sion for the group S3 in Example 2.9 and use the fact that elements in the same class
have the same order.

4.∗ How many irreducible representations are there and what are their dimensions?

5.∗ Construct the character table of this group by following the procedure outlined below:

(a) Enter the characters for the identical and “parity” representations. As in the case
of S3, the characters for the parity representation are either +1 or −1, depending
on whether or not the the operation preserves the “handedness” of the coordinate
system.

(b) Enter the characters for the “coordinate” representation obtained from the action
on (x, y) for each group operation. Note that the character is the same for elements
in the same class.

(c) Use the products C3C
2
3 = E and C3

3 = E to identify the characters for all one-
dimensional irreducible representations for the appropriate classes. The meaning
of the notation Cmn for rotations is discussed in Section 5.4.

(d) Use the result of (c) and the products C6C3 = C2 to deduce that the characters
for the class of C6 and those for the class of C2 are the same. Then, use the
orthogonality of the columns of the character table to compute these characters.

(e) Use the appropriate orthogonality relations for characters to compute the remaining
entries of the character table.
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Group Theory

Problem Set 8 November 27, 2001

Note: Problems marked with an asterisk are for Rapid Feedback.

1. Show that if two matrices A and B are orthogonal, then their direct product A⊗B is
also an orthogonal matrix.

2. Show that the trace of the direct product of two matrices A and B is the product of
the traces of A and B:

tr(A⊗B) = tr(A) tr(B)

3.∗ Show that the direct product of groupsGa andGb with elementsGa = {e, a2, . . . , a|Ga|}
and Gb = {e, b2, . . . , b|Gb|}, such that aibj = bjai for all i and j, is a group. What is
the order of this group?

4.∗ Use the Great Orthogonality Theorem to show that the direct product of irreducible
representations of two groups is an irreducible representation of the direct product of
those groups.

5.∗ For an n-fold degenerate set of eigenfunctions ϕi, i, 1, 2, . . . , n, we showed show that
the matrices Γ(Rα) generated by the group of the Hamiltonian,

Rαϕi =
n∑
j=1

ϕjΓji(Rα)

form a representation of that group. Show that if the ϕj are chosen to be an orthonormal
set of functions, then this representation is unitary.

6.∗ The set of distinct functions obtained from a given function ϕi by operations in the
group of the Hamiltonian, ϕj = Rαϕi, are called partners . Use the Great Orthogonality
Theorem to show that two functions which belong to different irreducible representa-
tions or are different partners in the same unitary representation are orthogonal.

7. Consider a particle of mass m confined to a square in two dimensions whose vertices
are located at (1, 1), (1,−1), (−1,−1), and (−1, 1). The potential is taken to be zero
within the square and infinite at the edges of the square. The eigenfunctions ϕ are of
the form

ϕp,q(x, y) ∝
{

cos(kpx)

sin(kpx)

}{
cos(kqy)

sin(kqy)

}
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where kp = 1
2pπ, kq = 1

2qπ, and p and q are positive integers. The notation above
means that cos(kpx) is taken if p is odd, sin(kpx) is taken if p is even, and similarly for
the other factor. The corresponding eigenvalues are

Ep,q =
h̄2π2

8m
(p2 + q2)

(a) Determine the eight planar symmetry operations of a square. These operations form
the group of the Hamiltonian for this problem. Assemble the symmetry operations
into equivalence classes.

(b) Determine the number of irreducible representations and their dimensions for this
group. Do these dimensions appear to be broadly consistent with the degeneracies
of the energy eigenvalues?

(c) Determine the action of each group operation on (x, y).

Hint: This can be done by inspection.

(d) Determine the characters corresponding to the identical, parity, and coordinate
representations. Using appropriate orthogonality relations, complete the character
table for this group.

(e) For which irreducible representations do the eigenfunctions ϕ1,1(x, y) and ϕ2,2(x, y)
form bases?

(f) For which irreducible transformation do the eigenfunctions ϕ1,2(x, y) and ϕ2,1(x, y)
form a basis?

(g) What is the degeneracy corresponding to (p = 6, q = 7) and (p = 2, q = 9)? Is this
a normal or accidental degeneracy?

(h) Are there eigenfunctions which form a basis for each of the irreducible representa-
tions of this group?

8.∗ Consider the regular hexagon in Problem Set 7. Suppose there is a vector perturbation,
i.e., a perturbation that transforms as (x, y, z). Determine the selection rule associated
with an initial state that transforms according to the “parity” representation.

Hint: The reasoning for determining the irreducible representations associated with
(x, y, z) is analogous to that used in Section 6.6.2 for the equilateral triangle.
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Group Theory

Problem Set 9 December 4, 2001

Note: Problems marked with an asterisk are for Rapid Feedback.

1.∗ Consider the group O(n), the elements of which preserve the Euclidean length in n
dimensions:

x′21 + x′22 + · · ·+ x′2n = x2
1 + x2

2 + · · ·+ x2
n .

Show that these transformations have 1
2n(n− 1) free parameters.

2. The condition that the Euclidean length is preserved in two dimensions, x′2 + y′2 =
x2 + y2, was shown in lectures to require that

a2
11 + a2

21 = 1, a11a12 + a21a22 = 0, a2
12 + a2

22 = 1 .

Show that these requirements imply that

(a11a22 − a12a21)2 = 1 .

3. Rotations in two dimensions can be parametrized by

R(ϕ) =

(
cosϕ − sinϕ

sinϕ cosϕ

)
.

Show that
R(ϕ1 + ϕ2) = R(ϕ1)R(ϕ2)

and, hence, deduce that this group is Abelian.

4.∗ We showed in lectures that a rotation R(ϕ) by an angle ϕ in two dimensions can be
written as

R(ϕ) = eϕX ,

where

X =

(
0 −1

1 0

)
.

Verify that
eϕX = I cosϕ+X sinϕ ,

where I is the two-dimensional unit matrix. This shows that eϕX is the rotation matrix
in two dimensions.
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5.∗ Consider the two-parameter group

x′ = ax+ b

Determine the infinitesimal operators of this group.

6.∗ Consider the group C∞v which contains, in addition to all two-dimensional rotations,
a reflection plane, denoted by σv in, say, the x-z plane. Is this group Abelian? What
are the equivalence classes of this group?

Hint: Denoting reflection in the x–z plane by S, show that SR(ϕ)S−1 = R(−ϕ).

7. By extending the procedure used in lectures for SO(3), show that the infinitesimal
generators of SO(4), the group of proper rotations in four dimensions which leave the
quantity x2 + y2 + z2 + w2 invariant, are

A1 = z
∂

∂y
− y ∂

∂z
, A2 = x

∂

∂z
− z ∂

∂x
, A3 = y

∂

∂x
− x ∂

∂y

B1 = x
∂

∂w
− w ∂

∂x
, B2 = y

∂

∂w
− w ∂

∂y
, B3 = z

∂

∂w
− w ∂

∂z

8. Show that the commutators of the generators obtained in Problem 7 are

[Ai, Aj ] = εijkAk, [Bi, Bj ] = εijkAk, [Ai, Bj ] = εijkBk

9. Show that by making the linear transformation of the generators in Problem 7 to

Ji = 1
2 (Ai +Bi), Ki = 1

2 (Ai −Bi)

the commutators become

[Ji, Jj ] = εijkJk, [Ki,Kj ] = εijkKk, [Ji,Kj ] = 0

This shows that locally SO(4)=SO(3)⊗SO(3).
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Group Theory

Problem Set 10 December 11, 2001

Note: Problems marked with an asterisk are for Rapid Feedback.

1.∗ Prove that a proper orthogonal transformation in an odd-dimensional space always
possesses an axis, i.e., a line whose point are left unchanged by the transformation.

2. Prove Euler’s theorem : The general displacement of a rigid body with one fixed point is
a rotation about an axis.

3.∗ The functions (x ± iy)m, where m is an integer generate irreducible representations
of SO(2). Suppose we now consider the group O(2), where we now allow improper
rotations. Use Schur’s lemma to show that these functions generate irreducible two-
dimensional representations of O(2) for m 6= 0, but a reducible representation for m = 0.

Hint: The general improper rotation in two dimensions is(
cosϕ sinϕ

sinϕ − cosϕ

)

4. Consider the rotation matrix obtained by rotating an initial set of axes counterclockwise
by φ about the z-axis, then rotated about the new x-axis counterclockwise by θ, and
finally rotated about the new z-axis counterclockwise by ψ. These are the Euler angles
and the corresponding rotation matrix is

cosψ cosφ− cos θ sinφ sinψ cosψ sinφ+ cos θ cosφ sinψ sinψ sin θ

− sinψ cosφ− cos θ sinφ cosψ − sinψ sinφ+ cos θ cosφ cosψ cosψ sin θ

sin θ sinφ − sin θ cosφ cos θ


Verify that the angle of rotation ϕ of this transformation is given by

cos
(

1
2ϕ
)

= cos
[

1
2 (φ+ ψ)

]
cos
(

1
2θ
)

5. Determine the axis of the transformation in Problem 4.

6.∗ Verify that the direct product of two irreducible representations of SO(3) has the fol-
lowing decomposition

χ(`1)(ϕ)χ(`2)(ϕ) =
`1+`2∑

`=|`1−`2|
χ(`)(ϕ)
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This is called the Clebsch–Gordan series and provides a group-theoretic statement of
the addition of angular momenta.

7.∗ Determine the corresponding Clebsch-Gordan series for SO(2).

8.∗ Show that the requirement that xx∗+yy∗ is invariant under the complex transformation(
x′

y′

)
=

(
a b

c d

)(
x

y

)

together with the determinant of this transformation being unity means that the trans-
formation must have the form(

x′

y′

)
=

(
a b

−b∗ a∗

)(
x

y

)

where aa∗ + bb∗ = 1.
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